
MethodsX 10 (2023) 102015 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/mex 

Method Article 

Frameworks for mapping lake ecosystem services. An example 

from Lithuania 

M. Inácio 

a , ∗ , M. Das b , D. Barcelóc , d , P. Pereira 

a 

a Environmental Management Laboratory, Mykolas Romeris University, Ateities st. 20, Vilnius LT-08303, Lithuania 
b Department of Geography, University of Gour Banga, Malda, West Bengal, India 
c Catalan Institute for Water Research (ICRA-CERCA), Girona, Catalonia, Spain 
d Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Barcelona, Spain 

a r t i c l e i n f o 

Method name: 

Multi-Method for lakes ecosystem services 
mapping 

Keywords: 

Quantitative 
Geographic information systems 
Remote sensing 
Indicators 

a b s t r a c t 

Lake ecosystems are essential for human well-being. Due to its transboundary nature, connecting 
terrestrial and aquatic habitats, its environmental processes and functions support a wide array of 
ecosystem services (ES). Hence, despite its importance in supporting socio-ecologic systems, these 
freshwater ecosystems are highly impacted due to anthropogenic influence. ES may shed light on 
the importance of maintaining and restoring lake ecosystems. Hence, despite the increased effort 
in the last decades to provide robust spatial information, most scientific studies still follow a 
qualitative approach that carries a great deal of uncertainty and is not uptake by decision-makers. 
It is necessary to develop quantitative and robust methodologies for mapping ES, especially in the 
aquatic realm. This study develops several frameworks to map ES in lake ecosystems. Important 
to highlight is that this study. 

• develops a quantitative multi-method (biophysical and statistical) toolbox for lake ES multi- 
temporal mapping. 

• covers five ES from Provisioning, Regulating & Maintenance, and Cultural sections, namely: 
(1) Fibres and other materials for construction; (2) Water used for non-drinking purposes; (3) 
Maintenance of nursery populations; (4) nutrient regulation; and (5) recreation. 

• addresses three dimensions of ES: supply, flow; and demand. 
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Background 

Freshwater ecosystems, such as lakes, are essential for supporting socio-ecologic systems [1] . Lake ecosystems support terrestrial 
and aquatic biodiversity, playing an important role in ecological processes at different spatial scales [2 , 3] . These ecosystems also
provide an array of benefits for human well-being through the deliverance of ecosystem services (ES) [1] . Despite its essential role,
for example, providing water for drinking purposes, lake ecosystems have been heavily impacted by anthropogenic socio-economic 
activities [4] . To reverse this is essential to show the benefits of preserving and conserving the natural environment. The concept
of ES goes in line with this narrative. Since 2005, after the Millennium Ecosystem Assessment [5] , the scientific development of
the ES concept has increased exponentially [6] . One of the most common outputs is the translation of ES assessments into a spatial
representation, i. e., mapping. To this day, several methodological advances have been achieved in ES mapping [ 7 , 8 ]. From simple
expert matrices (e.g., [9] ) to complex modelling approaches (e.g. [10] ). Hence, there is a strong polarisation towards the terrestrial
environment. The availability and development of assessment and mapping methodologies for lake ES are lagging. In parallel to this,
there is an increasing inclusion of lake ES assessments and mapping into policies and directives at European (e.g., Water Framework
Directive [11] ) and international (e.g., United Nations Sustainable Development Goals (SDGs) [12] ). However, to support decision- 
making, several authors have stressed the importance of scientifically sound and robust results (e.g., [13] ). The problem is that for
many years, ES assessment and mapping were done qualitatively (based on perceptive knowledge, e.g., expert elicitation), and this 
type of assessment and ES assessments generally carries many uncertainties [14] . It is then necessary to develop quantitatively (based
on empirical data, e.g., biophysical modeling) and data-driven ES mapping methodologies to bridge these gaps. 

Quantitative ES mapping and assessment are generally done via biophysical modeling, using indicators (e.g., chlorophyll a concen- 

tration ) as proxies to represent ecological processes or socio-economic phenomena [7] . Thus, this type of assessment relies heavily on
available data. Hence, this is one of the main problems identified by the ES research community: need for more data. This is even more
pronounced for aquatic ecosystems in general and lake ecosystems in specific [1] . Due to the efforts within several initiatives like
the Water Framework Directive and the United Nations Sustainable Development Goals, data for monitoring lake ecosystems became 
more available, and it is now possible to rely on it for ES mapping. Also, the role of Remote Sensing has increased exponentially
since its advance is seen as a promising approach to overcome the lack of observational data in lake ecosystems [15] . Therefore,
new methodological approaches for lake ES mapping should rely on these two components: quantitative and/or remote sensing. To
fully comprehend ES, assessing and mapping their complexity is necessary. ES encompasses multiple dimensions: (1) supply, corre- 
sponding to the mechanisms responsible for generating the ES; (2) flow, which is the transfer of the ES from supply to demand areas;
and finally, (3) demand, which represents the need of the society for ES [7] . In this study, we developed different methodological
frameworks, using several indicators (e.g., biophysical, social) to map and assess lakes ES from a Spatio-temporal perspective. This is
essential for the complete understanding of ES in lake ecosystems. We exemplify these frameworks for lake ecosystems in Lithuania
from a multi-temporal perspective. 

Methodological frameworks 

One of the complete databases with a spatial representation of lakes is the HydroLAKES database from HydroSHEDS 
( www.hydrosheds.org ) [16] . HydroLAKES is a database that maps global-scale water bodies with more than 10 hectares. It is a
complete database, which was the reason for choosing this database to define the lake ecosystems to be analyzed in this study.
Lake polygons were acquired (as a shapefile) from HydroLAKES database version 1.0, accessed in February 2021. Since lakes are
transboundary ecosystems that connect aquatic and terrestrial realms, there are processes and functions related to providing ES that
go beyond the water body limit. Therefore, we establish a buffer area of 5 km around the water body to analyze, for example, the
influence of land use changes in the provision of ES. We follow the 5 km buffer after Mushtaq and Pandey [17] . The buffer area was
delimited using the “Buffer ” tool of ArcGIS 10.8 [18] , based on the HydroLAKES polygons within Lithuania. 

The ES analyzes are studied within the “Lithuanian lake ecosystem services: impacts of climate and land-use change ” (LACLAN)
Project. This project utilises the “Common International Classification on Ecosystem Services ” (CICES) version 5.1 [19] . 

Land use land cover information in the 5 km buffer around the lake was based on Corine Land Cover data (CLC)
(land.copernicus.eu). CLC data is widely used for ES mapping and assessment in Europe. Furthermore, CLC data cover several periods
starting from 1990 and is open access. 

All layers were processed to 30 m resolution using the ETRS89_LAEA coordinate system. To put all layers into this format, it was
necessary to (1) resample some raster layers, which was done in ArcGIS 10.8, using the “Resample ” tool; and (2) reproject some
layers, which was also done in ArcGIS 10.8 but using the “Project ” and “Reproject ” tools. 

All data information used for assessing and mapping the lake ES is available in Table S1 in the Supplementary Materials. 

Provisioning ES: fibres and other materials for construction 

Supply: The supply of fibres and other materials for construction ES refers to all materials from plants used instead of nutritional
purposes [20] . This ES was calculated using an indicator related to reed areas present around the lake ( Fig. 1 ). 

Since no data were available in Lithuania on the spatial distribution and extent of reed to be analyzed in a multi-temporal
perspective, this method incorporated remote sensing data to estimate it. We adapted methodological frameworks to detect reed 
areas around the lake using vegetation indices (e.g., [21 , 22] ). Landsat Satellite Imagery (TM 5 and ETM 8) was selected due to its
long temporal data availability and medium resolution (30 m). Satellite data processing was implemented using the Google Earth 
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Fig. 1. Methodological framework for assessing the mapping “Fibres and other materials for construction ” supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Engine Platform (GEE) [23] . GEE is a cloud-based platform for geospatial processing analysis, with enormous datasets and satellite
imagery available. Within the GEE and using Landsat imagery, we calculated the Normalised Difference Aquatic Vegetation Index 
(NDAVI) by Villa et al. [24] to map reed areas around the lakes: 

𝑁 𝐷𝐴𝑉 𝐼 = 

( 𝑁 𝐼 𝑅 𝑏𝑎𝑛𝑑 − 𝐵𝑙𝑢𝑒 𝑏𝑎𝑛𝑑 ) 
( 𝑁 𝐼 𝑅 𝑏𝑎𝑛𝑑 + 𝐵𝑙𝑢𝑒 𝑏𝑎𝑛𝑑 ) 

We selected images with a temporal constraint of one year and only comprising the months of May to September to reduce the
effects of snow cover and dry vegetation, as in other studies. A buffer area of 200 m was defined around the lakes based on the lake
polygons. This was done a priori in ArcGIS 10.8. Since the objective was to map ES from a multi-temporal perspective, NDAVI was
calculated for 1990, 2000, 2006, 2012,and 2018. The resulting product (NDAVI) was post-processed in ArcGIS 10.8 to isolate a value
range which would coincide with reed areas using orthophoto maps extracted from the Lithuanian Geoportal ( www.geoportal.lt ) for
the corresponding years. Finally, we removed the misclassified using orthophoto maps and calculated the area in a 200 m buffer
around the lakes. Detailed steps are described below: 

Buffer area: the 200 m buffer area was calculated in ArcGIS 10.8 using the “Buffer ” tool, defining 200 m as “distance ” and choosing
“OUTSIDE_ONLY ” for the “Side Type ”. The resulting shapefile was uploaded to GEE as an “asset ”. 

NDAVI: we used atmospherically corrected surface reflection data from the Landsat TM sensor available on GEE (e.g., LAND-
SAT/LT05/C02/T1_L2 – courtesy of the U.S. Geological Survey). A temporal restriction was implemented using “.filterDate ” argument 
for a year (e.g., .filterDate(‘1990–01–01’, ‘1990–12–31’)), and “Filter.calendarRange ” argument for the month’s May to September 
(e.g., “filter(ee.Filter.calendarRange(5,9,’month’) ”). Also, a restriction for cloud cover was implemented for images with less than 
10% cover using the argument “.filterMetadata(’CLOUD_COVER’, ’less_than’, 10) ”. To filter images only covering Lithuania, we drew 

a Region of Interest (ROI) polygon within GEE as an input to the “.filterBounds ” argument. A cloud mask was applied based on a
standard script within GEE (e.g., “maskL457sr ”), which also includes the implementation of Landsat scaling factors. After this, a
composite of images was condensed to one image based on an arithmetic mean using the argument “.median() ”. We chose only some
bands from the median product (e.g., B1–B5, B7) using the argument “select() ”. We clipped the resulting image using the 200 m
lake polygons shapefile as input, using the argument “.clip() ”. The calculation of NDAVI was implemented within the GEE, choos-
ing the Near Infrared (NIR) and Blue bands of Landsat 5 and Landsat 8, respectively. The variable “ndavi ” was normalised using
the argument “.normalizedDifference() ” and exported as GeoTiff file using the argument “Export.image.toDrive(). In ArcGIS 10.8, 
NDAVI threshold values were defined based on visual adjustment of reed areas using orthophoto maps. A reclassification was done
using ArcGIS 10.8 “Reclassify ” tool to define the values within the threshold. The reclassified raster was converted to polygons using
ArcGIS 10.8 “Raster to Polygon ”. The misclassified polygons were deleted. This was done for each lake and year. The identified reed
polygons were intersected with the 200 m buffer polygon with reed polygons, using ArcGIS 10.8 “Intersect ” tool. The “Dissolve ” tool
aggregated all reed polygons for each lake (based on lake ID information of the HydroLAKES database). The total reed area per lake
was calculated by adding a new field to the “table of contents ” of the dissolved shapefile and using the “Calculate geometry ”, and
then dividing the reed area by the lake polygon area (information available in the HydroLAKES database). 

Provisioning ES: water used for non-drinking purposes 

Supply: The supply of water used for non-drinking purposes ES was calculated based on the lake water volume availability ( Fig. 2 ). 
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Fig. 2. Methodological framework for assessing the mapping “Water used for non-drinking purposes ” supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since there was no data available for all lakes in Lithuania, it was necessary to find a proxy. Based on literature (e.g., [25 , 26] ), a
theoretical relation of water volume can be inferred based on surface water area and average lake depth. The lake’s average depth was
acquired from the HydroLAKES database, and the water surface water extent was acquired from the Global Surface Water database of
the Joint Research center [27] . The water extent was calculated for 1990, 2000, 2006, 2012, and 2018. The theoretical water volume
was calculated by multiplying the water extent by the average depth for each lake. 

First, the lake surface area was calculated by importing the Global Surface Water product “JRC Yearly Water Classifica-
tion History, v1.4 ” ( “JRC/GSW1_4/YearlyHistory ”) within the GEE platform. A year filter was applied using the argument “.fil-
ter(ee.Filter.eq(’year’,)) ” (e.g., “filter(ee.Filter.eq(’year’, 2020) ”). This was done for each year analyzed. The image was acquired by 
using the argument “.first() ”, and the surface extent of permanent water was extracted using the argument “ Eq. (3) ” (which is the
band for permanent water). The resulting image was clipped using the argument “.clip() ” using the lake 5 km buffer lake polygons
shapefile as an input asset and exported as a GeoTiff file using the argument Export.image.toDrive() 

In ArcGIS 10.8, the raster image was transformed to polygons using the tool “Raster to Polygon ”, and the final surface water
extent area was calculated by adding a new field in the “table of contents ” in ArcGIS and using the “Calculate Geometry ” tool. Based
on lake ID, the area and average water depth information were joined using the function “join ” in ArcGIS. 

The final step was done by adding a new field in the “table of contents ” and using the “field calculator ” function. Surface water
extent was multiplied by the average water depth. 

Flow: The flow of water for non-drinking purposes ES was calculated based on the irrigation channels present in the 5 km buffer area
around the lakes ( Fig. 3 ). 

It represents the potential water flow from the lake polygons to agricultural areas. We utilised data from the INSPIRE (Waterbody)
database ( www.inspire.ec.europa.eu ). Based on (1) how many irrigation lines cross the lake polygons and (2) the length of the
irrigation line, we calculated the flow of this ES. 

The shapefile “water lines ” was added to ArcGIS 10.8 and clipped using the 5 km buffer area of the lake polygons shapefile as the
input layer using the “Clip ” tool. The number of connections (irrigation lines) crossing each lake was calculated using the “Dissolve ”
within each lake buffer area. The “Dissolve ” tool was used again to sum the length of the water lines crossing each lake (information
in the original database). Both shapefiles were joined using “Spatial Join ” based on lake ID, and the total flow was calculated by
adding a new field in the “table of contents ” and using the “Field Calculator ” function of ArcGIS 10.8. Finally, multiplication was
done based on the number of connections and the length of connection for each lake. 

Demand: The demand for water for non-drinking purposes ES was calculated based on the agricultural areas within the 5 km buffer
of lake polygons ( Fig. 4 ). 

We used the Corine Land Cover (CLC) ( www.land.copernicus.eu ) data for 1990, 2000, 2006, 2012,and 2018. The CLC level 3 data
were reclassified into nine LULC classes: 1 - urban; 2 - cropland, 3 - grassland; 4 - woodland and forest; 5 - heathland and shrub; 6
- sparsely vegetated areas; 7 - wetlands; 8 - rivers and lakes; and 9 - marine inlets and transitional waters. This reclassification was
based on the “Mapping and Assessment of Ecosystems and their Services ” (MAES) ecosystem types [28] . 

In ArcGIS 10.8, the CLC was reclassified based on MAES ecosystem types using the “Reclassify ” tool. The reclassified raster was
transformed into polygons using the “Raster to Polygon ” tool. In this case, we selected the LULC class 2 – cropland using the “select
by attribute ” function of ArcGIS 10.8 and extracted the polygons as a new shapefile. We then intersected the polygons with the
5 km buffer lake polygon shapefile using the “Intersect ” tool. We used ArcGIS 10.8 “Dissolve ” tool using lake ID to get all polygons
aggregated per lake. A new field in the “table of contents ” was added, and using the “Calculate Geometry ” function, calculate the
croplands area per lake. 
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Fig. 3. Methodological framework for assessing the mapping “Water used for non-drinking purposes ” flow. 

Fig. 4. Methodological framework for assessing the mapping “Water used for non-drinking purposes ” demand. 

 

 

 

 

 

The % of agricultural areas per lake was calculated by adding a new field in the “table of contents ” using the “Field calculator ”
function and dividing the cropland area by the 5 km buffer area of each lake polygon. This was done for each year analyzed. 

Regulating & maintenance ES: maintenance of nursery populations 

Supply: The Maintenance of nursery populations ES was calculated based on important elements for fish populations to thrive: food,
water quality and refugia [29] ( Fig. 5 ). 

The Environmental Protection Agency State Monitoring of lake ecosystems within the Ministry of Environment of Lithuania 
( https://aaa.lrv.lt/lt/veiklos-sritys/vanduo ) collects samples on different hydro-chemical and physical parameters. Chlorophyll a and 
water transparency were available from the parameters sampled, which we utilised to represent food availability and water quality,
respectively. Although the samples have a considerable temporal availability (from 2001 to 2021), the monitoring only covers some
lakes in Lithuania. Therefore, to acquire data for all studies, it was necessary to utilise remote sensing imagery as a proxy for the
parameters chosen. This was done by doing a band ratio regression using monitored data and selecting the best band combination to
5 
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Fig. 5. Methodological framework for assessing the mapping “Maintenance of nursery populations ” supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

represent the parameter. This approach is widely used and well-established (e.g., [30 , 31] ). Refugia was represented using reed areas
as a proxy (calculated in step 2.1.1). Detailed steps are described below: 

Monitoring data and points: Since this study covers the years 1990, 2000, 2006, 2012, and 2018, we extracted monitoring data
for only these years (if available). The lake coordinates were acquired from the monitoring database. Hence, not all lake coordinates
were available. The missing coordinates were acquired using Google Earth Pro-software based on the lake name. All monitored lakes
coordinates were added to ArcGIS 10.8 as “csv ” file, and the information was converted into points using the “display X and Y ”
function. These points were then exported as shapefile and added as an asset to the GEE platform. 

Band Ratios: The band ratios were computed GEE platform following a similar procedure as in 2.1.1. We used atmospheri-
cally corrected surface reflection data from the Landsat TM sensor available on GEE (e.g., LANDSAT/LT05/C02/T1_L2 – courtesy 
of the U.S. Geological Survey) was used for analysis. A temporal restriction was implemented using “.filterDate ” argument for a
year (e.g., .filterDate(‘1990–01–01’, ‘1990–12–31’)) and “Filter.calendarRange ” argument for the month’s May to September (e.g., 
“filter(ee.Filter.calendarRange(5,9,’month’) ”). A cloud cover filter was implemented for images with less than 10% cover using the 
argument “.filterMetadata(’CLOUD_COVER’, ’less_than’, 10) ”. To filter images only covering Lithuania, we drew a Region of Interest 
(ROI) polygon within GEE as an input to the “.filterBounds ” argument. Finally, a cloud mask was applied based on a standard script
within GEE (e.g., “maskL457sr ”), including Landsat scaling factors’ implementation. This resulted in a composite of images that
condensed to one single image based on an arithmetic mean using the argument “.median() ”. Again, only some bands were chosen
from the median products (e.g., B1–B5, B7) using the argument “select() ”. Only some bands were selected (e.g., B1–B5, B7) using
the argument “select() ”, and the image was clipped using lake polygons shapefile as input, using the argument “.clip() ”. All possible
band combinations (e.g., Band1/Band2) were calculated, normalised (e.g., “.normalizedDifference([‘SR_B1’, ‘SR_B5’]) ”) and added as 
bands to the clipped image, using the arguments “.addBands() ” and “.map() ”. 

Extract image information based on monitoring points. The monitoring points shapefile (asset) was used to extract information 
band ratios image using the argument “.sampleRegions() ” within GEE, and the data was then exported as “csv ” file using the argument
“Export.table.toDrive() ”. 

Monitoring and remote sensing data regression: The extracted data (csv file) was log10 transformed using the formula “LOG10() ”
processed in MS Excel 2016. We did multiple regressions using the monitoring data (for all years) and the remote sensing data (for
all years). The band or band ratio that yielded the best overall r 2 was chosen as a proxy for the analyzed variable. 

Extracting and normalising raster files (for all lakes and variables): The median image with all bands and band ratios was clipped
using the lake polygons using the argument “.clip() ” in GEE. The identified relevant band or band ratio was selected using the
argument “.select() ” and extracted as GeoTiff using the argument “Export.image.toDrive(). In RStudio software [32] , using the formula 
(x - minValue(x)) / (maxValue(x)- minValue(x)), the remote sensed chlorophyll a and transparency raster files were normalised and
extracted using the “WriteRaster() ”. 

Final calculations: in ArcGIS 10.8 and using the “Zonal Statistics ” tools, the mean value of the remote sensed parameters were
computed using the lake polygon shapefile as the input layer. The reed areas shapefile (from step 2.1.1) values were normalised using
the formula (x - minValue(x)) / (maxValue(x)- minValue(x)) by adding a new field in the “table of contents ” and using the “Field
6 
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Fig. 6. Methodological framework for assessing the mapping “Maintenance of nursery populations ” flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculator ” function. A “Spatial Join ” was done based on the lake ID. Finally, a new field in the “table of contents ” and using the
“Field calculator ” function, the three variables were overlayed (summed). 

Flow: The connectivity between lakes was used as a proxy to represent the potential flow of fish populations. We utilised information
on all water lines (irrigation, rivers and streams) crossing each lake polygon ( Fig. 6 ). 

We counted the number of connections between lakes and how many lakes connected through these water lines. 
In ArcGIS 10.8, we added and clipped the water lines shapefile using the 5 km buffer area of the lake polygons shapefile as

the input layer using the “Clip ” tool. The number of connections (irrigation lines) was calculated by crossing each lake using the
“Dissolve ” within each lake buffer area. The number of connected lakes was calculated using the “Dissolve ” tool for each water line
(each line has an ID number from the original database), resulting in a corresponding number of lakes crossed. The final number
of connected lakes was calculated by summing the total number of lakes crossed per each water line identified in step 3, using the
“Dissolve ” tool of ArcGIS 10.8. The final flow was calculated by adding joining data using the ArcGIS 10.8 “Spatial Join ” tool based
on lake ID. A new field was added in the “table of contents ” and using the “Field calculator ” function by multiplying the number of
water line connections by the number of connected lakes. 

Regulating & maintenance ES: nutrient regulation 

Supply: The supply of nutrient regulation ES represents the capacity of an ecosystem to filter and remediate nuisances from the
surrounding environment. This service is regulated by nitrogen fixation and denitrification in lake ecosystems. Five indicators repre- 
sented this ES: chlorophyll a, Nitrate (NO3), Total Phosphorus (TP), Total Nitrogen (TN), and the percentage of forest cover around
the lakes ( Fig. 7 ). 

These indicators were chosen based on spatial and temporal data availability. Chlorophyll represents a pathway of nitrogen fixa-
tion. Cyanobacteria are known for fixating nitrogen from the atmosphere [33] , and chlorophyll has been widely used in other works
as an indicator to represent this nutrient regulation mechanism (e.g., [34] ). Nitrate (NO3) represents the mechanism of denitrifica-
tion, which is the reduction of nitrate to gaseous forms of nitrogen [35] . This indicator has been used in other studies (e.g., [36] )
as an integral part of nutrient regulation mechanisms. Total P and Total N are nutrient stocks within a body of water. Its amount
is a “product ” of nutrient regulation mechanisms. Finally, the percentage of forest cover is used as a proxy to represent filtration
occurring in the area surrounding the water bodies. Forests are known for their capacity to filter and sequester nutrients, which are
carried out by rainfall (e.g., [37] ). The chlorophyll a, NO3, TP and TN were acquired based on the same process described in 2.3.1
by a regression equation between measured parameters and remote sensing data. Forest cover (%) was acquired following the same
procedure in 2.2.3 for cropland areas, using the LULC class 4 – woodland and forests. Detailed steps are described below: 

Monitoring data and points: Since this study covers the years 1990, 2000, 2006, 2012, and 2018, we extracted monitoring data
for only these years (if available). The lake coordinates were acquired from the monitoring database. Hence, not all lake coordinates
were available. The missing coordinates were acquired using Google Earth Pro-software based on the lake name. All coordinates were
added to ArcGIS 10.8 as “csv ” file and converted to points using the “display X and Y ” function. These points were then exported as
shapefile and added as an asset to the GEE platform. 
7 
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Fig. 7. Methodological framework for assessing the mapping “nutrient regulation ” supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band Ratios: band ratios were computed GEE platform following a similar procedure as in 2.1.1. We used atmospherically
corrected surface reflection data from the Landsat TM sensor available on GEE (e.g., LANDSAT/LT05/C02/T1_L2 – courtesy of 
U.S. Geological Survey) was used for analysis. A temporal restriction was implemented using “.filterDate" argument for a year
(e.g., .filterDate(‘1990–01–01’, ‘1990–12–31’)), and “Filter.calendarRange" argument for the months’ May to September (e.g., “fil- 
ter(ee.Filter.calendarRange(5,9,’month’) ”). A cloud cover restriction was also implemented for images with less than 10% cover using 
the argument “.filterMetadata(’CLOUD_COVER’, ’less_than’, 10) ”. To filter images only covering Lithuania, we drew a Region of Inter- 
est (ROI) polygon within GEE as an input to the “.filterBounds ” argument. A cloud mask was applied based on a standard script within
GEE (e.g., “maskL457sr ”), which also includes the implementation of Landsat scaling factors. The resulting composite of images was
condensed to one single image based on an arithmetic mean using the argument “.median() ”., and using the argument “select() ”,
only some bands were chosen from the median products (e.g., B1–B5, B7). 

The image was clipped by using lake polygons shapefile as input, using the argument “.clip() ”. All possible band combinations
(e.g., Band1/Band2) were calculated and normalised (e.g., “.normalizedDifference([‘SR_B1’, ‘SR_B5’]) ”) and added as bands to the 
clipped image, using the arguments “.addBands() ” and “.map() ”. 

Extract image information based on monitoring points: the monitoring points shapefile (asset) was used to extract information 
band ratios image using the argument “.sampleRegions() ” within GEE. The sampled data was then exported as “csv ” file using the
argument “Export.table.toDrive() ”. 

Monitoring and remote sensing data regression: The sampled data log10 was transformed using the formula “LOG10() ” in MS
Excel 2016. A regression was done using the monitoring data (for all years) and the remote sensing data (for all years). The band or
band ratio yielded the best overall r 2 as a proxy for the analyzed variable. 

Extracting raster files (for all lakes and variables): the median image with all bands and band ratios were clipped using the
lake polygons using the argument “.clip() ” in GEE. The relevant band or band ratio was selected using the argument “.select() ” and
extracted as GeoTiff using the argument “Export.image.toDrive(). 

Normalising raster files: The remote sensed chlorophyll a and transparency raster files were normalised in RStudio using the 
formula (x - minValue(x)) / (maxValue(x)- minValue(x)) and extracted using the “WriteRaster() ” argument in RStudio. 

Forest areas: a reclassification of CLC based on MAES ecosystem types using the “Reclassify ” tool of ArcGIS 10.8 and transformed
to polygons using the “Raster to Polygon ” tool. The LULC class “4 – woodland and forests ” was selected using the “select by attribute ”
function of ArcGIS 10.8 and intersected with the 5 km buffer lake polygon shapefile using the “Intersect ” tool. The ArcGIS 10.8
“Dissolve ” tool uses lake ID to merge all forest polygons per lake. A new field was added in the “table of contents ”, and using the
“Calculate Geometry ” function, calculate the area of croplands per lake. Finally, the % of forest areas per lake was calculated by
adding a new field in the “table of contents ” using the “Field calculator ” function and dividing the forest area by the 5 km buffer area
of each lake polygon. This was done for each year analyzed. 

Final calculations: in ArcGIS 10.8 and using the “Zonal Statistics ” tools, the mean value of the remote sensed parameters were
computed using the lake polygon shapefile as the input layer. The % of forest areas values were normalised using the formula (x -
minValue(x)) / (maxValue(x)- minValue(x)) by adding a new field in the “table of contents ” and using the “Field calculator ” function
8 
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Fig. 8. Methodological framework for assessing the mapping “nutrient regulation ” flow. 

Fig. 9. Methodological framework for assessing the mapping “nutrient regulation ” demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of ArcGIS 10.8. A “Spatial Join ” was done based on the lake ID, and by adding a new field in the “table of contents ” and using the
“Field calculator ” function, the variables were overlayed (summed). 

Flow : The flow was calculated based on three indicators related to water transport to water bodies: slope, watershed area of each lake
and n° of connections from the waterline ( Fig. 8 ). 

The slope was chosen to represent the steepness of the terrain, meaning that higher slope (average) values will, in theory, increase
the runoff. The Watershed area represents the area of land that drains water into a specific water body. Higher areas, in theory, drain
more water into a water body, thus increasing the nutrient flow. The number of water lines represents the pathways through which
nutrients enter the water body. 

The variable slope was calculated using the “Slope ” tool of ArcGIS 10.8 based on the digital elevation model (DEM) for Lithuania
with a 10 m resolution. The resulting raster was clipped using the 5 km buffer area of the lakes polygons shapefiles as input layers.
Using ArcGIS 10.8 “Zonal Statistics ” tool, we calculated the average slope for each lake, using the 5 km buffer area shapefile as the
input layer. The variable number of water lines crossing each lake was previously calculated in step 2.3.2. The variable watershed area of
each lake was available in the HydroLAKES database. The final calculation was done by joining all variables using the “Spatial Join ”
tool in ArcGIS 10.8 based on lake ID. A new field was added in the “table of contents ”, and using the “Field calculator ” function,
the values were normalized following the formula (x - minValue(x)) / (maxValue(x)- minValue(x)). The final flow was calculated by
adding a new field in the “table of contents ” using the ArcGIS 10.8 “Field calculator ” function by summing the normalized values of
the three variables. 

Demand: The demand for nutrient regulation was calculated based on the two most common sources of nutrient loads to lake ecosys-
tems: agricultural and urban areas ( Fig. 9 ). 

Agricultural and urban areas were extracted from CLC for 1990 ,2000, 2006 ,2012, and 2018, following the same procedure as
in 2.2.3. 

Urban areas: we reclassify the CLC based on MAES ecosystem types using the “Reclassify ” tool of ArcGIS 10.8. and transformed the
resulting raster to polygons using the “Raster to Polygon ” tool. We selected the LULC class “1 – urban ” using the “select by attribute ”
function of ArcGIS 10.8 and extracted the polygons as a new shapefile. We then intersected the polygons with the 5 km buffer lake
polygon shapefile using the “Intersect ” tool. We used the “Dissolve ” tool of ArcGIS 10.8 using lake ID to aggregate all urban areas
polygons per lake. Add a new field in the “table of contents ”, and using the “Calculate Geometry ” function, calculate the area of
9 
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Fig. 10. Methodological framework for assessing the mapping “recreation ” supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

croplands per lake. The % of urban areas per lake was calculated by adding a new field in the “table of contents ” using the “Field
calculator ” function and dividing the forest area by the 5 km buffer area of each lake polygon. This was done for each year analyzed.

Cropland areas: the % of cropland areas per lake was calculated precisely as above (for urban areas), but selecting the LULC class
“2 – croplands ”. 

Final calculation. Both processed shapefiles were joined using the “Spatial Join ” tool of ArcGIS 10.8 based on lake ID, and the
final demand was calculated by adding a new field in the “table of contents ” using the “Field calculator ” function by summing the
two variables. 

Cultural ES: recreation 

Supply: Recreation ES was mapped based on the methodology developed by Kalinauskas et al. [38] and Inácio et al. [39] . This
methodological approach defined recreation as an ES based on two components: natural and cultural recreation ( Fig. 10 ). 

Natural recreation includes all ecosystem elements that support a recreational experience in nature. For example, the presence of
protected areas, where the ecosystem is, in theory, more preserved. Cultural recreation includes all anthropogenic elements related 
to heritage, religion, and infrastructure that facilitates recreation and allows a better experience in connection to nature. We have
adapted, and modified elements within each recreation component targeted to lake ecosystems. In this work, we defined natural
recreation based on the following variables: naturalness, relief heterogeneity, silent areas, protected areas, forest areas, wetlands, 
and non-built-up areas. Cultural recreation was defined based on the following variables: religious locations, points of interest, sports 
facilities, accommodation, gastronomy, entertainment, tourism-supporting infrastructures, hiking trails, biking trails, and official 
bathing places. Before modelling each recreation component, a multicollinearity test was performed to exclude potential collinear 
variables. We then modelled each component and overlayed the information, creating a final recreation ES index. Detailed steps are
described below: 

Natural recreation . Naturalness was calculated based on the Hemeroby index as in Walz and Stein [40] . This index measures the
degree of human influence on landscape [40] . We calculated naturalness by reclassifying the LULC data (as in 2.2.3) by attributing
a Hemeroby index. We clipped the resulting raster file using the 5 km buffer area around lakes. Relief heterogeneity was calculated
based on the roughness index. It was calculated using a DEM. We calculated the roughness index in QGIS 2.22 [41] , which has
a dedicated “roughness ” tool. Silent areas were calculated based on the distance to roads. For this, (1) we added a road network
(primary, secondary, and tertiary) as shapefile to ArcGIS 10.8; (2) calculated distance based on the “Euclidean distance ” tool of
ArcGIS 10.8; (3) clipped the resulting raster file using the “Clip ” tool using the 5 km buffer area around lakes; and (4) used the “Zonal
Statistics ” tool to calculate the mean distance for each lake based on the 5 km buffer area shapefile. Protected areas was calculated
based on the distance to protected areas. For this (1) we added the protected areas shapefile in ArcGIS 10.8; (2) calculated the distance
the “Euclidean distance ” tool of ArcGIS 10.8; (3) clipped the resulting raster file using the “Clip ” tool using the 5 km buffer area
around lakes; and (4) used the “Zonal Statistics ” tool to calculate the mean distance for each lake based on the 5 km buffer area
shapefile. Forests were calculated based on the distance to woodland and forests. For this (1) we added the polygons of LULC class
“4 - woodland and forests ” (see step 2.2.3) as shapefile in ArcGIS in 10.8; (2) calculated the distance the “Euclidean distance ” tool
of ArcGIS 10.8; (3) clipped the resulting raster file using the “Clip ” tool using the 5 km buffer area around lakes; and (4) used the
“Zonal Statistics ” tool to calculate the mean distance for each lake based on the 5 km buffer area shapefile. Wetlands were calculated
10 
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Fig. 11. Methodological framework for assessing the mapping “recreation ” flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on the distance to wetland areas. For this (1) we added the wetland polygons as shapefile in ArcGIS 10.8; (2) calculated the
distance the “Euclidean distance ” tool of ArcGIS 10.8; (3) clipped the resulting raster file using the “Clip ” tool using the 5 km buffer
area around lakes; and (4) used the “Zonal Statistics ” tool to calculate the mean distance for each lake based on the 5 km buffer area
shapefile. Non-built-up areas were calculated based on imperviousness. Imperviousness captures the percentage and change of soil 
sealing ( www.land.copernicus.eu ). For this, (1) we added the raster file into ArcGIS 10.8; (2) clipped the resulting raster file using
the “Clip ” tool using the 5 km buffer area around lakes; and (3) used the “Zonal Statistics ” tool to calculate the mean distance for
each lake based on the 5 km buffer area shapefile. 

The variables naturalness, relief heterogeneity, silent areas were normalised following the formula (x - minValue(x)) / (maxValue(x)- 
minValue(x)) using the “raster calculator ” tool in ArcGIS 10.8. The variables protected areas, forests, wetlands, and non-built-up areas 

were inverse-normalised following the formula (maxValue(x) - x) / (maxValue(x)- minValue(x)). The final natural recreation raster 
was created by overlaying the variables using the “Raster calculator ” tool of ArcGIS 10.8. 

Cultural recreation: all variables of this section were available as points. The processing of the variables followed the same
procedure: (1) adding the points shapefile in ArcGIS 10.8; (2) calculating the density of points using the “Kernel density ” tool of
ArcGIS 10.8; (3) clipping the resulting raster files using the “Clip tool ” of ArcGIS 10.8 using the 5 km buffer area around lakes;
and (4) using the “Zonal Statistics ” tool of ArcGIS 10.8 to calculate the mean density for each lake based on the 5 km buffer area
around lakes. All variables were inverse-normalised following the formula (maxValue(x) - x) / (maxValue(x)- minValue(x)); using the 
“raster calculator ” tool in ArcGIS 10.8 The final cultural recreation raster was created by overlaying the variables using the “raster
calculator ” tool in ArcGIS 10.8. 

Natural + recreation: the final recreation ES was calculated by overlaying the natural recreation and cultural recreation raster 
files using the “raster calculator ” tool of ArcGIS 10.8. 

Flow: Recreational ES flow was calculated based on the proximity of all localities in Lithuania to lakes ( Fig. 11 ). 
This was done by using the “Near ” tool of ArcGIS 10.8, using the localities point shapefile as the input layer and the lake polygons

as “near layer ”. 

Conclusion 

• We provide a multi-temporal methodological framework to assess and map different lake ES. The development of new methods 
for mapping ES and its dimensions (supply, flow, and demand) is essential for a better understanding of ES dynamics. 

• We do it based on a quantitative approach, which allows for more robust and reliable results. This type of approach is desirable
and often required in decision-making processes. New methodologies and ES mapping outputs are essential pillars for reaching 
targets set by environmental policy instruments at national (e., Biodiversity 2030) and global (e.g., UN SDGs, Aichi Targets)
scales. 

• The multi-method framework was designed to assess and map ES in a simplified way to allow its replicability and transferability
to other systems. Using open-access and freely available data from national, regional and international databases enables the 
applicability of the methods to different lake ecosystems (e.g., other European Lakes). 
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