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Abstract

The “resource availability hypothesis” predicts occurrence of larger rodents in more productive habi-

tats. This prediction was tested in a dataset of 1,301 rodent species. We used adult body mass as a

measure of body size and normalized difference vegetation index (NDVI) as a measure of habitat prod-

uctivity. We utilized a cross-species approach to investigate the association between these variables.

This was done at both the order level (Rodentia) and at narrower taxonomic scales. We applied phylo-

genetic generalized least squares (PGLS) to correct for phylogenetic relationships. The relationship be-

tween body mas and NDVI was also investigated across rodent assemblages. We controlled for spatial

autocorrelation using generalized least squares (GLS) analysis. The cross-species approach found ex-

tremely low support for the resource availability hypothesis. This was reflected by a weak positive as-

sociation between body mass and NDVI at the order level. We find a positive association in only a mi-

nority of rodent subtaxa. The best fit GLS model detected no significant association between body

mass and NDVI across assemblages. Thus, our results do not support the view that resource availabil-

ity plays a major role in explaining geographic variation in rodent body size.

Key words: Bergmann’s rule, body size (body mass), habitat productivity, heat conservation hypothesis, normalized difference
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Rodent species are 1) largely variable in body size (Nowak 1999;

Jones et al. 2009; Alhajeri and Steppan 2016), 2) have a wide geo-

graphic range (Fabre et al. 2012), and 3) constitute most mammal

species (Wilson and Reeder 2005). These characteristics make

rodents suitable for making inferences about mammals and especial-

ly amenable to macroecological studies (e.g., Cano et al. 2014;

Amori et al. 2015; Alhajeri 2016, 2018; Maestri et al. 2016, 2017;

Alhajeri and Steppan 2018a, 2018b). Such studies investigate the re-

lationship between species’ traits and geographic/environmental var-

iables across their range (Brown 1995; Blackburn and Gaston 2003;

Smith and Lyons 2011), often at large spatial scales (Brown and

Maurer 1989; Beck et al. 2012). Macroecology can examine pat-

terns within a single species, across species, and across assemblages

(Meiri 2011); patterns may also be examined at different geographic

scales (i.e., single continent vs. worldwide) (Beck et al. 2012).

Observations made at narrow geographic and taxonomic scales do

not always scale up (Berke et al. 2013), and patterns observed in

geographic region do not always apply to others (Meiri et al. 2004;

Rodrı́guez et al. 2008; Berke et al. 2013). This may reflect regional

environmental differences (Rodrı́guez et al. 2008).

Bergmann’s (1847) rule documents a pattern of increased body

size in high latitudes (cold environments) and is among the oldest

and most studied macroecological patterns (Gaston and Blackburn

2000; Meiri and Dayan 2003; Blackburn and Hawkins 2004;

Maestri et al. 2016; Shelomi and Zeuss 2017; Riemer et al. 2018).

This rule is generally observed in endothermic animals (Freckleton

et al. 2003; Meiri and Dayan 2003; Rodrı́guez et al. 2008;

Carotenuto et al. 2015). The heat conservation hypothesis is a com-

mon explanation for Bergmann’s rule, where increased body size

conserves heat via decreased surface-area-to-volume ratio

(Bergmann 1847; Mayr 1956; Blackburn and Hawkins 2004). So

far, support for Bergmann’s rule is weak or absent in rodents in

VC The Author(s) (2019). Published by Oxford University Press on behalf of Editorial Office, Current Zoology. 135
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Current Zoology, 2020, 66(2), 135–143

doi: 10.1093/cz/zoz037

Advance Access Publication Date: 26 July 2019

Article

https://academic.oup.com/


general (e.g., Meiri and Dayan 2003; Alhajeri and Steppan 2016;

Gohli and Voje 2016; Maestri et al. 2016; Mori et al. 2019).

The resource availability hypothesis predicts a positive associ-

ation between body size and the amount of food resources in a habi-

tat (Rosenzweig 1968; Blackburn et al. 1999; Blackburn and

Hawkins 2004; Virgós et al. 2011). More productive habitats have

greater resources and as such may be associated with larger body

size (Blackburn and Hawkins 2004; McNab 2010). In many terres-

trial habitats, primary productivity is inversely related to latitude

(Leith and Whittaker 1975; Gillman et al. 2015). Thus, the resource

availability hypothesis may lead to a pattern that is opposite to

Bergmann’s rule—an increase in body size in low latitudes. Previous

rodent studies found some association between body size and indir-

ect habitat productivity measures (e.g., precipitation, latitude, and

altitude) (e.g., Taylor et al. 1985; Medina et al. 2007; Alhajeri and

Steppan 2016; Maestri et al. 2016; Garcı́a-Mendoza et al. 2018).

Direct measures of habitat productivity (such as vegetation biomass)

have been seldom used, possibly due to the difficulty of their estima-

tion in the past.

Here, we investigate the association between rodent body size

and habitat productivity using a direct habitat productivity measure,

the normalized difference vegetation index (NDVI) (see Bannari

et al. 1995), which is good proxy for vegetation biomass in many

ecosystems (e.g., Gamon et al. 2013; Yu et al. 2013; Gao et al.

2016; Zhu et al. 2017). We study this association at a large spatial

and taxonomic scale—both across species and across assemblages.

We study this association based on a large sample size that includes

both large- and small-sized rodent species. Based on the resource

availability hypothesis, we predict that differences in NDVI values

explain geographic variation in rodent body mass. More specifically,

we expect a positive relationship between these variables. Because

temperature and productivity are often statistically independent

(Rosenzweig 1968; Virgós et al. 2011), we may find support for the

resource availability hypothesis in rodents despite not finding sup-

port for Bergmann’s rule in this group (Alhajeri and Steppan 2016).

Materials and Methods

Data extraction
We used the same 1,315 rodent species dataset from Alhajeri and

Steppan (2016) and Alhajeri and Fourcade (2019). This dataset

includes mean species body mass (a proxy for body size) from

PanTHERIA (Jones et al. 2009); along with the annual mean tem-

perature (BIO1; in �C) and the annual precipitation (BIO12; in milli-

meters) of each species’ habitat (Supplementary Table S1). The

climatic variables (BIO1 and BIO12) were extracted at a spatial

resolution of 2.5 arc min from WorldClim (Hijmans et al. 2005),

covering the 1950–2000 time period. Alhajeri and Steppan’s (2016)

method of extracting species-level bioclimatic data involved cross-

referencing WorldClim global climate layers with geographic range

data for each species obtained from the International Union for

Conservation of Nature Red List (IUCN 2015), and then obtaining

the mean value of each bioclimatic variable across the geographic

range of each species. The same method was used to estimate habitat

productivity using IUCN geographic range data (see below).

We estimated the productivity of each rodent species’ habitat using

a commonly used vegetation index, the NDVI (see Bannari et al. 1995).

This index is a quantitative measure of vegetation biomass, cover,

health, and productivity in various terrestrial ecosystems (e.g., Gamon

et al. 2013; Yu et al. 2013; Gao et al. 2016; Zhu et al. 2017). Chidodo

(2017) recently detected a positive correlation between rodent

abundance and NDVI. This indicates that NDVI can capture aspects of

habitat productivity that are relevant for rodents. NDVI is based on vis-

ible and near-infrared light reflected by vegetation and is correlated

with photosynthetic activity, and thus serves as a quantitative measure

of how “green” a habitat is (Myneni et al. 1995). NDVI is unitless, and

ranges from �1 to þ1, where values close to zero (including negative

values) indicate barren regions (bare soil, rock, sand, snow, and water),

moderate values indicate sparsely vegetated areas such as grasslands,

and high values indicate densely vegetated areas (i.e., highly productive

regions) such as forests (Bhandari et al. 2012; Saravanan et al. 2019).

We use Pinzon and Tucker’s (2014) third generation NDVI dataset

(NDVI3g), obtained from the National Oceanic and Atmospheric

Administration’s (NOAA) Advanced Very High-Resolution

Radiometer (AVHRR) sensors, from the Global Inventory Modelling

and Mapping Studies (GIMMS), provided by the National Aeronautics

and Space Administration (NASA, https://nex.nasa.gov/nex/projects/

1349/). We used the GIMMS library (Detsch 2018) in R (R

Development Core Team 2018) to download the global AVHRR

GIMMS NDVI3g dataset—we used the latest version of the dataset

(NDVI3g.v1), which is updated from the NDVI3g.v0 (Pinzon and Tucker

2014), and provides NDVI values for the period of July 1981 to

December 2015, twice a month (half-monthly), with a spatial reso-

lution of one-twelfth degree (�8 km). We also used the GIMMS library

to: 1) rasterize the NDVI3g data, 2) perform quality control, by discard-

ing all nonreliable NDVI3g values, or “flagged” pixels that have either

been spline-interpolated (flag value ¼ 1) or possibly represent snow or

cloud cover (flag value ¼ 2), and 3) aggregate half-monthly NDVI3g

datasets into monthly maximum-value composites (MVC). The MVC

procedure is a common preprocessing step in satellite imaging, and

allows for the reduction of measurement error rates, such as those

caused by variation in the atmosphere and sensor angle (Holben 1986).

In the case of NDVI data, MVC involves a pixel-by-pixel comparison

of half-monthly data for each month, and the retention of only the

highest NDVI value for each pixel location (Holben 1986). This

resulted in a total of 414 MVC NDVI values for each pixel location

(spanning each month from July 1981 to December 2015).

Cross-species analysis
We used the R library RASTER (Hijmans 2018) to extract the 414

MVC NDVI values of all pixels that fall within each species’ geo-

graphic range. These geographic ranges were based on IUCN poly-

gon shape files (previously extracted in Alhajeri and Steppan 2016),

which were read into R using the RGDAL library (Bivand et al.

2018). We then calculated both the mean and the median of these

MVC NDVI values for each species (Supplementary Table S1).

Based on Kendall’s tau (s) coefficient (Kendall 1938), these mean

and the median MVC NDVI values were highly (positively) corre-

lated (P<0.0001, s¼0.953), indicating that they may provide simi-

lar information. Consequently, only the mean MVC NDVI values

were used in subsequent analyses (referred to as “species-level

NDVI” values in the rest of the article). We used these values as esti-

mates of the typical productivity of the habitat occupied by each

species.

We examined the association between species-level NDVI values

and each of the corresponding 1) annual mean temperature (BIO1)

and 2) annual precipitation (BIO12) values, using Kendall’s s (see

above). As a nonparametric test, Kendall’s s does not assume nor-

mality, and is less sensitive to outliers than parametric correlation

coefficients, such as Pearson’s r (Daniel 1990).

The association between species-level NDVI values and mean

species body mass was examined using phylogenetic generalized
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least squares (PGLS) analysis (Harvey and Pagel 1991), as imple-

mented in the R library CAPER (Orme et al. 2018). This method

accounts for the phylogenetic relatedness of examined taxa (Harvey

and Pagel 1991; Orme et al. 2018). The phylogenetic covariance

matrix used in the PGLS analysis was estimated by weighting the

covariances by Pagel’s lambda (k), which was estimated from model

residuals. A value of k¼1 denotes a Brownian motion model, k¼0

indicates the absence of phylogenetic signal, and 0<k<1 denotes

and intermediate model (Pagel 1999).

PGLS analyses were carried out using Fabre et al.’s (2012) super-

matrix chronogram. Since the PGLS analysis requires a fully bifurcat-

ing tree, polytomies were randomly resolved, while being assigned an

internal branch length of zero, following Alhajeri and Steppan (2016).

Out of all the examined data transformations, the combination that fit

the assumptions of the PGLS model best (i.e., residuals’ normality and

homogeneity), was a natural log transformation of mean species body

mass (“species-level body mass”) and raw (untransformed) species-

level NDVI values—this setup was used in all PGLS analyses.

Uncertainty in the estimates of species-level body mass is a po-

tential source of error in interspecific data, especially across broad

phylogenetic scales that encompass >1,000 species. To investigate if

error in species-level body mass estimates could affect the overall

results, we employed Maestri et al.’s (2017) sampling approach (see

below). PanTHERIA provides point estimates for average body

mass for each species, without uncertainty values, as such, we

randomized species-level body mass (m) values 1,000 times for each

species, around a 30% confidence interval (an arbitrary, but conser-

vative value), which defines the lower (m �30%) and the upper (m
þ30%) intervals for the randomizations, calculated for each species-

level body mass value (for details, see Maestri et al. 2017). A PGLS

analysis was performed for each of the 1,000 vectors of randomized

average values (Supplementary Table S2). The results from all 1,000

runs were summarized numerically and graphically.

Fourteen out of the 1,315 rodent species in the dataset of

Alhajeri and Steppan (2016) were dropped from this study. These

include 8 species for which species-level NDVI values could not be

calculated (mostly due to having an extremely large range size) and

5 Neusticomys species that were included in Fabre et al.’s (2012)

tree based on misidentified GenBank sequences. The order-level

PGLS analysis was conducted on the remaining 1,301 rodent species

that appear in Supplementary Table S1. A scatterplot was generated

in the R base library to visualize the association between species-

level NDVI values and species-level body mass values.

In addition to the order-level PGLS analysis, we also ran PGLS

analyses at narrower taxonomic scales, including suborders, super-

families, families, subfamilies, and genera. For each taxonomic level,

only taxa with 10 or more species sampled in the group were ana-

lyzed. This was done to reduce common problems associated with

small sample sizes, such as low statistical power and inflated Type I

error rate (Forstmeier et al. 2017). This taxonomically partitioned

analysis relied on taxonomic information from the Integrated

Taxonomic Information System (ITIS 2018), which was retrieved

using the R library TAXIZE (Chamberlain et al. 2018). The full

data matrix used to carry out all cross-species analyses appears in

Supplementary Table S1. This matrix also includes the ITIS taxo-

nomic information for each species.

Cross-assemblage analysis
The association between body mass and NDVI values was also

examined across rodent assemblages. In this approach, the species’

geographic ranges (IUCN polygons) were converted into a presence–

absence matrix at a 1.5-degree grid resolution using the R library

LETSR (Vilela and Villalobos 2015). We considered a species to be

present in a given grid cell if its distribution covers any part of it

(i.e., >0% of the grid cell). As such, each of the 1,301 rodent species

used in the cross-species analysis (Supplementary Table S1) were

found in at least one of the resulting grid cells. We removed all cells

in the resulting grid where none of the examined species is present,

resulting in a total of 7,721 cells (i.e., assemblages) with at least 1 of

the 1,301 species present (Supplementary Table S3).

To calculate the mean NDVI value for each grid cell, we first

used RASTER to project the raster of MVC NDVI values (see “Data

extraction” section) to a new raster that matches the coordinate ref-

erence system and resolution of the presence–absence matrix. The

NDVI values for this new raster were computed using bilinear inter-

polation, which is often used for continuous variables (Hijmans

2018). The “assemblage-level NDVI” values were calculated by tak-

ing the average of the 414 MVC NDVI values for each grid cell

(Supplementary Table S4). NDVI values were missing in 199 out of

the 7,721 grid cells. As such, the cross-assemblage analyses were

conducted on the remaining 7,602 grid cells. The R libraries

RGDAL and MAPTOOLS (Bivand and Lewin-Koh 2017) were used

to map of the spatial distribution of assemblage-level NDVI values.

LETSR was used to assign a body mass value to each grid cell based

on the presence–absence matrix. This “assemblage-level body mass”

value for each grid cell was based on the average of the species-level

body mass values of all species present inside the grid cell

(Supplementary Table S4). As for NDVI, the R libraries RGDAL and

MAPTOOLS were used to map of the spatial distribution of

assemblage-level body mass values. In addition, a scatterplot was gen-

erated in the R base library to visualize the association between

assemblage-level body mass values and assemblage-level NDVI values.

The association between assemblage-level body mass values and

assemblage-level NDVI values across the 7,602 grid cells was deter-

mined using both ordinary least squares (OLS) and generalized least

squares (GLS) regression analyses (Aitken 1934). R base library was

used to conduct the OLS regression whereas GLS was conducted

using the R library NLME (Pinheiro et al. 2017). GLS models were

fit by maximizing the restricted log-likelihood function. We expect

some degree of spatial autocorrelation in our dataset, whereby near-

by grid cells have similar body mass and NDVI values (see Dormann

et al. 2007). As such, we used NLME to fit 5 additional GLS mod-

els, each with a unique autocorrelation structure: 1) exponential, 2)

Gaussian, 3) linear, 4) rational quadratics, and 5) spherical—for

more details, see Pinheiro et al. 2017. In all 5 models, a nugget effect

was assumed, and the spatial covariates were based on the distance

between the longitude/latitude coordinates of the geographic cent-

roids of the of the grid cells. By default, NLME measures the dis-

tance between the observations using Euclidean distance. In

addition to Euclidean distance, we also constructed models that use

the great-circle distance based on the haversine formula (Inman

1835). This formula considers Earth’s curvature and is thus useful at

large spatial scales. We used Akaike information criterion (AIC)

weights (wi) to assess model fit (Akaike 1974; Bozdogan 1987;

Burnham and Anderson 2002; Wagenmakers and Farrell 2004)—

calculated using the R library QPCR (Pabinger et al. 2014).

Results

Cross-species analysis
Species-level NDVI values were correlated with both annual mean

temperature (BIO1) (P<0.0001, s¼0.348) and annual
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precipitation (BIO12) (P<0.0001, s¼0.807), with the latter (based

on the s coefficient) showing a �2.3� stronger relationship with

NDVI.

At the order-level, the PGLS analysis yielded a weak positive

relationship between species-level body mass values and species-

level NDVI values (P¼0.0020, b¼0.34, R2
adj ¼ 0.007; Table 1a,

Figure 1A), indicating larger rodent species in more productive

habitats. PGLS analyses that consider uncertainty in species-level

body mass values (i.e., the 1,000 randomized vectors) returned

results (mean values and standard deviations) very similar to

those of the empirical values (P¼0.0069 6 0.0080, b¼0.34 6

0.04, R2
adj ¼ 0.005 6 0.001; Supplementary Table S5,

Figure 1A,B).

None of the examined suborders showed a significant associ-

ation between species-level body mass and species-level NDVI val-

ues (all P�0.0726; Table 1b), except for Myomorpha, which

showed a weak, significant, positive association between these varia-

bles (P¼0.0018, b¼0.41, R2
adj ¼ 0.011; Table 1b). Of the 2 exam-

ined superfamilies, Muroidea showed a weak, significant, positive

association between species-level body mass and species-level NDVI

values (P¼0.0016, b¼0.42, R2
adj ¼ 0.011), whereas Dipodoidea

showed no significant association between these variables

(P¼0.4991; Table 1c). At the family level, a significant positive as-

sociation between species-level body mass and species-level NDVI

values was found in Erethizontidae (P¼0.0132, b¼5.54, R2
adj ¼

0.457), Muridae (P¼0.0116, b¼0.64, R2
adj ¼ 0.016), and

Spalacidae (P¼0.0055, b¼3.82, R2
adj ¼ 0.548; Table 2a)—all

other examined families showed no significant association between

these variables (all P�0.0613; Table 2a). Among examined subfa-

milies, a significant positive association between species-level body

mass and species-level NDVI values was found in Gerbillinae

(P¼0.0145, b¼1.54, R2
adj ¼ 0.108), Neotominae (P¼0.0008,

b¼0.92, R2
adj ¼ 0.108), Xerinae (P¼0.0005, b¼1.20, R2

adj ¼
0.106), and Erethizontinae (P¼0.0206, b¼5.50, R2

adj ¼ 0.447)—

all other subfamilies showed no significant association between

these variables (all P�0.0774; Table 2b). At the genus level, the as-

sociation between species-level body mass and species-level NDVI

values was significantly positive in Peromyscus (P¼0.0171,

b¼0.77, R2
adj ¼ 0.124) and Tamias (P¼0.0071, b¼0.957, R2

adj ¼

Table 1. Summary of the PGLS analyses, where species-level body

mass values (log body mass in grams) are being predicted by the

species-level NDVI values (mean NDVI), at the order (a), suborder

(b), and superfamily (c) levels

df b F R2
adj P

a. Order

Rodentia 1,299 0.34 9.45 0.007 0.0021

b. Suborder

Castorimorpha 77 0.80 3.31 0.029 0.0726

Hystricomorpha 181 0.15 0.28 0.000 0.5964

Myomorpha 817 0.41 9.74 0.011 0.0018

Sciuromorpha 205 0.41 1.86 0.004 0.1736

c. Superfamily

Dipodoidea 12 �0.71 0.49 �0.041 0.4991

Muroidea 803 0.42 9.91 0.011 0.0016

Significant P-values are in bold. Please note, results of taxa with low sample

sizes (n< 10 or df< 8) are not shown. See “Materials and Methods” section

for more information. df, degrees of freedom (n � 2); b, coefficient estimate;

F, F-statistic; R2
adj, adjusted R-squared value.

R2
adj

Pagel’s λ

p-values

A B

Figure 1. Scatterplot of species-level NDVI values (unitless) versus species-level body mass values (grams) for order Rodentia (A). The red dashed line is the line

of best fit based on the PGLS regression of the observed data (the points shown on the plot). The shaded blue area is the region occupied by the lines of best fit

for each one of the 1,000 vectors of randomized log body mass values (the points are not shown on the plot). In (B), from top to bottom, a histogram showing the

frequency distribution of the adjusted R2 values of each randomized PGLS analysis, followed by a frequency distribution of the k values estimated from the resid-

uals of the regression model (using maximum likelihood), and the P-values for each randomized PGLS. The red vertical line indicates P¼ 0.05. Results of the em-

pirical PGLS analysis are shown in Table 1 and those of the randomized PGLS analyses are found in Supplementary Table S5.
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0.2534)—all other genera showed no significant association be-

tween these variables (all P�0.0705; Table 3).

Cross-assemblage analysis
The rodent assemblage-level NDVI values seem to be greatest near

the equator, and particularly in regions that broadly correspond to

tropical rainforests, such as the Amazon Rainforest of South

America, the Congo Rainforest of Central Africa, and the

Rainforests of Southeast Asia (Figure 2). These values are lowest in

regions that broadly correspond with deserts, such as the Saharan

Desert and the Arabian Desert (Figure 2). Overall, there is low cor-

respondence between the spatial distribution of the assemblage-level

NDVI values (Figure 2) and the assemblage-level body mass values

(Figure 3). The regions with the highest assemblage-level body mass

values seem to be geographically clustered mostly in the Caribbean,

and somewhat in scattered regions in the Americas, Asia, and

Australia (Figure 3). The regions with the lowest assemblage-level

body mass values are scattered in both desert and mesic regions

(Figure 3).

Out of the 11 examined GLS models of the association between

assemblage-level body mass values and assemblage-level NDVI val-

ues, the exponential autocorrelation model based on the great-

circle (haversine) distance fit the data best, receiving 98.8% of the

total weight (DAIC ¼ 0.00, wi ¼ 0.988; Table 4). Based on this

model, assemblage-level body mass values are not significantly pre-

dicted by the assemblage-level NDVI values (P¼0.3979). In con-

trast, both the OLS and the GLS regression analyses that do not

consider spatial autocorrelation (which do not fit the data well)

show a significant and strong correlation between these variables

(both P<0.0001, both b¼1.57, OLS R2
adj ¼ 0.219; Figure 4).

This result indicates that most of the apparent correlation between

assemblage-level body mass values and assemblage-level NDVI val-

ues is an artifact of spatial autocorrelation.

Discussion

Larger rodent species tend to occur in wet environments (Alhajeri

and Steppan 2016), and at lower latitudes (Maestri et al. 2016).

Terrestrial habitat productivity is associated with both increased

precipitation (e.g., Yang et al. 2009; Zhou et al. 2009; Guo et al.

2012; this study) and decreased latitude (Gillman et al. 2015). This

suggests that habitat productivity is an important predictor of body

size in rodent species. Yet, our data do not support the “resource

Table 2. Summary of the PGLS analyses, where species-level body

mass values (log body mass in grams) are being predicted by the

species-level NDVI values (mean NDVI), at the family (a) and sub-

family (b) levels

df b F R2
adj P

a. Family

Bathyergidae 8 1.58 1.29 0.032 0.2872

Caviidae 11 �1.93 3.18 0.154 0.1017

Cricetidae 424 0.16 1.52 0.001 0.2182

Ctenomyidae 34 �0.32 0.61 0.000 0.4384

Dasyproctidae 9 �0.96 0.38 0.000 0.5504

Dipodidae 12 �0.71 0.49 0.000 0.4991

Echimyidae 58 0.41 0.51 0.000 0.4772

Erethizontidae 9 5.54 9.44 0.457 0.0132

Geomyidae 24 0.82 1.59 0.023 0.2184

Gliridae 10 0.09 0.00 0.000 0.9508

Heteromyidae 49 0.86 3.67 0.051 0.0613

Muridae 331 0.64 6.42 0.016 0.0116

Nesomyidae 32 0.86 0.87 0.000 0.3588

Sciuridae 192 0.44 2.01 0.005 0.1573

Spalacidae 9 3.82 13.12 0.548 0.0055

b. Subfamily

Arvicolinae 63 �0.53 1.58 0.009 0.2128

Callosciurinae 29 �0.91 0.96 0.000 0.3357

Caviinae 8 0.66 0.75 0.000 0.4114

Dendromurinae 9 0.32 0.04 0.000 0.8480

Deomyinae 14 0.53 0.79 0.000 0.3875

Dipodomyinae 17 0.48 0.26 0.000 0.6183

Echimyinae 17 1.29 2.54 0.078 0.1293

Erethizontinae 8 5.50 8.27 0.447 0.0206

Eumysopinae 33 �0.13 0.02 �0.030 0.8641

Gerbillinae 44 1.54 6.46 0.109 0.0146

Heteromyinae 9 2.44 2.59 0.137 0.1418

Murinae 259 0.48 2.66 0.006 0.1036

Neotominae 88 0.92 11.88 0.108 0.0008

Nesomyinae 12 1.45 0.80 0.016 0.3890

Otomyinae 8 0.22 0.32 0.000 0.5839

Perognathinae 19 0.55 2.15 0.054 0.1588

Sciurinae 53 �1.47 3.24 0.039 0.0774

Sigmodontinae 254 0.03 0.06 0.000 0.8047

Xerinae 101 1.20 13.10 0.106 0.0005

Significant P-values are in bold. Please note, results of taxa with low sample

sizes (n< 10 or df< 8) are not shown. See “Materials and Methods” section

for more information. df, degrees of freedom (n � 2); b, coefficient estimate;

F, F-statistic; R2
adj, adjusted R-squared value.

Table 3. Summary of the PGLS analyses, where species-level body

mass values (log body mass in grams) are being predicted by the

species-level NDVI values (mean NDVI), at the genus taxonomic

level

df b F R2
adj P

Akodon 31 0.24 0.71 0.000 0.4065

Chaetodipus 10 0.42 1.28 0.025 0.2835

Ctenomys 34 �0.32 0.61 0.000 0.4384

Dipodomys 15 �0.51 0.39 0.000 0.5413

Gerbillus 9 2.72 1.09 0.009 0.3242

Microtus 28 �0.86 3.25 0.072 0.0819

Mus 9 0.03 0.00 0.000 0.9627

Neotoma 13 0.43 2.45 0.094 0.1412

Oecomys 11 �0.15 0.04 0.000 0.8391

Oligoryzomys 11 �0.20 0.53 0.000 0.4815

Oxymycterus 9 �0.40 0.13 0.000 0.7212

Paraxerus 8 �3.45 1.52 0.005 0.2524

Peromyscus 36 0.77 6.24 0.124 0.0171

Phyllotis 10 0.25 0.14 0.000 0.7095

Proechimys 18 0.24 0.65 0.000 0.4302

Pseudomys 17 1.38 2.24 0.064 0.1520

Rattus 24 �0.52 0.65 0.000 0.4272

Reithrodontomys 15 0.62 1.95 0.056 0.1827

Rhipidomys 10 �1.20 2.95 0.150 0.1168

Sciurus 23 �1.11 3.60 0.098 0.0705

Spermophilus 27 0.81 1.55 0.019 0.2234

Tamias 22 0.96 8.95 0.257 0.0067

Thomasomys 22 0.48 1.49 0.021 0.2352

Significant P-values are in bold. Please note, results of taxa with low sample

sizes (n< 10 or df< 8) are not shown. See “Materials and Methods” section

for more information. df, degrees of freedom (n � 2); b, coefficient estimate;

F, F-statistic; R2
adj, adjusted R-squared value.
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availability hypothesis” (Blackburn and Hawkins 2004) in rodents.

The association between body mass and NDVI was weak across spe-

cies (P¼0.0020, b¼0.34, R2
adj ¼ 0.007; Table 1a, Figure 1A) and

insignificant across assemblages (P¼0.3979). This suggests that

resource availability is as poor a predictor of rodent body size as

temperature (i.e., Bergmann’s rule) (e.g., Freckleton et al. 2003;

Meiri and Dayan 2003; Alhajeri and Steppan 2016; Maestri et al.

2016).
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Figure 2. Map of the assemblage-level NDVI values. This map and the associated color scale depict the values of the actual 1.5-degree grid cells used in the

cross-assemblage analysis (those in Supplementary Table S4). Negative NDVI values (close to zero) represent permanently snow-covered terrestrial habitats

with no discernable vegetation. The white regions of the map denote missing data. The latitude and the longitude are indicated in the Y- and X-axes, respectively.
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Figure 3. Map of the assemblage-level body mass values (logged). This map and the associated color scale depict the values of the actual 1.5-degree grid cells

used in the cross-assemblage analysis (those in Supplementary Table S4). The white regions of the map denote regions where none of the 1,301 species are pre-

sent. The latitude and the longitude are indicated in the Y- and X-axes, respectively.

Table 4. Selection table of the fits of the GLS models of the association between assemblage-level body mass and assemblage-level NDVI

values

ln L AIC DAIC wi

No spatial autocorrelation structure �7504.1 15014.2 13952.2 <0.001

Exponential autocorrelation (Euclidean) �726.9 1463.7 401.7 <0.001

Exponential autocorrelation (haversine) �526.0 1062.0 0.0 0.988

Gaussian autocorrelation (Euclidean) �1046.0 2102.0 1040.0 <0.001

Gaussian autocorrelation (haversine) �962.3 1934.6 872.5 <0.001

Linear autocorrelation (Euclidean) �1832.7 3675.5 2613.5 <0.001

Linear autocorrelation (haversine) �1347.3 2704.7 1642.6 <0.001

Rational quadratics autocorrelation (Euclidean) �808.2 1626.4 564.4 <0.001

Rational quadratics autocorrelation (haversine) �682.2 1374.4 312.3 <0.001

Spherical autocorrelation (Euclidean) �733.2 1476.4 414.3 <0.001

Spherical autocorrelation (haversine) �530.4 1070.8 8.8 0.012

ln L, restricted log-likelihood score; DAIC fit relative to the model with the lowest AIC score (italicized). The best-fit model based on DAIC and Akaike weights

(wi) are denoted in bold. The degrees of freedom (n � 2) for all models is 7,600 (n � 2).
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The cross-assemblage approach assesses the relationship between

climate and the assembly of communities (Feldman and Meiri

2014). Based on this, our data support the view that habitat prod-

uctivity does not play a large role in the assembly of global rodent

communities. If we do not consider spatial autocorrelation (i.e.,

OLS regression), habitat productivity explains 21.9% of the vari-

ation in assemblage body size (Figure 4). This argues for reexamin-

ing previous results that do not consider spatial autocorrelation.

Further investigation is warranted considering that macroecology

was founded on studies conducted at large scales (e.g., Brown and

Maurer 1989; Brown 1995).

At the assemblage level, NDVI values (Figure 2) and body mass val-

ues (Figure 3) show different spatial distributions. This may lead to dif-

ferences in associations between these variables across geographic

regions (e.g., Meiri et al. 2004; Rodrı́guez et al. 2008; Berke et al.

2013). For example, the Caribbean has large values of both NDVI and

body mass (Figures 2 and 3). This pattern may reflect support for the

resource availability hypothesis in this region. Alternatively, the

increased body mass in the Caribbean could be explained by the

“island rule” (Foster 1964)—a common trend toward gigantism on

islands. This interpretation is more plausible given that this region is

dominated by large endemic rodents such as hutias (Nowak 1999),

which could have evolved their large size in relative isolation. Yet, re-

source availability may explain the island rule, because it is only

observed resource-rich islands (McNab 2010).

According to Feldman and Meiri (2014), the cross-species ap-

proach focuses on trait evolution. Thus, our data suggest that re-

source availability plays a minor role in the evolution of body size at

the order-level (Table 1a, Figure 1A). Rodent clades may have con-

trasting macroevolutionary patterns, which may lead to a net signal

of no association (see Cruz et al. 2005). The strength of the associ-

ation between body mass and NDVI varied across the examined

subtaxa (Tables 1–3); a pattern detected in other animals (e.g.,

Berke et al. 2013). Support for the resource availability hypothesis

was generally stronger at narrower scales (Tables 2 and 3)

than broader ones (Table 1). Bergmann’s rule shows similar

scale-dependence (Cruz et al. 2005; Berke et al. 2013). A potential

explanation is that species share more biological attributes at nar-

rower scales. This may lead to concordant (i.e., additive) macroevo-

lutionary patterns.

Among the strongest support for the resource availability hy-

pothesis was found in Erethizontidae (New World porcupines and

relatives) (P¼0.0132, b¼5.54, R2
adj ¼ 0.457) and Spalacidae (Old

World mole-rats and relatives) (P¼0.0055, b¼3.82, R2
adj ¼ 0.548;

Table 2a). At first glance, these 2 families seem to have little in com-

mon. For example, spalacids are subterranean whereas erethizontids

are arboreal (Nowak 1999). Yet, on closer look, both these groups

consist of species with a specialized niche. Traits associated with ei-

ther niche may respond in the same direction under similar environ-

mental pressures. For example, an association between body mass

and habitat richness was found in crested porcupines (Lovari et al.

2013), a hystricid rodent (Old World porcupine) that shares a simi-

lar specialized niche. To directly test this hypothesis, the propensity

for convergence needs to be compared among specialists and

generalists.

Our results are generally concordant with prior studies at lower

taxonomic scales. For example, Gerbillinae showed a significant posi-

tive association between body mass and NDVI (P¼0.0145, b¼1.54,

R2
adj ¼ 0.108; Table 2b). This result agrees Alhajeri et al. (2015) who

found that gerbil species from less arid environments had larger cranial

sizes, even after phylogenetic correction. Likewise, Peromyscus showed

a significant positive association between body mass and NDVI

(P¼0.0171, b¼0.77, R2
adj ¼ 0.124; Table 3), which agrees with

Garcı́a-Mendoza et al. (2018), who found a similar association at the

intraspecific level in Peromyscus melanotis.

In conclusion, at this broad spatio-taxonomic scale, rodent body

size variation can neither be explained by Bergmann’s rule (e.g.,

Alhajeri and Steppan 2016; Maestri et al. 2016) nor resource availabil-

ity (this study). Support for the resource availability hypothesis varied

among subtaxa (Tables 1–3) and among geographic regions (Figures 2

and 3). This may indicate conflicting macroevolutionary signals, which

may have reduced association between habitat productivity and body

size at broad scales. As such, the resource availability hypothesis may

only apply to some taxa at certain geographic contexts.
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Supplementary material can be found at https://academic.oup.com/cz.
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Figure 4. Scatterplot of assemblage-level NDVI values (unitless) versus as-

semblage-level body mass values (in grams). The red dashed line corre-

sponds to the regression line of best fit. Each point corresponds to one of the

7,602 grids cells used in the regression models.
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Rodrı́guez MA, Ollala-Tárraga MÁ, Hawkins BA, 2008. Bergmann’s rule and

the geography of mammal body size in the Western Hemisphere. Glob Ecol

Biogeogr 17:274–283.

Saravanan S, Jegankumar R, Selvaraj A, Jacinth Jennifer J, Parthasarathy KSS,

2019. Utility of landsat data for assessing mangrove degradation in

Muthupet Lagoon, South India. In: Ramkumar M, James RA, Menier D,

Kumaraswamy KBT, editors. Coastal Zone Management. Amsterdam,

Netherlands: Elsevier. 471–484.

Shelomi M, Zeuss D, 2017. Bergmann’s and Allen’s rules in native European

and Mediterranean Phasmatodea. Front Ecol Evol 5:1–13.

Smith FA, Lyons SK, 2011. How big should a mammal be? A macroecological

look at mammalian body size over space and time. Philos Trans R Soc Lond

B Biol Sci 366:2364–2378.

R Development Core Team, 2018. A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical

Computing [cited 2018 June 27]. Available from: https://www.R-project.

org/.

Rosenzweig ML, 1968. The strategy of body size in mammalian carnivores.

Am Midl Nat 80:299–315.

Taylor JM, Smith SC, Calaby JH, 1985. Altitudinal distribution and body

size among New Guinean Rattus (Rodentia: Muridae). J Mammal 66:

353–358.

Vilela B, Villalobos F, 2015. Letsr: a new r package for data handling and ana-

lysis in macroecology. Methods Ecol Evol 6:1229–1234.

Virgós E, Kowalczyk R, Trua A, de Marinis A, Mangas JG et al., 2011. Body

size clines in the European badger and the abundant centre hypothesis.

J Biogeogr 38:1546–1556.

Wagenmakers EJ, Farrell S, 2004. AIC model selection using Akaike weights.

Psychon Bull Rev 11:192–196.

Wilson DE, Reeder DM, 2005. Mammal Species of the World: A Taxonomic

and Geographic Reference. Baltimore (MD): Johns Hopkins University

Press.

Yang YH, Fang JY, Pan YD, Ji CJ, 2009. Aboveground biomass in Tibetan

grasslands. J Arid Environ 73:91–95.

Yu X, Wu Z, Guo X, 2013. Investigating the potential of GIMMS and

MODIS NDVI data sets for estimating gross primary productivity in

Harvard Forest. In: MultiTemp 2013: 7th International Workshop on the

Analysis of Multi-temporal Remote Sensing Images, Banff, AB, Canada.

IEEE, pp. 1–4. doi: 10.1109/Multi-Temp.2013.6866013.

Zhou X, Talley M, Luo Y, 2009. Biomass, litter, and soil respiration along a

precipitation gradient in Southern Great Plains, USA. Ecosystems 12:

1369–1380.

Zhu Q, Zhao J, Zhu Z, Zhang H, Zhang Z et al., 2017. Remotely sensed esti-

mation of net primary productivity (NPP) and its spatial and temporal varia-

tions in the Greater Khingan Mountain region, China. Sustainability 9:

1213.

Alhajeri et al. � Rodent body size versus habitat productivity 143

http://www.itis.gov/
https://www.iucnredlist.org/
https://CRAN.R-project.org/package=caper/
https://CRAN.R-project.org/package=caper/
https://CRAN.R-project.org/package=caper/
https://CRAN.R-project.org/package=nlme/
https://CRAN.R-project.org/package=nlme/
https://CRAN.R-project.org/package=nlme/
https://www.R-project.org/
https://www.R-project.org/



	zoz037-TF1
	zoz037-TF2
	zoz037-TF3
	zoz037-TF4
	zoz037-TF5
	zoz037-TF6
	zoz037-TF7

