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In this paper, we propose a new approach to detecting outliers in a set of segmented ge-
nomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has 
the following computational phases: feature extraction, which is a mapping into feature 
space, alignment-free distance measure to measure the distance between any two seg-
mented genomes, and a mapping into distance space to analyze a quantum of distance 
values. The approach is implemented using supervised and unsupervised learning modes. 
The experiments show robustness in detecting outliers of the segmented genome of the flu 
virus. 
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Introduction 

Recent years have witnessed a dramatic increase in the amount of genome data that is 
submitted to on-line databases. Analyzing sequence-based datasets is the aim of sequence 
analysis and biodata mining research fields. The engineering solutions have not been 
achieved to analyze data sets with heterogeneous feature. In other words, the datasets un-
der consideration are sets of sequences with different biological functions and different 
base-composition distributions. The problem under consideration has several computa-
tional challenges. The first challenge is the representation of the inner information struc-
ture of a segmented genome of flu virus in feature spaces. Another challenge is to define a 
metric and metric space to measure the distance between any two information structures 
that are embedded in a well-defined feature space or composite feature space, and the 
third challenge is to analyze a quantum of distance values in distance space. The approach 
that we propose in this paper is alignment-free approach, which is different from classical 
alignment approaches in terms of time complexity, selectivity, and sensitivity analysis. 

At this point, the structure of this paper can be summarized as follows. In next subsec-
tion, we shall present a review of the existing approaches to tackle related research prob-
lems. In section (Methods), we shall present the approaches of detecting outliers in seg-
mented genomes of the flu virus. The experiments and results are presented in section 
(Results). Finally, conclusions and future work will be presented in section (Discussion). 

The related work 
The Influenza virus is a highly mutated virus. It has a negative impact on the human pop-
ulation. Consequently, it has a negative impact on public health and the economy. The vi-
rus has a segmented genome that can be encoded to 10–11 proteins. The virus is classi-
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fied into types and subtypes. The variation in the base composition 
of the surface proteins haemagglutinin (HA) and neuraminidase 
(NA) indicates the type and the subtype of the influenza virus [1]. 

The influenza virus is a negative stranded RNA-virus. It is classi-
fied under the family Orthomyxoviridae. The virus has three types 
A, B, and C. The most variable type is the influenza virus A com-
pared to other types [2]. The accumulation of point mutation in 
the HA and NA surface proteins causes an antigenic drift. The 
evolution process is a continuous or discrete in real time. It takes 
place on the genetic information of the virus. Consequently, it pro-
duces new distinct strains. 

An alignment-free sequence comparison analysis is a new devel-
oping research direction. It has the potential of solving the se-
quence proximity problem with less time complexity compared to 
the alignment-based analysis [3]. There are several strengths be-
hind this fact: we can project those sequences into several feature 
spaces to detect the information structure in various ways. This 
approach helps research in bioinformatics and biotechnology 
fields to gather more information about sequences or genomes. 
Mapping those sequences into feature spaces in a format of da-
ta-vectors allows the computational research community to imple-
ment a wide range of techniques in data mining, machine learning, 
and statistical learning in feature spaces, which are behind the ca-
pacity of alignment-based techniques [4]. No prior biological as-
sumptions about sequences are required to implement align-
ment-free techniques, while the alignment-based techniques have 
to be implemented with pre-assumptions about the inheritance of 
sequences. In this context, two concepts are arising: homogeneous 
and heterogeneous sequences under consideration. Moreover, the 
alignment-free techniques can be implemented when the align-
ment-based techniques are inapplicable. 

Any biosequence is linear in time. Therefore, the sequential rela-
tion is the most promising feature in biosequences [5]. Biose-
quences are drawn from finite alphabets. Any biosequence can be 
mapped into a feature space using n-grams technique as feature ex-
traction technique. The computational mechanism of this tech-
nique can be implemented in different ways. Without loss of gen-
erality, assume that we have a sliding window of length W, moving 
a sliding window from one end to another to estimate the relative 
frequency of the occurrences of n-grams. The sliding window can 
be shifted by a shift distance α. Local statistical information about 
biosequences can be extracted in this way. The distance between 
any two sequences can be measured in a feature space by measur-
ing the distance between the frequency distributions (i.e., data 
vectors) of the two sequences. There are several similarity/dis-
tance measures that can be used to measure the distance between 
data-vectors that are extracted using n-grams. The extraction can 

be achieved either using frequency distribution or relative frequen-
cy distribution. A distance function D() is a mapping from a well 
defined domain to measure the proximity between two entities 
(e.g., two vectors or sequences) into the interval [0,∞]. D() is a 
metric if it is satisfying the following conditions: positivity, sym-
metry, and triangular inequality [5]. The similarity measure S() is 
a mapping into the interval [0, 1], where the value 0 represents the 
lowest similarity and the value 1 represents the highest similarity. 
There are a number of distance measures that can be implemented 
in measuring the proximity between any two sequences without 
using alignment. Those measures are either similarity measures or 
distance measures. 

One of the distance measures used in multivariate analysis is the 
angle cosine between two data-vectors [6]. Each data-vector rep-
resents a sequence, and the proximity of two sequences is mea-
sured by the angle cosine. The measure detects the differences be-
tween two data-vectors, where each data vector represents the rela-
tive occurrences of selected n-grams. The measure is not sensitive 
to repetition of motifs. In information theory, the Kullback-Leibler 
discrepancy is a well-known measure and it measures the diver-
gence between two probability distributions, where each probabil-
ity distribution represents a sequence, and defined as the occur-
rences of selected n-grams in a sequence. 

Han et al. [7] proposed an alignment-free sequence comparison 
method to detect the dissimilarity between any two sequences. The 
defined distance is based on two factors: the relative frequency dis-
tribution of n-grams as a data-vector and the position information 
as a normalized average data-vector. The distance measure is de-
fined as a weighted distance measure, and the weights are defined 
in terms of variations of those two factors in a selected genome set. 
The computational mechanism used in this method is a win-
dow-based mechanism. Finally, the phylogenetic tree is composed 
based on the distance values of the proposed distance measure. 

Daoud [8] proposed an alignment-free sequence comparison 
technique to analyze sequences in feature space. The stochastic 
membership values of a query sequence with respect to different 
classes of sequences are estimated using Minkowski measure. The 
working mechanism proposed in this research is window-based 
mechanism. The membership value is estimated based on the fol-
lowing question: Is a query sequence probably approximately be-
longs to a specific class of sequences? In this case, the quantum of 
distance values composes an empirical distance distribution and 
the membership value is estimated from the empirical distance 
distribution. 

Daoud [9] proposed a visualization approach to visualize com-
posite data points in feature spaces using the variation theory. The 
implementation of this computational approach is directed to seg-
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mented genomes. It is based on window-based mechanism. The 
robustness of this approach is implicitly depending on its imple-
mentation to flu virus. It is the first attempt to graphically show the 
serious of difference among the segmented genome of the flu virus. 

The other measure used in measuring the distance between two 
sequences without using alignment is the Euclidean distance [5]. 
The first step is to extract frequency data-vectors for each sequence 
using n-grams feature extraction technique, then the Euclidean 
distance is applied to measure the distance between two frequency 
data-vectors, which reflects the identicalness between two se-
quences. 

As we mentioned in this paper, alignment-free is new develop-
ing research direction. There are more than 45 alignment-free 
tools available with different applications in the area of se-
quence-analysis. A summary of comparisons between align-
ment-free and alignment-based algorithms are given in Table 1. As 
an expectation, the next generation of computational pipelines will 
use those computational algorithms and tools to achieve fast and 
reliable computations in sequence analysis. 

In this paper, we are focusing on detecting outliers in composite 
data points (e.g., segmented genome of flu virus). An outlier is a 
data point that diverge from the majority of other data points in 
terms of its measured features [12]. In addition, finding patterns of 
data points that do not confirm to the expected feature measure-
ments are a research challenge. There are many applications to the 
outlier’s detection, for example, detecting tumors in magnetic res-
onance imaging, finding frauds in health care insurance, or detect-
ing biodiversity in viruses. 

In this section, we presented the most popular alignment-free 
techniques, and a brief introduction about outlier detection. In the 
next section, we shall present an outlier detection approach for 
identifying anomalies in segmented genomes of the flue virus. 

Methods 

In this section, we shall present an approach to identify outliers in 
a dataset of composite data points. A composite data point is a 
dataset (e.g., set of data-vectors or set of sequences). We shall pres-
ent two directions: (1) supervised and (2) unsupervised learning 
modes. In case of the existing training data, the approach can be 
designed using sequential computational phases. The first compu-
tational phase is to map each composite data point into a feature 
space by defining (p × 1) feature vector. Each composite data point 
can be mapped into a set of data vectors. Those data vectors are 
extracted from heterogeneous sequences; therefore, the base com-
position of nucleotide distribution is expected to be heteroge-
neous. In this context, the next phase is to build an information 
structure for each composite data point. One of the most popular 
information structures is the variance-covariance structure. Mea-
suring the distance between any two information structures can be 
achieved by defining a distance measure or metric. The metric 
space is defined as a metric and a class of matrices, where each ma-
trix represents an information structure of a set of data vectors 
with unknown distribution. 

Daoud [13] proposed a solution for the composite data points 
proximity problem. The solution defined a new metric space (Ψ,Dij 
(γ1)), where Ψ is a class of composite data points, and Dij (γ1) is a 
metric. Dij (γ1) is defined as follows: 

Dij (γ1) =│γ’(1Σ(i)  -Σ(j)  )γ1│=│λ1│> 0

where λ1 is the largest generalized eigenvalue (associated with 
the generalized eigenvector γ1) of the matrix (Σ(i)  -Σ(j)  ), where Xn 
is random vector that measures the occurrences of n-grams in two 
composite data points i and j, such that each one represents an in-

Table 1. Comparison between alignment-free and alignment-based techniques [3,5,10,11]

Feature Alignment-based Alignment-free
Input data Sequences Data-vectors
Assumptions about data Required Not-required
Computational scheme Dynamic programming Distance-measures
Time complexity Quadratic Linear
Applications Sequence comparison Sequence comparison

Phylogenetic tree Phylogenetic tree
Function prediction General mapper
Genome assembly Genome assembly
Reads correcting errors Reads error correction
- Transcript quantification
Metagenomics Metagenomics

(1)  
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stance of a segmented genome of a flu virus. 
Measuring the distance between any two variance-covariance 

matrices Σ(i) and Σ(j) of the same random vector will results dis-
tance values. Those distance values represent a random variable. In 
case of considering more than one feature mapping or feature vec-
tor (i.e., projected data into more than one feature space), in this 
case those distance values represent a random vector. The random 
vector is a random distance vector and it has a distribution with 
statistical characteristics, and in this context, we define the concept 
of the distance distribution paradigm (for more details, see Daoud 
and Kremer [14]). 

Now consider the analysis of distance values as another phase to 
integrate the computational process to detect the outliers in dis-
tance space. In case of multivariate distance-random vector, there 
are different multivariate techniques that can be implemented in 
detecting outliers in distance space. By considering those dis-
tance-data vectors as observations of a random vector, we can im-
plement one of the multivariate outlier-detection techniques, 
which is based on Mahalanobis distance. In this context, the outli-
er can be defined as a data-vector with largest squared Mahalano-
bis distance. The empirical distribution function of the ordered 
square distances and theoretical distribution function, in this case 

χ2-distribution, can be compared to identify outliers with a specific 
threshold value (quantile) [15,16]. The computational phases are 
illustrated in Fig. 1, which are in certain way identical to deep 
learning approach in the sense of using composite feature spaces 
[17]. Finally, the sketch of the proposed computational techniques 
(supervised and unsupervised modes) are shown in Figs. 2 and 3 , 
respectively. 

The validity of the proposed computational approaches 
The proposed computational approaches are bio-data mining ap-
proaches and it is build upon using data-vectors extracted from bi-
osequences based on n-grams features, those features are numeri-
cal features. The numerical features represent the biological fea-
tures. The main contribution of this paper is to propose a new 
computational framework to detect outliers in composite data 
points using distance space. The extracted distance vectors in the 
composite feature space are multivariate random vectors. Then 
implementing the existing multivariate outliers’ techniques on 
those distance data-vectors is a validated computational process. 
In fact, there is no-need to validate those existing multivariate sta-
tistical outlier detection techniques. 

Fig. 1. The sketch of the proposed computational model. The upper part represents the abstract of mapping, while the lower part represents the 
problem under analysis and the expected output.
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Fig. 2. Algorithm 1: Detecting outliers in sets of biosequences using supervised approach.

Fig. 3. Algorithm 2: Detecting outliers in sets of biosequences using unsupervised approach.
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Results 

In this section, we shall present the robustness of the proposed ap-
proaches by showing two experiments. In the fist experiment, we 
downloaded 47 and 46 segmented genomes of the flu virus A and 
B respectively, from NCBI website [18]. Those segmented ge-

nomes are collected between May and December 2016. The first 
computational phase, the segmented genomes mapped into three 
feature spaces. Those feature spaces are (1) 1-grams (bases), (2) 
2-grams (dimers), and (3) 3-grams (codons). The dimensionality 
of the considered feature spaces is: 4, 16, and 64. As a second com-
putational phase, the sets of extracted data-vectors are mapped 

Fig. 4. The output from implementing the proposed supervised outlier detection approach (flu virus A). (A, B) The sub-graphs represent the 
scatter diagram and the distance distribution of composite data points respectively. (C, D) The sub-diagrams represent outlier detections using 
different quintiles. The figures are generated by using R-package: mvoutlier. We use the function aq.plot to process the distance data-vectors. In 
addition, left-upper subfigures showing the data projected into two-dimensional space using the first and second principal components.
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Table 2. The output of supervised and unsupervised learning in detecting the outliers of segmented genomes

Learning approach Outliers of outliers of flu virus A Outliers of outliers of flu virus B
Supervised 25, 29 28, 6, 26
Unsupervised 33, 41, 46, 47 46, 4, 45

45, 44, 43, 42 43, 44, 42

Fig. 5. The output from implementing the proposed unsupervised outlier detection approach (flu virus A). (A, B) The sub-graphs represent the 
scatter diagram and the distance distribution of composite data points respectively. (C, D) The sub-diagrams represent outlier detections using 
different quintiles. The figures are generated by using R-package: mvoutlier. We use the function aq.plot to process the distance data-vectors. In 
addition, panel A showing the data projected into two-dimensional space using the first and second principal components.
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Fig. 6. The output from implementing the proposed supervised outlier detection approach (flu virus B). (A, B) The sub-graphs represent the 
scatter diagram and the distance distribution of composite data points respectively. (C, D) The sub-diagrams represent outlier detections using 
different quintiles. The figures are generated by using R-package: mvoutlier. We use the function aq.plot to process the distance data-vectors. In 
addition, panel A showing the data projected into two-dimensional space using the first and second principal components.
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Fig. 7. The output from implementing the proposed unsupervised outlier detection approach (flu virus B). (A, B) The sub-graphs represent the 
scatter diagram and the distance distribution of composite data points respectively. (C, D) The sub-diagrams represent outlier detections using 
different quintiles. The figures are generated by using R-package: mvoutlier. We use the function aq.plot to process the distance data-vectors. In 
addition, panel A showing the data projected into two-dimensional space using the first and second principal components.
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into the form of variance-covariance matrices. By implementing 
the metric given in Eq. (1). We measured the proximity of any two 
variance-covariance matrices using the largest generalized eigen-
value. In the third phase, we analyzed the distance values as obser-
vations of (3 × 1) random vector. Based on the squared Mahala-
nobis distance of the distance data-vectors, the segmented ge-
nomes with largest squared Mahalanobis distance are given in Ta-
ble 2. In the second experiment, we implemented the unsuper-
vised approach to detect outliers in the same dataset of segmented 
genomes, and the segmented genomes with largest squared Ma-
halanobis distance are shown in Table 2. 

The output of the proposed approach is illustrated in Figs. 4–7. 
The outliers of segmented genomes are identified efficiently using 
supervised learning approach compared with unsupervised learn-
ing approach (Table 2). This conclusion is inferred based on the 
number of identified outliers. 

Finally, in this section, we presented the results of implementing 
the proposed outlier detection approach. In next section, we shall 
present conclusions and future work. 

Discussion 

In this paper, we proposed a new approach to detect outliers in 
segmented genomes of the flu virus. The flu virus has eight seg-
ments that can be encoded into 10–11 proteins, where each pro-
tein has different biological function and consequently has differ-
ent nucleotide composition. Those segmented genomes are het-
erogeneous by nature. The computational challenges are solved in 
systematic approach, as feature mapping into the feature space, 
composite feature representation as variance-covariance matrices, 
defining a metric space to measure the distance between any two 
variance-covariance matrices, and finally analyzing those dis-
tance-values in the feature space. To evaluate the approach, we im-
plemented it using two datasets: (1) 47 segmented genome of the 
flu virus A and, (2) 46 segmented genomes of the flu virus B. The 
output of the proposed approach shows the difference between 
supervised learning and unsupervised learning, and we identified 
the weaknesses and strengths of each learning mode. 
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