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Abstract: Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of
the world population characterised by a cluster of disorders dominated by abdominal obesity, high
blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol.
In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural
sources of bioactive compounds and useful metabolites, with many biological and physiological
activities to be used in functional foods or in human nutraceuticals for the management of MetS and
related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more
bioactive components than either red and green seaweeds. Among the different brown seaweed
species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest
total phenolic content. However, the evidence base relies mainly on cell line and small animal models,
with few studies to date involving humans. This review intends to provide an overview of the
potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management
and prevention of MetS and related conditions, based on the available evidence obtained from clinical
trials.
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1. Introduction

Metabolic syndrome (MetS) is a collection of metabolic abnormalities that include
conditions such as abdominal obesity, increased blood pressure (BP), increased fasting
plasma glucose (FPG), increased triglycerides (TG) and decreased high-density lipoprotein
cholesterol (HDL-C) that lead to an increased risk of developing cardiovascular diseases
(CVDs), type 2 diabetes mellitus (T2DM) and all-cause mortality [1,2]. Metabolic syndrome
has been one of the major public health challenges worldwide and it is estimated that
approximately one-quarter of the world’s population is affected [3]. Excessive energy intake
and lack of exercise result in a positive energy balance which leads to the accumulation of
visceral fat, the progression of liver steatosis and the onset of MetS risk factors [4]. Since
the prevalence of these metabolic dysfunctions is continuing to increase, the discovery of
new strategies for the prevention or treatment of MetS risk factors is of importance [5,6].

The first-line of therapy for MetS is diet and lifestyle modifications including reducing
caloric intake, adopting a healthy diet and increasing physical activity [7]. However, these
approaches are often not sufficient and patients are commonly put on medications [8]. To
date, the US Food and Drug Administration (FDA) has not approved any medication to
treat MetS; however, an insulin-sensitizing agent, such as metformin, is currently widely ad-
ministered in patients with MetS at the start of hyperglycemia treatment [9]. It has been also
shown that metformin helps to reverse the pathophysiological alterations associated with
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MetS when it is administered in conjunction with lifestyle modifications [10] or with per-
oxisome proliferator-activated receptor agonists (PPARγ), such as thiazolidinediones and
fibrates which promotes adipocyte differentiation and improve insulin resistance [11–15].
Although such medications can be helpful, most of them cause adverse effects and their
effectiveness could be reduced or lost as a result of chronic administration [16]. Thus,
there is emerging interest in the use of natural products to lower the risk and progression
of MetS.

In recent years, marine organisms, especially seaweeds, have been highlighted as
potential natural sources of bioactive compounds and useful metabolites, with many biolog-
ical and physiological activities to be used in functional foods or in human nutraceuticals
for the management of MetS comorbidities [17–21]. The major bioactive compounds of
seaweeds are polysaccharides, in addition to phenolic, phlorotannins, terpenes, terpenoids,
amino acids, proteins, peptides, lipids and halogenated compounds [22]. Among the
various bioactive constituents, there is some evidence that some components in seaweed
may have beneficial effects including anticoagulant [23], anti-inflammatory [24], antioxi-
dant [25], anticarcinogenic [26] and antiviral activities [27]. However, the evidence base
relies heavily on cell line and small animal models, with few studies to date involving
humans.

Seaweeds are a widespread group of autotrophic organisms that have a long fossil
history. They are globally distributed and can be located in every climatic zone ranging
from freezing cold polar regions to tropical warm waters [28]. At present, more than ten
thousand different species of seaweed are identified [29]. Seaweeds are classified into three
main groups, namely red seaweeds (Rhodophyceae), brown seaweeds (Phaeophyceae) and
green seaweeds (Chlorophyceae), each having specific nutritional, biological and chemical
characteristics [30]. Among the three groups of seaweeds, brown seaweeds are known
to contain more bioactive components than either red or green seaweeds [31]. The most
abundant polysaccharides in brown seaweeds are laminarin, fucoidan and alginates [32].

Laminarins have been reported to exert bioactive properties in the gastrointestinal
tract and are recognized as a regulator of intestinal metabolism through its impacts on
mucus structure, intestinal pH and short chain fatty acids production [33]. Furthermore,
laminarins provide protection against infection caused by bacterial pathogens and protec-
tion against severe irradiation, boosts the immune system by increasing the B cells and
helper T cells and can also act on typical mechanisms involved in MetS, since they lower
the systolic blood pressure, cholesterol absorption in the gut and consequently the levels of
cholesterol and total lipid both in serum and liver [34,35].

Fucoidans have been reported to reduce hyperglycaemia via the inhibition of α-
amylase and α-glucosidase, consequently decreasing intestinal absorption of glucose and
enhancing the insulin-mediated glucose uptake due to the ability of fucoidans to modulate
relevant pharmacological targets including glucose transporter GLUT-4 and AMP-activated
protein kinase (AMPK) [36]. Fucoidans have been also reported to increase the expression
of hormone-sensitive lipase, the key enzyme involved in lipolysis which suggest that
fucoidans decrease lipid accumulation by triggering lipolysis [37–40]. Moreover, fucoidans
are recognized for their cardiovascular and antihypertensive effects through the inhibi-
tion of the angiotensin converting enzyme (ACE) and the activation of eNOS-dependent
pathways [41].

Alginates have been shown to inhibit the digestive enzymes pancreatic lipase and
pepsin and diminish the intestinal absorption of triacylglycerols, cholesterol and glu-
cose [33,42,43]. It has been also shown that, as with other dietary fibres, the consumption
of alginates could delay gastric emptying, increase digestive fluid viscosity and reduce
calorie intake through enhanced satiety [44,45]. The mechanisms of these molecules in the
management and progression of MetS are summarised in Figure 1.
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Figure 1. Summary of the molecules extracted from A. nodosum and F. vesiculosus in the management and progression
of MetS.

Among different brown seaweed species Fucus vesiculosus (F. vesiculosus) and Ascophyl-
lum nodosum (A. nodosum) are the most studied species with the highest antioxidant values
and highest total phenolic content (TPC) along with the greatest DPPH (2,2-diphenyl-1-
picryl-hydrazyl-hydrate) radical scavenging activities [46–48].

Thus, this review intends to provide an overview of the potential of brown seaweed
extracts A. nodosum and F. vesiculosus for the management and prevention of MetS and
related conditions, based on the available evidence obtained from clinical trials.

2. Search Strategy

A comprehensive search of literature was carried out using electronic databases
including Clinical Trials.gov, Medline, PubMed, Science direct, Google scholar to identify
relevant studies in August 2020. Criteria for inclusion in this review were: (1) human
adults (aged 18 and over), (2) dietary brown seaweed intervention (either Ascophyllum
nodosum or Fucus vesiculosus; or in combination), (3) included anthropometric parameters,
inflammatory markers, glucose, insulin, blood lipids and energy intake as an outcome and
(4) written in English. Owing to the small number of eligible papers, trials both with and
without dietary restriction were included in spite of the potential for weight change to
influence results and there was no limit placed on follow-up or study duration. Papers
were omitted if they were not original research or if the study involved cell culture or
animal models. An overview of the clinical trials included in the review are summarised in
Table 1.
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Table 1. Summary of clinical trials included in this review (n = 10).

Authors Subjects Substance Dosage Study Design Study
Duration

Dependent
Variables Results

Paradis
et al.,

(2011) [49]

23 healthy
subjects (11

men,12
women), aged

18–60 years
(mean age: 39
± 12.7 years;

mean BMI: 24.9
± 3.2 kg/m2)

Ascophyllum
nodosum and

Fucus
vesiculosus (a)

Two 250 mg
seaweed
capsules

30 min prior to
the

consumption
of 50 g of

carbohydrates
from bread

Double-blind,
randomized,

placebo-
controlled
crossover

study

3 h after
the

ingestion
of the

capsules

Plasma glucose
and insulin

concentrations

Compared with
placebo, consumption

of seaweed was
significantly associated
with a 12.1% reduction

in the insulin
incremental area under

the curve and a 7.9%
increase in the

Cederholm index of
insulin sensitivity. The

single ingestion of
brown seaweed had no
significant effect on the

glucose response

Hall et al.,
(2012) [50]

12 overweight
or obese men,

aged 18 and 65
years (mean
age: 40.1 ±
12.5 years;

mean BMI: 30.8
± 4.4 kg/m2)

Ascophyllum
nodosum (b)

100 g of bread
containing

Ascophyllum
nodosum (4%)

Single blind
crossover

study

4 h after
adminis-
tration of
Ascophyl-

lum
nodosum

Energy intake,
appetite,

plasma glucose
and insulin

Significantly reduced
energy intake at a test

meal 4 h following
administration of

Ascophyllum nodosum
bread.

No changes in plasma
glucose and cholesterol

levels

Iacoviello
et al.,

(2013) [51]

43 healthy
subjects (19

men, 24
women), aged

21–63 years
(mean age:

45.75 ± 9.51
years; mean
BMI: 28.2 ±
4.8 kg/m2)

Ascophyllum
nodosum and

iodine (a)

Two capsules
of algae, each

containing
900 mg algae
and 175 µg

iodine

Randomised,
placebo-

controlled,
double-blind

trial, following
a crossover

design

14 weeks
(6-week A.
nodosum

or placebo,
2 weeks of
washout,

additional
6-week

with other
treatment)

Anthropometric
indexes and

biomarkers of
metabolic risk

for
cardiovascular

disease

Significant decrease in
both body weight and

BMI, with no difference
between the treatment

and placebo groups.
Compared to placebo
group, Triglyceride

levels were
significantly lowered
by 5% in treatment

group after 6 weeks of
active treatment. A

non-significant trend to
decreased total
cholesterol and

low-density lipoprotein
and to increased

high-density
lipoprotein was
observed in both
supplementation

groups. TNF-α was
significantly increased
in the placebo group,
but not in the active

group, while
adiponectin was

significantly increased
in both groups, with no

difference between
them



Molecules 2021, 26, 714 5 of 15

Table 1. Cont.

Authors Subjects Substance Dosage Study Design Study
Duration

Dependent
Variables Results

Mayer
et al.,

(2014) [52]

28 healthy
subjects

(7 men, 21
women), aged

18–45 years
(mean age: 31
± 5 years;

mean BMI: 22.6
± 1.7 kg/m2)

Ascophyllum
nodosum,
Garcinia

cambogia and
L-carnitine (a)

Two capsules a
day, each

containing
200 mg

Ascophyllum
nodosum,
500 mg
Garcinia

cambogia and
20 mg

L-carnitine

Double-blind,
prospective,
randomized,
cross-over,
placebo-

controlled pilot
study

1 week

Satiety
sensations and

food
preferences

No differences in
energy intake between
study groups. Active

treatment significantly
reduced subjective

hunger sensations and
significantly increased

satiety and fullness
ratings

Murray
et al. (2018)

[53]

38 healthy
subjects
(9 men,

29 women),
aged 19–56

years (median
23 years),

BMI18.9 to
28.3 kg/m2

(median
21.9 kg/m2)

Fucus
vesiculosus (a)

Each
participant
consumed a

low dose
(500 mg) Fucus

vesiculosus, a
high dose
(2000 mg)

Fucus
vesiculosus and

placebo
(2000 mg

cellulose) 30
min prior to 50
g of available
carbohydrate
form white

bread

Double-blind,
placebo-

controlled,
randomised
cross-over

study

2 h
following
carbohy-

drate
consump-

tion

Postprandial
blood glucose
and plasma

insulin
concentrations

No lowering effect on
postprandial glucose or

insulin responses.
Different insulin

sensitivity in Asian
subjects

Baldrick
et al. (2018)

[54]

80 over-
weight/obese
adults (39 men,

41 women),
aged 30–65

years (mean
age: 42.7 ± 7.1

years; mean
BMI: 30.2 ±
3.9 kg/m2)

Ascophyllum
nodosum (a)

A 400 mg
capsule

containing
100 mg

Ascophyllum
nodosum and

300 mg
maltodextrin

Randomized,
double-blind,

placebo-
controlled
crossover

study

8-week

DNA damage,
plasma oxidant

capacity,
C-reactive

protein (CRP)
and

inflammatory
cytokines

Modest decrease in
DNA damage but only
in a subset of the total
population who were
obese. There were no
significant changes in

CRP, antioxidant status,
or inflammatory

cytokines

De Martin
et al.,

(2018) [36]

50 patients (18
men, 32

women), aged
18–60 years

(mean age: 54
± 12 years)

Ascophyllum
nodosum, Fucus
vesiculosus and

chromium
picolinate (a)

Three capsules
a day, each
containing

237.5
Ascophyllum

nodosum,
12.5 mg Fucus
vesiculosus and

7.5 µg
chromium
picolinate

Observational
study 6-months

Waist
circumference,
fasting blood

glucose,
HOMA index

and insulin
levels

Waist circumference
decreased significantly

after 6 months of
treatment. Both blood

glucose and insulin
levels were

significantly reduced
after 6 months of

treatment. HOMA
index decreased

significantly,
suggesting an

improvement of insulin
sensitivity status
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Table 1. Cont.

Authors Subjects Substance Dosage Study Design Study
Duration

Dependent
Variables Results

Derosa
et al.,

(2019) [55]

65 dysglycemic
patients
(33 men,

32 women),
aged ≥ 18

years (mean
BMI: 28.9 ±
2.7 kg/m2)

Ascophyllum
nodosum, Fucus
vesiculosus and

chromium
picolinate (a)

Three capsules
a day, each
containing

237.5
Ascophyllum

nodosum,
12.5 mg Fucus
vesiculosus and

7.5 µg
chromium
picolinate

Double-blind,
randomized,

placebo-
controlled

study

6-months

Body Weight,
Body Mass

Index, Waist
Circumference,

Hip
Circumference,
Fasting plasma
glucose (FPG),
postprandial

plasma glucose
(PPG), HbA1c,
fasting plasma

insulin,
HOMA index,

high sensitivity
C-reactive

protein,
tumour
necrosis

factor-α and
adhesion
molecules

FPG, PPG, HbA1c,
HOMA-IR, CRP and

TNF- α reduced
significantly compared

to placebo after 6
months. No significant
changes were observed

in anthropometric
indexes

Murray
et al.,

(2019) [56]

18
normotensive

subjects (12
females, 6

males), aged
18–65 years

(mean age: 25.5
± 19 years;

mean BMI 23.8
± 2.6 kg/m2)

Fucus
vesiculosus (a)

2000 mg
powdered

extract from
Fucus

vesiculosus
containing

560 mg
polyphenols
and 1340 mg

fucoidan

Double-blind,
placebo-

controlled,
randomized

crossover trial

3 h after
ingestion
of Fucus

vesiculosus

Post prandial
blood glucose

levels

No effect on
postprandial glycaemia.
Only in females, peak

blood glucose
concentration was
reduced after the

polyphenol-rich extract

Derosa
et al.,

(2019) [57]

175 Caucasian
patients with

type 2 diabetes
(85 men,

90 women),
aged 18 years

and over
(mean BMI:

27.5 ±
2.3 kg/m2)

Ascophyllum
nodosum, Fucus
vesiculosus and

chromium
picolinate (a)

Three capsules
a day, each
containing

237.5
Ascophyllum

nodosum,
12.5 mg Fucus
vesiculosus and

7.5 µg
chromium
picolinate

Multicentre,
6 months,

double-blind,
randomized,
controlled,

clinical trial

6-months

Anthropometric
parameters

(body weight,
BMI,

abdominal
circumference),

glyco-
metabolic

control (FPG,
PPG, HbA1c)

and lipid
profile (Total

cholesterol, TC;
low-density
lipoprotein-
cholesterol,

LDL-C;
high-density
lipoprotein-
cholesterol,
HDL-C and

Triglycerides,
TG)

No variation of body
weight and BMI were
recorded. A significant

reduction of waist
circumference was

recorded in the
nutraceutical group but

not in placebo group.
HbA1c, FPG and PPG

were significantly
reduced by the
nutraceutical

combination, but not by
placebo. No variations
of TC, LDL-C, HDL-C
and TG were recorded
compared to baseline.

The form of test substance administered in the clinical trials: (a) capsular form (b) powder incorporated into a meal.
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3. Review of Clinical Trials Exploring the Impacts of A. nodosum and F. vesiculosus for
the Management and Prevention of MetS and Related Conditions
3.1. Impacts on Appetite

Appetite is a mental feeling of hunger, satiation, satiety and a desire to eat specific type
of food and is one of the factors affecting calorie intake [58,59]. Hall et al. (2012) investigated
the effects of consuming A. nodosum enriched bread (4% A. nodosum per 400 g loaf) as part
of a meal on energy intake in otherwise healthy 12 males. As compared to control bread
(0% A. nodosum), consumption of this enriched bread at breakfast led to 16.4% significant
reduction in energy intake at a test meal 4 h later and reported to significantly lower 24-h
total energy intake by 506.1 kcal. No significant differences were seen in glycaemic or
cholesterolaemic factors following the administration of the A. nodosum enriched bread
compared to the control bread, which suggested that neither delayed gastric emptying nor
nutrient encapsulation occurred. Moreover, no significant differences in hunger or fullness
were reported by these authors [50].

In contrast, Mayer and co-authors observed no differences in energy intake between
active and placebo groups after 1-week treatment with 400 mg A. nodosum, 1000 mg
Garcinia Cambogia and 40 mgL carnitine a day. Compared to placebo, active treatment
resulted in significantly increased satiety and fullness ratings and reduced subjective
hunger sensations. Concomitantly, authors reported that the active treatment was also
associated with a reduction in implicit wanting and explicit liking for savoury foods and a
reduction in the preference for high fat foods in both study groups [52].

3.2. Impacts on Controlling Blood Glucose Levels

Diabetes is metabolic disorder that is characterized by chronic hyperglycaemia result-
ing from disturbances in insulin secretion and tissue resistance to its action [60]. Dietary
carbohydrates are the major source for blood glucose [61]. These carbohydrates are hy-
drolysed by pancreatic α-amylase, followed by α-glucosidase before being absorbed in the
small intestine [62]. One practical approach for decreasing postprandial hyperglycaemia is
to retard absorption of glucose by inhibiting carbohydrate hydrolysing enzymes, α-amylase
and α-glucosidase, in the digestive organs [63]. Inhibition of the two intestinal enzymes
has been documented to significantly attenuate the increase of blood glucose levels after a
mixed carbohydrate meal by delaying glucose absorption [36,46,64].

The first clinical trial exploring the antidiabetic properties of A. nodosum and F. vesicu-
losus was carried out by Paradis and colleagues in 2011. They studied the impact of brown
seaweed blend containing A. nodosum and F. vesiculosus on plasma glucose and insulin
concentrations over a period of 3 h post carbohydrate ingestion at pre-specified time points
in 23 healthy subjects. Compared with placebo, consumption of 500 mg brown seaweed
led to a significant 12.1% reduction in the insulin incremental area under the curve and a
7.9% increase in the Cederholm index of insulin sensitivity. Acute intake of the brown the
seaweed extract prior to a carbohydrate load had no significant effect on plasma glucose
levels [49].

Murray and co-authors examined the impact of a single ingestion of two doses of
F. vesiculosus extract (500 mg and 2000 mg) in 38 healthy adults 30 min before a 50 g
of available carbohydrate from white bread. Compared with the placebo, neither dose
had a lowering effect on postprandial glucose or insulin responses. This study indicated
that healthy Asian adults have higher postprandial insulin response, without any sign of
glucose tolerance, compared with non-Asian adults, which could not be enhanced by a
single dose of administration [53].

The same research group further investigated whether F. vesiculosus extract (2000 mg)
moderated postprandial glycaemia in the evening in 18 healthy adults. The results of
this double-blind, placebo-controlled, randomized crossover trial showed no effects on
postprandial glucose and insulin levels after a single administration of the algae extract
when compared with placebos, in the group as a whole. However, when just female
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participants were analysed, peak blood glucose concentration was reported to be reduced
following the administration of F. vesiculosus extract [56].

In response to the prolonged administration (6 months) of A. nodosum and F. vesiculosus
with the addition of chromium picolinate significantly reduced plasma levels of glucose,
insulin and homeostatic model assessment (HOMA) index, suggesting an improvement of
insulin sensitivity status in 50 overweight and obese subjects [36]. In line with the results
reported by De Martin et al. (2018); in 65 dysglycemic patients, Derosa and collaborators
(2019) observed a reduction in glycated haemoglobin (HbA1c), FPG, PPG and homeostatic
model assessment for insulin resistance (HOMA-IR) after 6 months of treatment with
the exact same nutraceutical combination [55]. The authors speculated that reducing
postprandial plasma glucose with the nutraceutical, possibly, leads to a less work for the
β-cells, which, in turn, preserve β-cell function longer. Furthermore, in 175 Caucasian
patients with type 2 diabetes, the same research group similarly observed significant
reductions in HbA1c, FPG and PPG after 6 months of treatment with the same nutraceutical
administered in De Martin et al. (2018) and Derosa et al. (2019a) [36,55,57]. According to
authors, phlorotannins which are a major polyphenol found only in marine brown algae,
are the main compounds associated with this effect. However, it is important to consider
that chromium picolinate is an important dietary supplement used to manage diabetes
and solo use of algae extract are yet to be fully explored [65]. As such, any effect observed
when combining chromium picolinate with A. nodosum, may be due to the effects of the
former rather than the latter.

Along with the inhibition of the two intestinal enzymes, α-amylase and α-glucosidase,
extracts from the brown seaweeds have been also shown to inhibit dipeptidyl-peptidase-4
(DPP-4) and have the ability to stimulate incretin hormone secretion [66]. The incretin
hormones, glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypep-
tide (GIP) also serve as a potential therapeutic target [67–69]. Incretin hormones are in-
sulinotropic intestinal hormones that stimulate secretion of insulin in a glucose-dependent
manner [66]. These intestinal hormones are rapidly broken down by the enzyme, DPP-
4 [70]. DPP-4 inhibition increases insulin secretion and reduces glucagon secretion, thereby
lowering glucose levels in the blood [71–74]. Furthermore, incretin hormones were found
to inhibit apoptosis and promote pancreatic β-cell proliferation, which can intensify pro-
duction of insulin and increase β-cell mass [75]. Thus, inhibiting the activity of DPP-4 and
increasing GLP-1 and GIP secretion is an important strategy for controlling hyperglycaemia
in type 2 diabetes patients [66,76].

3.3. Impacts on Anthropometric Indexes

With regards to anthropometric parameters, Iacoviello and colleagues observed a
significant reduction in both bodyweight and body mass index (BMI), with no difference
between the treatment and placebo groups. There were no changes in waist and hip circum-
ferences and their ratio, systolic and diastolic blood pressure and heart rate between active
and placebo groups [51]. After 6-month administration of food supplement containing
Ascophyllum nodosum, Fucus vesiculosus and chromium picolinate, De Martin and co-authors
reported a significant decrease in waist circumference, indicating that most of the subjects
(88% of men and 77% of women) had lost weight [36]. Similarly, in type 2 diabetic patients,
Derosa and colleges (2019) found a significant reduction in waist circumference in the
intervention group compared to the placebo group after 6 months of intervention but
no variation of body weight and BMI were recorded with the exact same nutraceutical
combination administered in De Martin et al. (2018) [57]. Unlike previous studies that have
reported improvements in various anthropometric parameters, in dysglycemic patients
Derosa et al. (2019) did not report any significant changes in weight, BMI, waist, hip
and abdominal circumferences after 6 months of treatment with the same nutraceutical
combination that had been administered in the study by De Martin et al. (2018) and Derosa
et al. (2019) [36,55,57]. Again, the effects reported in the above studies may be due to
chromium picolinate rather than the macroalgae assessed.
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3.4. Impacts on Blood Lipids

Iacoviello and colleagues (2013) observed a 5% significant reduction in triglyceride
(TG) levels in the active treatment group compared to an increase of 2% in the placebo
group at the end of 6-week intervention period in healthy adult subjects. The effect was
not evident after 3 weeks of treatment, suggesting that at least 6 weeks of supplementation
is required for it to be evident. In both treatment groups, a non-significant trend to reduced
total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) and to increased
high-density lipoprotein-cholesterol (HDL-C) was reported [51]. More recently, in contrast
to afore mentioned findings, results from Derosa et al. (2019) showed no significant
differences in TC, LDL-C, HDL-C and TG levels between baseline and 6 months post-
treatment. However, it is important to note that the participants involved were type 2
diabetic patients with the majority of them under hypoglycaemic drugs and in particular
receiving metformin [57].

3.5. Impacts on Inflammation

The link between the MetS and inflammation is well documented. The increased
production of proinflammatory cytokines including C-reactive protein (CRP), tumour
necrosis factor α (TNF-α) and interleukin-6 may reflect an overproduction by an expanded
adipose tissue mass [77–80]. Phlorotannin-rich extracts from brown seaweeds may provide
a potential means of controlling inflammation by different mechanisms including inhibition
of release of proinflammatory cytokines including TNF-α and IL-1β and IL-6 in vitro [54].

In 43 healthy subjects, Iacoviello et al. (2013) did not find significant differences
between the treatment and placebo groups regarding soluble markers of inflammation
(TNF-α, IL-6 and CRP) after 6 weeks of treatment with 1800 mg A. nodosum and 350 µg io-
dine [51]. In another randomized, double blind, placebo-controlled crossover trial Baldrick
and co-authors (2018) reported that consumption of 100 mg A. nodosum polyphenols for a
period of 8 weeks resulted in a modest (23%) decrease in lymphocyte DNA damage, but
only in a subset of the total population who were obese. No significant changes in CRP,
antioxidant status, or inflammatory cytokines were observed between the treatment and
placebo groups [54]. Derosa et al. (2019) further evaluated the effects of nutraceutical com-
bination containing polyphenols extracted from A. nodosum, F. vesiculosus and chromium
picolinate on inflammation in dysglycemic patients. Unlike previous findings, Derosa and
co-authors found an improvement in TNF-α and Hs-CRP levels. The changes in the level
of cytokines were small but significant; this could be due to fact that the enrolled partici-
pants were not diabetic, but dysglycemic, where it has been previously demonstrated that
cytokine concentrations are greater in diabetic compared to nondiabetic individuals [55,57].

3.6. The Effects of Brown Seaweed Extracts on the Gut Microbiota

Accumulating evidence reveals that the gut microbiota plays a crucial role in main-
taining intestinal homeostasis and improving metabolic health [81]. A relationship has
been documented between the gut dysbiosis (an imbalance of gut microbiota composition)
and the development of obesity, insulin resistance and other characteristics of MetS [82–86].
The mechanisms by which the gut microbiome impacts host physiology are mediated
through short-chain fatty acids (SCFAs; e.g., acetate, butyrate and propionate) which are
the most abundant product of bacterial fermentation of undigested dietary fibres [87].

Recently, a loss of Akkermansia muciniphila has been reported to be related to obesity
and metabolic syndrome [83,88,89]. Microbiota composition in high-fat diet mice supple-
mented with dietary fucoidan for sixteen weeks from A. nodosum showed an increase in
the relative abundance of SCFAs producing bacteria including Akkermansia, Alloprevotella,
Bacteroides and Clostridiales vadin BB60 and attenuated metabolic syndrome that is induced
by high fat diet through reduced body weight, fasting blood glucose, hepatic steatosis,
systematic inflammation and reduced insulin resistance [90].

To date, only one clinical trial has examined the administration of Akkermansia muciniphila
and this three-month proof-of-concept study showed improvements in several metabolic
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parameters including body weight, fat mass, hip circumference, blood markers for liver
dysfunction and inflammation [91]. Overall, brown seaweed extracts such as A. nodosum
extract may have potential prebiotic activity by changing the composition and increasing
the abundance of gut microbiota that helps to alleviate features of MetS [92,93]. In this
instance, future clinical intervention trials with an appropriate design are warranted to
explore the effects of brown seaweed extracts on gut microbiome composition.

4. Impact of Seasonal Variation and Extraction Techniques on Phenolic Content

The seasonal variation in the phenolic content of the brown seaweed extracts has been
reported previously and, due to the potential use of A. nodosum and F. vesiculosus extracts in
functional foods or in human nutraceuticals, determination of the most favourable time for
harvesting the algal material is of importance and should be monitored to help standardise
the finished products [17,62,94,95]. The metabolic production of polyphenolics relies on
the harvesting season and location [95]. Indeed, A. nodosum collected from Norway had the
highest polyphenolic content in winter season, while those collected from the Scottish west
coast exhibited the highest phenolic content in July [94,95]. A similar pattern was observed
by Apostolidis et al. (2011) in the A. nodosum collected from the Northeast U.S. Atlantic
coast with the highest phenolic contents observed one in summer (June and July) and one
in fall (October) [62].

There are various other factors that influence the production of phenolic metabolites
in seaweeds such as severe defoliation, nutrient stress and environmental stress [62]. For
the cold-water loving A. nodosum water temperature could be also a stress factor. This
could potentially reveal the phenolic peak seen in the summer months, since it might be
possible that under stress more phenolic metabolites are produced. The phenolic peak seen
in October could be because of other environmental stress factors such as wave exposure,
salinity, temperature and light intensity [96–101].

There were also species related variations in the carbolytic enzyme inhibitory activities
by fucoidan isolated from A. nodosum and F. vesiculosus [63]. Depending on the target en-
zyme and collection period, fucoidan inhibited α-amylase and α-glucosidase activities dif-
ferently. Fucoidan obtained from A. nodosum inhibited both α-amylase and α-glucosidase,
whereas, fucoidan from F. vesiculosus is only effective against α-glucosidase [102,103]. Fu-
coidan from A. nodosum was shown to reduce the α-amylase activity between 7% and 100%
at 5 mg/mL with IC50 values of 0.12 to 4.64 mg/mL based on the harvesting period. This
inhibitory difference was mainly attributable to the chemical structure and the molecular
weight of the fucoidans isolated from these two species [103]

Moreover, other experimental procedures and extraction methods might also affect
the types of compounds isolated which may describe the differences in various compounds
isolated from the same species of seaweed [103,104]. It is likely that different extraction and
processing methods will have significant impact on the biological effects of these extracts
in vivo, which may account for the disparities and inconsistent effects observed when
comparing the results of clinical trials to date.

5. Limitations and Reported Adverse Events

The limitations of this review include a small number of eligible clinical trials, indis-
criminate eligibility criteria and heterogeneity of methodologies.

None of the clinical trials included in the review reported any major adverse effects
in response to the administration of seaweed extracts. Administration of A. nodosum and
F. vesiculosus was well tolerated and there were no signs of organ toxicity or negative
effects on physiological function. Notably, Iacoviello et al. (2013) did not observe any
adverse consequences on thyroid function, an important finding when considering the
iodine content of the brown seaweed extracts which has been previously documented to
cause hyperthyroidism [51,105].

The currently available α-glucosidase inhibitors including acarbose, miglitol and vogli-
bose produce gastrointestinal side effects, such as flatulence and diarrhoea, due to the
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fermentation of undigested carbohydrates in the intestine [106]. Paradis et al. (2011) showed
that a relatively small dose of a α-amylase and α-glucosidase inhibitors from a brown
seaweed extract was not accompanied by gastrointestinal intolerance or discomfort [49].

6. Conclusions

This is the first review to provide a comprehensive overview of the two most studied
brown seaweed extracts A. nodosum and F. vesiculosus in the management and prevention
of MetS and related conditions based on the available evidence obtained from clinical trials.
Accumulating evidence from clinical trials indicates that brown seaweed extracts may
have a potential role as food supplements for MetS management. However, many of the
effects observed to date are inconsistent and in order to be effective in MetS management,
seaweed extracts must become more clearly defined in terms of composition, extraction
methods and a range of biological effects in vivo. Moreover, further clinical trials will
be warranted to confirm any positive effects within different population groups and to
establish the optimal dosage, duration of treatment, efficacy and safety.
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