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Medical studies have shown that EEG of Alzheimer’s disease (AD) patients is “slower” (i.e., contains more low-frequency power)
and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been
studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related.
Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia
patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The
two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also
investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power
and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When
combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and
98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than
with relative power and synchrony measures alone.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia; it is the sixth leading cause of death in the United
States. More than 10% of Americans over age 65 suffer from
AD, and it is predicted that the prevalence of AD will triple
within next 50 years [1–3]. Currently, no known medicine
exists for curing AD, but a number of medications are
believed to delay the symptoms and the causes of the disease.

The progression of AD can be categorized into three
different stages: mild, moderate, and severe AD; there is
also a stage known as Mild Cognitive Impairment (MCI)

or predementia, that characterizes a population of elderly
subjects who are not compromised in their daily living,
but have a subclinical and isolated cognitive deficit and are
potentially at risk of developing Alzheimer’s disease [4–6].
Around 6% to 25% of people affected by MCI progress to
AD. MCI may develop into mild AD and next moderate AD;
in those stages, cognitive deficits become more severe, and
the patients become more dependent on caregivers. In the
final stage known as severe AD, the personality of patients
may change dramatically, and patients are entirely dependent
on caregivers [7].
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Table 1: Overview of statistical measures: relative power, Lempel-Ziv complexity, and lossless compression ratio.

Measure Description References

Relative power Power within specific EEG frequency band normalized by total power [12]

Frequency bands: 0.5–4 Hz (delta), 4–8 Hz (theta), 8–10 Hz (alpha 1), 10–12 Hz (alpha 2),
12–30 Hz (beta)

Lempel-Ziv complexity Number of different patterns present in an EEG signal (complexity measure) [13]

Lossless compression ratio Reduction of the size of EEG data after lossless compression (regularity measure) [14, 15]

Compression algorithms considered here: 1D SPIHT, 2D SPIHT, and 2D SPIHT followed by
arithmetic coding

Diagnosing MCI and Mild Alzheimer’s disease is hard,
because most symptoms are often dismissed as normal
consequences of aging. To diagnose MCI or mild AD, exten-
sive testing is required, to eliminate all possible alternative
causes. Tests include psychological evaluations such as Mini-
Mental State Examination (MMSE), blood tests, spinal fluid,
neurological examination, and imaging techniques [8, 9].

Several research groups have investigated the potential of
electroencephalograms (EEGs) for diagnosing AD in recent
years. Since EEG recording systems are nowadays relatively
inexpensive and mobile, EEG may potentially be used in the
future as a tool to screen a large population for the risk of
AD, before proceeding to any expensive imaging or invasive
procedures. To date, however, EEG does not have sufficiently
high specificity and sensitivity to assume the role of reliable
and reproducible method of screening AD.

In recent years, several studies have shown that AD
has at least three major effects on EEG (see [10, 11] for
an in-depth review): slowing, reduced complexity, and loss
of synchrony. However, these effects tend to vary across
patients, which makes diagnosis of AD a difficult task. Many
recent studies are devoted to improving the sensitivity of EEG
for diagnosing AD. We refer to [11] for a detailed review on
various EEG statistics that have been used in this context.

In this paper, we investigate the relation between slowing
and reduced complexity in AD EEG. Those two phenomena
are often silently assumed to be independent. However, since
low-frequency signals are more regular than signals with
high-frequency components, one would expect that slowing
and reduced complexity in AD EEG are strongly related
to each other. Nevertheless no study so far has analyzed
the relation between both phenomena on a statistical basis
though.

In order to investigate the slowing effect in AD EEG, we
compute relative power in the standard EEG frequency bands
(see Table 1). When relative power is larger than usual in low-
frequency bands (delta and/or theta), it is said that the EEG
is “slower” and that “EEG slowing” occurs. We quantify the
irregularity of EEG by a standard measure, that is, Lempel-
Ziv complexity (see Table 1). We also apply several lossless
compression algorithms to the EEG, and we use the resulting
compression ratios (reduction in data size after compression)
as regularity measures (see Table 1). Regular signals are more
compressible than irregular signals, and therefore, they result
in larger compression ratios; as a consequence, compression
ratios are a measure of the regularity of signals.

We consider two EEG datasets: (1) EEG of predementia
patients (a.k.a. Mild Cognitive Impairment; MCI) and
control subjects; (2) EEG of mild AD patients and control
subjects. The two datasets are from different patients,
different hospitals and obtained through different recording
systems.

We will show that the theta band (θ) relative power is
significantly larger in both groups of patients compared to
age-matched control subjects and that the lossless compres-
sion ratios are significantly larger in MiAD patients than
in the age-matched control subjects; however, no significant
perturbation of Lempel-Ziv complexity and the lossless
compression ratios is observed for the MCI patients. Inter-
estingly, our numerical analysis will reveal strong correlation
between theta relative power on the one hand and Lempel-
Ziv complexity and the lossless compression ratios on the
other hand; in other words, the effects of slowing and loss
of complexity in AD EEG seem to be significantly coupled, at
least in the two EEG datasets at hand.

The paper is structured as follows. In Section 2 we
explain how relative power of EEG may be computed. In
Section 3, we describe the Lempel-Ziv complexity measure
and the lossless compression schemes used in this study. In
Section 4 we discuss the two EEG datasets, and in Section 5
we present our results. We provide concluding remarks and
topics of future research in Section 6.

Readers who are not interested in the technical and
mathematical details of our data analysis may skip Sections
2 and 3 and may directly proceed to Section 4.

2. Relative Power of EEG

The spectrum of EEG is helpful in describing and under-
standing brain activity. The EEG spectrum is commonly
divided in specific frequency bands: 0.5–4 Hz (delta), 4–8 Hz
(theta), 8–10 Hz (alpha 1), 10–12 Hz (alpha 2), 12–30 Hz
(beta), and 30–100 Hz (gamma) [12]. Neurological diseases,
including MCI and AD, often affect the EEG spectrum. Many
studies have shown that MCI and AD cause EEG signals to
“slow down” (see [11] and references therein), corresponding
to an increase of power in low-frequency bands (delta and
theta band, 0.5–8 Hz) and a decrease of power in higher-
frequency bands (alpha and beta, 8–30 Hz).

The EEG spectrum can be computed by means of the
Discrete Fourier Transform (DFT) of the EEG [11]. The DFT



International Journal of Alzheimer’s Disease 3

xe(n)

↓ 2 +−
p(·) u(·)

LP

HP↓ 2z−1

x(n)
input
signal

One lifting step

+
−

xo(n)

(a)

p(·)u(·)

LP

HP

z−1

xr(n) = x(n− L)
Reconstructed signal

+

+

+ ↑ 2

↑ 2

(b)

Figure 1: Wavelet transform realization via lifting scheme (a)
Forward transformation. (b) Inverse transformation. The boxes
labeled by z−1 stand for delays (over one sample). The boxes ↓ 2
and ↑ 2 represent downsampling and upsampling by a factor of
two, respectively; in the latter a zero is inserted after every sample,
whereas in the former, every second sample is removed. The lifting
scheme repeats two primitive steps: prediction p and update u.

X( fn) of the sequence x is usually computed at multiples fn
of fT = 1/T, where T refers to the length of the signal. For
computational convenience, the length of the sequence x is
often extended to the nearest power of two by zero padding.
As in [11], let us consider an example with T = 20 s and
the sampling frequency 200 Hz, then DFT is computed at
0 Hz, 0.05 Hz, 0.1 Hz,. . .,200 Hz. The Nyquist theorem states
that only one half the spectrum is of interest, while the
other half is the mirror image of the first half; hence for
the above example, it is enough to retain the DFT values
at 0 Hz, 0.05 Hz, 0.1 Hz,. . .,100 Hz. The DFT values X( fn)
are complex, and we are mostly interested in their absolute
magnitude |X( f )|. The relative power of a frequency band
is computed by summing |X( fn)| over the frequencies fn in
that band and next by dividing the resulting intraband sum
by the sum of |X( f )| over all DFT frequencies fn.

3. Complexity Measures

A variety of complexity measures have been used to quantify
EEG complexity, stemming from several areas ranging from
statistical physics to information theory. We refer to [11]
for more information. Earlier studies have reported that
the EEG of MCI and AD patients seems to be more
regular (i.e., less complex) than in age-matched control
subjects. It is conjectured that due to MCI/AD-induced
loss of neurons and perturbed anatomical and/or functional
coupling, fewer neurons interact with each other, and the
neural activity patterns and dynamics become simpler and
more predictable.

As mentioned earlier, we quantify EEG complexity by
a standard measure, that is, Lempel-Ziv complexity. In
addition, we use lossless compression ratios as regularity

measures. In the following, we describe Lempel-Ziv com-
plexity, and next we elaborate on lossless compression and
its use as measure for regularity.

3.1. Lempel-Ziv (LZ) Complexity. The Lempel-Ziv com-
plexity measure (LZ complexity) computes the number of
different patterns present in a sequence of symbols [13]; if the
number of different patterns is large, the sequence is complex
and hence difficult to compress. LZ complexity is obtained by
dividing the number of different patterns by the maximum
complexity of a sequence of length N . For more details we
refer to [16].

To compute LZ complexity, the time series is first reduced
to a symbol list. For the sake of simplicity, we convert the EEG
signals into binary sequences s = s(1), s(2), . . . , s(N), where
s(i) = 0 if x(i) < Td and s(i) = 1 otherwise; that approach
was also followed in [16]. The threshold Td is chosen as the
median of x, since the latter is robust to outliers.

3.2. Lossless Compression Algorithms. In this section, we
briefly explain the lossless compression algorithms applied
in this study (see Figure 2); we will consider three different
algorithms, which were all proposed in [14, 15]. The aim of
compression is to reduce the size of a given data source (e.g.,
EEG data). In lossless compression (e.g., ZIP compression
algorithm), no information in the original data source is lost
after compression, in contrast to lossy compression, where
the original can only approximately be constructed after
compression (e.g., JPEG compression algorithm for images).

Biomedical signals such as EEG often have a decaying
spectrum: the energy is mostly concentrated at low frequen-
cies, and it decays with increasing frequency. Therefore, the
spectral components are close to zero at high frequencies; the
same holds for coefficients in the time-frequency representa-
tion corresponding to high frequencies. To exploit this phe-
nomenon, compression algorithms often subject the given
data source to a transform (e.g., time-frequency transform),
which results in an alternative representation of the data. The
three algorithms used in this study all map the signals into
another domain, that is, time-frequency domain; the sparse-
ness of the time-frequency representation is then exploited
to form a compact code. We now briefly outline the com-
pression process (see Figure 2). First the EEG signal is prepro-
cessed, that is, the DC component (average value of EEG sig-
nal) is removed by applying backward difference; the result-
ing zero-mean signal is then arranged as a 1D vector (see
Figure 2(a); Algorithm A) or 2D matrix (see Figures 2(b) and
2(c); Algorithms B and C). The resulting structure is then
decomposed into different frequency bands via integer lifting
wavelet transform, which maps the signals to integers on sev-
eral time scales; at last, a set partitioning coding scheme con-
verts the (integer) wavelet coefficients into a compact repre-
sentation. In the following sections we describe those differ-
ent steps in more detail, and then we elaborate on the differ-
ences between the three algorithms (Algorithms A, B, and C).

3.2.1. Backward Difference. First the EEG signal x is pre-
processed, that is, the DC component (average value of EEG
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Figure 2: Lossless EEG compression algorithms apply wavelet transforms followed by Set Partitioning in Hierarchical Trees (SPIHT).

signal) is removed; this is performed via backward difference
operation

x̃(n) = x(n)− x(n− 1), (1)

where x̃(n) is the signal obtained by applying the backward
difference. Next the EEG is arranged as a vector of size N (1D
compression) or as a matrix of size N×N (2D compression);
the latter matrix is filled starting at the top left-hand side,
from left to right on the odd rows, and from right to left on
the even rows. In matrices, each entry has 8 nearest neighbors
(except for entries in the first/last row/column), compared
to two nearest neighbors in vectors (except for first and last
entries). In the present application, neighboring entries are
adjacent EEG samples, which are highly correlated [14]. By
leveraging on the additional nearest neighbors (8 instead of
2), 2D compression often yields better compression ratios
than 1D compression [14].

3.2.2. Lifting Wavelet Transform. A wavelet transform
decomposes a given signal into different frequency bands; it
allows to represent the signal in multiple resolutions (coarse
to fine) [17]. Wavelets are usually realized by a set of filters,
operating in parallel (“filter banks”). An alternative method
of realizing wavelets is a lifting scheme [18], which consists
of a cascade of simple filters; it may be viewed as the
factorization of a filter bank into elementary filters. One
such simple filter is depicted in Figures 1(a) and 1(b)). The
former shows the forward lifting transformation; the signal x
is first split into odd and even phases xo and xe, respectively,
containing the odd and even samples, respectively, of input
signal x. The odd and even phases contain adjacent samples;
in natural signals such as EEG, adjacent samples are highly
correlated. Therefore, the odd phase may be predicted from
the even phase (and vice versa). By subtracting the prediction
x̂o = p(xe) from the odd phase, we are left with a high-
frequency residue signal (HF) of the odd phase. The latter
is used in another lifting step, to predict the even phase xe
(“update” u); the resulting prediction is subtracted from the

Root node (low frequency)

H

V

D

Figure 3: Wavelet decomposition of the 2D matrix and associated
tree-based set originating from the low-frequency band. The root
node (black) branches towards horizontal, vertical, and diagonal
higher-frequency bands (H, V, D).

even phase xe, which leaves the low-frequency component
(LF) of the even phase xe; this also ensures the complete
frequency separation between an LF and HF component.
The forward transform of Figure 1(a) is easily invertible by
reversing the steps and flipping the signs (see Figure 1(b)).
We implement the prediction p and update u by means of
the widely used biorthogonal 5/3 filter [19], as we did in our
previous study on EEG compression [15].

In a lifting scheme, the pair of lifting steps, that is,
prediction p and update u, is repeated several times, leading
to multiscale representation of the input signal x (“wavelet”);
the nature and number of lifting steps p and u depend on the
type of wavelets [18]. Integer wavelet transforms can easily
be realized by systematic rounding and truncation of the
intermediate results, that is, output of p and u [20].
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Figure 4: Relative power distribution in various frequency bands for all the datasets. (a) Control group. (b) Mild cognitive impaired subjects.
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Figure 5: Relative power distribution in various frequency bands for all the datasets. (a) Control group. (b) Mild Alzheimer’s disease subjects.

The lifting wavelet transform provides a sparse, mul-
tiresolution representation, that is well suited for effective
compression (e.g., by means of SPIHT, to be explained in
next section); integer lifting in particular enables convenient
and simple implementations of lossless compression.

3.2.3. Set Partitioning in Hierarchical Trees Algorithm
(SPIHT). As the last step in the process, the wavelet-
transformed signals are compressed. We use a widely known
wavelet-based compression scheme, that is, Set Partitioning
in Hierarchical Trees (SPIHT) [21]. The underlying idea is set
partitioning: sets of samples are recursively split, guided by
a series of threshold tests. This approach is particularly well
suited for wavelet-transformed data, as wavelet coefficients
are naturally clustered. In SPIHT the sample sets are non-
overlapping, and they are organized by means of a tree

each set is rooted in a subset of low-frequency coefficients,
and branches successively to subsets of high-frequency
coefficients in the same orientation (see Figure 3). The search
for coefficients associated with a particular threshold usually
starts at the root node and proceeds successively towards
the leaves of the tree, until all significant coefficients are
listed. Such tree-based search, starting at coarse resolution
at the root and ending with the finest resolution at the leaves,
results in output signals of increasing quality and resolution.

The integer wavelet transform, in conjunction with
SPIHT, yields a quality and resolution scalable bitstream: the
quality and resolution of the signal improve as bitstream
progresses. This is a very desirable property for real-time
applications. Moreover, the output bitstream is embedded:
the bitstream can be truncated at any point to approximately
reconstruct the signal. When the bitstream is fully decoded,
we obtain a lossless representation.
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Figure 6: Correlation between the lossless compression ratios, LZ
complexity, relative power in different bands, Granger causality
(ffDTF), and stochastic event synchrony (ρ); red and blue indicate
strong correlation and anticorrelation, respectively.

Though this coding scheme is specifically developed for
images, it can be applied to all data sources with decaying
spectrum [22].

3.2.4. Three SPIHT Compression Algorithms. The three com-
pression algorithms are depicted in Figure 2: (1) 1D SPIHT
compression, where the EEG is arranged as a vector
(Figure 2(a)), (2) 2D SPIHT compression, where the EEG is
arranged as a matrix (Figure 2(b)), and (3) 2D SPIHT com-
pression (at optimal rate Ro), followed by arithmetic coding
for the residuals (Figure 2(c)). In the 1D SPIHT compression
scheme, backward differentiated EEG is subjected to integer
wavelet transformation followed by SPIHT coding. The 2D
SPIHT compression scheme arranges the EEG as a matrix
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Figure 7: Pearson correlation test between the lossless compression
ratios, LZ complexity, relative power in different bands, Granger
causality (ffDTF), and stochastic event synchrony (ρ). The (uncor-
rected) P values are shown on a logarithmic scale.

instead of a vector. In the two-stage 2D SPIHT compression
scheme, arithmetic coding is applied to the residuals of
2D SPIHT compression: first SPIHT encodes the wavelet
coefficients till the source loses its memory and behaves as
independent and identically distributed (corresponding to
the optimal bit-rate Ro); next the residuals are encoded by
means of single-context arithmetic coding.

4. EEG Datasets

4.1. Dataset 1: MCI versus Control. The first EEG data set has
been analyzed in previous studies concerning early diagnosis
of AD [23–27].
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Ag/AgCl electrodes (disks of diameter 8 mm) were placed
on 21 sites according to 10–20 international system, with
the reference electrode on the right earlobe. EEG was
recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a
sampling rate of 200 Hz, with analog bandpass filtering in the
frequency range 0.5–250 Hz and online digital bandpass fil-
tering between 4 and 30 Hz, using a third-order Butterworth
filter. We used a common reference for the data analysis
(right earlobe) and did not consider other reference schemes
(e.g., average or bipolar references).

The subjects comprise two study groups. The first
consists of 25 patients who had complained of memory
problems. These subjects were diagnosed as suffering from
mild cognitive impairment (MCI) when the EEG recordings
were carried out. Later on, they all developed mild AD, which
was verified through autopsy. The criteria for inclusion into
the MCI group were a mini-mental state exam (MMSE) score
= 24, though the average score in the MCI group was 26
(SD of 1.8). The other group is a control set consisting of 56
age-matched, healthy subjects who had no memory or other
cognitive impairments. The average MMSE of this control
group is 28.5 (SD of 1.6). The ages of the two groups are
71.9 ± 10.2 and 71.7 ± 8.3, respectively. Finally, it should
be noted that the MMSE scores of the MCI subjects studied
here are quite high compared to a number of other studies.
For example, in [28] the inclusion criterion was MMSE = 20,
with a mean value of 23.7, while in [29], the criterion was
MMSE = 22 (the mean value was not provided); thus, the
disparity in cognitive ability between the MCI and control
subjects is comparatively small, making the classification task
relatively difficult.

4.2. Dataset 2: Mild AD versus Control. The second EEG data
set also has been analyzed in previous studies [30, 31]; these
data were obtained using a strict protocol from Derriford
Hospital, Plymouth, UK, and had been collected using
normal hospital practices [31]. EEGs were recorded during
a resting period with various states: awake, drowsy, alert,
and resting states with eyes closed and open. All recording
sessions and experiments proceeded after obtaining the
informed consent of the subjects or the caregivers and
were approved by local institutional ethics committees.
EEG dataset is composed of 24 healthy control subjects
(age: 69.4 ± 11.5 years old; 10 males) and 17 patients
with mild AD (age: 77.6 ± 10.0 years old; 9 males). The
patient group underwent full battery of cognitive tests (Mini-
Mental State Examination, Rey Auditory Verbal Learning
Test, Benton Visual Retention Test, and memory recall tests).
The EEG time series were recorded using 19 electrodes
positioned according to Maudsley system, similar to the
10–20 international system, at a sampling frequency of
128 Hz. EEGs were bandpass filtered with digital third-order
Butterworth filter (forward and reverse filtering) between 0.5
and 30 Hz.

4.3. Recording Conditions Common to Both Datasets. In both
datasets, all recording sessions were conducted with the
subjects in an awake but resting state with eyes closed, and

the length of the EEG recording was about 5 minutes, for
each subject. The EEG technicians prevented the subjects
from falling asleep (vigilance control). After recording,
the EEG data has been carefully inspected. Indeed, EEG
recordings are prone to a variety of artifacts, for example, due
to electronic smog, head movements, and muscular activity.
For each patient, an EEG expert selected one segment of
20 s artifact-free EEG by visual inspection, blinded from the
results of the present study. Only those subjects were retained
in the analysis whose EEG recordings contained at least 20 s
of artifact-free data. Based on this requirement, the number
of subjects of EEG Dataset 1 was further reduced to 22
MCI patients and 38 control subjects; in EEG Dataset 2 no
such reduction was required. From each subject in the two
datasets, one artifact-free EEG segment of 20 s was analyzed.

5. Results and Discussion

We compute relative power, compression ratios, and LZ com-
plexity for the EEG signals of all subjects. More specifically,
we calculate those measures for all individual EEG channels,
and then the measures are averaged over all channels; this
results in average measures for all subjects. Our results are
summarized in Tables 2 and 3 and Figures 6 and 7. In the
analysis we also include two measures of EEG synchrony:
stochastic event synchrony (ρ) [32, 33] and a Granger
causality measure, that is, full frequency directed transfer
function (ffDTF) [34]; in an earlier hat study we observed
that those two measures indicated statistically significant
differences between MCI/MiAD and age-matched control
subjects, for the datasets described in Section 4 [26, 27,
30, 31]. Since the two datasets (MCI and MiAD) were
obtained through different recording systems and at different
hospitals, a direct comparison of the results obtained from
MCI with those from mild AD is not straightforward.

In Table 2 we list statistics of the average measures,
including the average computed across the entire subject
groups and the standard deviation. We apply the Mann-
Whitney test for the average measures between MCI and
the reference subjects (Dataset 1) and MiAD and reference
subjects (Dataset 2). The Mann-Whitney test allows us to
investigate whether the statistics at hand (EEG measures)
take different values between two subject populations. Low
P values indicate large difference in the medians of the two
populations. The resulting P values are listed in Table 2.
Since we conduct multiple statistical tests simultaneously, we
need to apply statistical postcorrection. We adopt Bonferroni
postcorrection [35] and multiply the P values by the number
of tests (11). In Table 2 we indicate which EEG measures
remain statistically significant after postcorrection.

Theta relative power is significantly larger in MCI
patients compared to reference subjects, whereas beta power
is significantly smaller. In the MiAD patients the perturba-
tions on EEG relative power are stronger: delta and theta
relative power is significantly larger than in the reference
subjects, whereas alpha and beta power is significantly
smaller. In other words, slowing occurs in both the MCI and
MiAD patients, which is in agreement with earlier studies
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(see [11] for a review). The slowing effect can also readily be
seen from the (normalized) EEG spectra, shown in Figures
4 and 5 for Datasets 1 and 2, respectively. The effect of
slowing in the MiAD subjects is very clear from Figure 5:
power is obviously more concentrated in theta band in MiAD
patients than in the age-matched control subjects. For the
MCI patients (see Figure 4), no such clear effect can be
observed from the spectra; this is no surprise, since MCI is a
less severe disease state than MiAD. However, one may notice
a slight increase (decrease) in theta (beta) relative power in
MCI patients. In both the MCI patients and control subjects,
power is concentrated in low-frequency bands (delta and
theta band) and in high-frequency band (beta band); high-
frequency power (beta band) is much smaller in the MiAD
patients. In summary, as in earlier studies (see [11] for a
review), we observe slowing in MCI and MiAD EEG.

No significant effect on the complexity and regularity
measures can be observed in MCI patients. On the other
hand, the regularity measures and complexity measures
are significantly larger and smaller, respectively, for MiAD
patients than for control subject; in other words, the EEG
signals of MiAD patients are significantly less complex than
in healthy subjects. This observation is in agreement with
several earlier studies (see [11] for a review).

We also try to classify patients versus control subjects by
means of the most discriminative EEG measures (P < .05).
We test those measures individually and jointly for their dis-
criminative ability. Table 3 shows the resulting classification
performance with linear and quadratic discriminant analysis
and support vector machine, determined through leaving-
one-out cross-validation [36]. Only the best performing
combinations of EEG measures are listed. From Table 3
we can see that theta band relative power yields good
performance when used separately and results in even better
performance when combined with the most discriminative
lossless compression ratio and synchrony measure. The other
relative power measures are less discriminative, for both
datasets (not shown here); this observation is in agreement
with the P values listed in Table 3. The compression ratios
and LZ complexity fail to discriminate MCI patients from
control subjects (not shown here). However, those measures
yield good classification performance for the MiAD patients.
Interestingly, the lossless compression ratios result in better
classification rates than LZ complexity; this may be explained
as follows: LZ complexity is based on binary approximations
of the continuous EEG signals, whereas the former are
derived from accurate representations of the EEG, associated
with lossless compression.

In order to gain more insight in the relationship between
the different measures, we calculate the correlation between
those measures (see Figure 6). The correlation coefficient
among each pair of measures is calculated as follows:

ri j = 1
Nsubject

Nsubject
∑

k=1

mi(k)−mi

σi

mj(k)−mj

σj
, (2)

where mi(k) and mj(k) the average value of EEG measure
i and j, respectively, for subject k, the sum is computed
over all subjects, and mi, mj , σi, and σj are the mean

Table 2: Mean and standard deviation values of compression ratio,
LZ complexity, relative power, and synchrony measures. Sensitivity
of the measures in discriminating between MCI and mild AD is
given in last column. Uncorrected P values from Mann-Whitney
test, where ∗ and ∗∗ indicate P < .05 and P < .005, respectively;
† Indicates P values that remain significant after postcorrection
(Bonferroni, P < .05).

MCI versus control

Measure Control MCI P value

1D SPIHT CR 1.34 ± 0.04 1.35 ± 0.03 .3077

2D SPIHT CR 1.36 ± 0.04 1.37 ± 0.03 .3778

2D SPIHT+AC 1.36 ± 0.04 1.37 ± 0.03 .4477

LZ complexity 0.65 ± 0.07 0.62 ± 0.09 .0830

ρ 0.25 ± 0.07 0.36 ± 0.10 .00044∗∗†

ffDTF 0.05 ± 0.003 0.051 ± 0.003 .0012∗∗†

delta 0.20 ± 0.06 0.21 ± 0.06 .2934

theta 0.08 ± 0.03 0.12 ± 0.04 .0001∗∗†

alpha-1 0.07 ± 0.03 0.08 ± 0.03 .1698

alpha-2 0.05 ± 0.02 0.05 ± 0.02 .9939

beta 0.24 ± 0.05 0.21 ± 0.03 .0116∗

Mild AD versus control

Measure Control Mild AD P value

1D SPIHT CR 1.09 ± 0.01 1.12 ± 0.04 3.45× 10−5∗∗†

2D SPIHT CR 1.11 ± 0.02 1.15 ± 0.04 6.09× 10−5∗∗†

2D SPIHT+AC 1.07 ± 0.02 1.11 ± 0.04 4.86× 10−5∗∗†

LZ complexity 0.63 ± 0.06 0.55 ± 0.08 .0024∗∗†

ρ 0.46 ± 0.04 0.49 ± 0.03 .0024∗∗†

ffDTF 0.04 ± 0.004 0.037 ± 0.009 .0001∗∗†

delta 0.001 ± 0.004 0.017 ± 0.01 .0029∗∗†

theta 0.17 ± 0.08 0.54 ± 0.16 8× 10−7∗∗†

alpha-1 0.32 ± 0.12 0.18 ± 0.10 .0009∗∗†

alpha-2 0.17 ± 0.11 0.06 ± 0.02 3.41× 10−6∗∗†

beta 0.33 ± 0.14 0.18 ± 0.11 .0006∗∗†

and standard deviation of mi and mj , respectively. The
resulting correlation coefficients are displayed in Figure 6,
for Dataset 1 and Dataset 2 separately. We also conduct the
Pearson correlation test, to verify whether the correlations
or anticorrelations are statistically significant. The resulting
P values are shown in Figure 7 (logarithmic scale). Since we
have multiple simultaneous tests, statistical postcorrection is
required. Again we adopt Bonferroni postcorrection [35] and
multiply the P values by the number of tests (55).

As expected, the compression measures are significantly
mutually correlated as all the schemes are based on the same
principle; they are also significantly anticorrelated with LZ
complexity in the MiAD dataset (Dataset 2).

Interestingly, the compression ratios are significantly
correlated with low-frequency relative power (delta and
theta; MiAD) and anticorrelated with high-frequency relative
power (beta; both datasets). Likewise LZ complexity is
strongly anticorrelated with low-frequency relative power
(delta and theta; both datasets) and correlated with high-
frequency relative power (beta; MiAD). Taken together,
this observation strongly suggests that slowing and loss of
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Table 3: Classification rates for discriminant analysis (DA) of the
lossless compression ratios, LZ complexity and relative power in
theta band.

MCI versus control

Measure Linear DA Quadratic DA SVM

theta 76.67% 76.67% 76.67%

ffDTF 63.33% 71.67% 78.33%

ρ 75% 75% 76.67%

ffDTF + ρ 76.67% 83.33% 80.00%

Theta + ρ 78.33% 83.33% 80.00%

Mild AD versus control

Measure Linear DA Quadratic DA SVM

1D SPIHT CR 80.49% 80.49% 80.49%

2D SPIHT CR 82.93% 82.93% 85.37%

2D SPIHT+AC CR 75.61% 80.49% 82.93%

LZ complexity 68.29% 68.29% 68.29%

theta 95.12% 95.12% 95.12%

ffDTF 58.54% 78.05% 82.93%

ρ 56.10% 63.41% 63.41%

ffDTF + ρ 65.85% 70.73% 78.05%

theta + ffDTF 95.12% 92.68% 95.12%

theta + ffDTF +
95.12% 92.68% 97.56%

1D SPIHT CR

complexity in AD EEG are not independent phenomena
but are strongly related; to the best of our knowledge, this
observation has not been reported before in the literature.

Perhaps surprisingly, Granger causality (ffDTF) [34]
is significantly correlated with LZ complexity and high-
frequency relative power (MiAD) and significantly anticor-
related with lossless compression ratios (MiAD) and low-
frequency relative power (both datasets). We believe that this
observation has not been documented yet. We conjecture
that the observed statistical (anti)correlation between ffDTF
and the other measures is an artefact of the multivariate
model underlying Granger causality (and ffDTF in partic-
ular). More specifically, Granger causality is derived from a
multivariate autoregressive model (MVAR). The order of the
latter needs to be kept low, since the coefficients of the MVAR
need to be inferred from a short EEG segment; high-order
MVARs contain many coefficients, which cannot be reliably
inferred from the limited amount of data. Low-order MVARs
have short memory and cannot capture low-frequency
components in the EEG. Consequently Granger causality
may underestimate the correlation among brain signals when
the EEG contains strong low-frequency components.

Stochastic event synchrony (ρ) [32, 33] seems to be
uncorrelated with the other measures (both datasets), and
therefore, it may provide complementary information.

6. Conclusion

In this study, we investigated the use of relative power,
LZ complexity, and lossless compression ratio as EEG
markers for MCI and mild AD. Lossless compression ratio

is shown to be discriminative for mild AD, whereas it is
not discriminative for MCI. On the other hand, theta band
relative power was observed to be statistically larger in MCI
and mild AD patients than in control subjects. Maximum
discrimination is obtained by combining the compression
ratio, relative power, and synchrony measures (Granger
causality and/or stochastic event synchrony).

We would like to reiterate, however, that the two
datasets analyzed (MCI and MiAD) were obtained through
different recording systems and at different hospitals; a direct
comparison of the results obtained from MCI with those
from mild AD is therefore difficult. On the other hand, since
the datasets are independent, our observations are probably
not dependent on particularities of the recording systems
and/or procedures at the hospitals.

Interestingly, compression ratios were found to be
significantly correlated to delta and theta band relative
power, showing their strong correlation with relative power
at low frequencies; also strong anti-correlation between
compression ratios and beta relative power was observed.
Therefore, slowing and loss of complexity in the EEG of MCI
and MiAD patients may be strongly related phenomena.

More generally, this study also underlines the importance
of analyzing MCI and AD EEG by means of a variety of
statistical measures (relative power, complexity/regularity
measures, synchrony measures), in order to detect potential
correlations between various observed phenomena associ-
ated with MCI and AD.
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