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Abstract: Staphylococcus aureus is a serious human pathogen that employs a number of 

virulence factors as part of its pathogenesis. The purpose of the present study was to 

explore marine bacteria as a source of compounds that modulate virulence gene expression 

in S. aureus. During the global marine Galathea 3 expedition, a strain collection was 

established comprising bacteria that express antimicrobial activity against Vibrio anguillarum 

and/or Staphylococcus aureus. Within this collection we searched colony material, culture 

supernatants, and cell extracts for virulence modulating activity showing that 68 out of  

83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp.) influenced 

expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. 

The isolate that upon initial screening showed the highest degree of interference (crude 

ethyl acetate extract) was a Vibrio nigripulchritudo. Extraction, purification and structural 

elucidation revealed a novel siderophore, designated nigribactin, which induces spa 

transcription. The effect of nigribactin on spa expression is likely to be independent from 

its siderophore activity, as another potent siderophore, enterobactin, failed to influence  
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S. aureus virulence gene expression. This study shows that marine microorganisms 

produce compounds with potential use in therapeutic strategies targeting virulence rather 

than viability of human pathogens. 
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1. Introduction 

The marine environment has proven to be a reservoir of microorganisms producing compounds 

with interesting biomedical properties [1]. Examples of such compounds include thiopeptides from a 

sponge-associated Bacillus cereus strain with antibacterial activity against multiple drug resistant 

strains of staphylococci and enterococci [2]; andrimid, a broad spectrum antibiotic produced by  

Vibrio coralliilyticus [3], and the antibiotic holomycin that interferes with RNA synthesis purified 

from Photobacterium halotolerans [3]. While new antibacterial compounds may prove efficient in 

treating infectious diseases, human pathogens have a profound ability to acquire resistance resulting in 

serious health care problems. These include methicillin-resistant Staphylococcus aureus (MRSA), 

vancomycin-resistant Enterococcus as well as extended-spectrum cephalosporin-resistant Escherichia 

coli and Klebsiella pneumoniae [4,5]. To address the therapeutic failures associated with antibiotic 

resistance, other strategies, including anti-virulence therapies, are being considered. Antivirulence 

agents inhibit the production or activity of disease-causing factors of the infecting organism, and 

thereby disarm the pathogen of its virulence traits [6]. As quorum-sensing (QS) signalling systems are 

central regulators of virulence gene expression in many pathogens while being absent in humans, they 

represent highly promising targets for the development of anti-virulence therapeutics, possibly in 

combination with traditional antibiotics [7–9]. Several quorum sensing inhibitors (QSIs) targeting QS 

systems in Gram-negative pathogens have been identified, including ajoene from garlic that reduces 

the infective ability of Pseudomonas aeruginosa in a pulmonary infectious mouse model [10].  

In Gram-positive bacteria, QS is commonly mediated by auto-inducing cyclic peptides. One 

example is the agr quorum sensing system in Staphylococcus aureus [11]. S. aureus causes a variety of 

infections ranging from mild skin infections to life-threatening bacteremia and endocarditis, with many 

strains being resistant to a number of antibiotics [12]. Pathogenesis of S. aureus is attributed to a 

multitude of virulence factors, of which a major part is controlled by agr [11]. The agr QS system is 

composed by an external signal, an autoinducing cyclic peptide that upon binding to the  

membrane-bound sensor histidine kinase (AgrC) activates the response regulator AgrA and induces 

virulence gene expression via a regulatory RNA, RNAIII [13,14]. Activation of agr results in 

expression of extracellular virulence factors including the key toxin, α-hemolysin, while cell  

surface-associated virulence factors, such as Protein A, are repressed [14]. Previously, we identified a 

putative QSI compound produced by the marine bacterium Photobacterium halotolerans that 

dramatically reduces hla and RNAIII expression while increasing spa production [15]. To address how 

abundant such compounds are in the marine environment we have screened a collection of marine 

bacteria for compounds that modulate S. aureus virulence gene expression. 
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3. Experimental Section 

3.1. Bacterial Strains 

Of 512 marine bacterial strains isolated during the global Galathea 3 expedition [16], 83 strains 

were selected for the present study. The screening assay applied in this study is described by [17] using 

S. aureus strains carrying different gene reporter fusions, including S. aureus 8325-4 hla::lacZ [26],  

S. aureus 8325-4 spa::lacZ [26] and S. aureus 8325-4 rnaIII::lacZ [27,28]. S. aureus strain 8325-4 [29] 

was used for Northern blot analyses. 

3.2. Bacterial Growth Conditions, Culture Extraction and Virulence Gene Expression Assay 

Marine bacteria were grown in 30 mL sea salt solution (SSS; Sigma S9883; 40 g·L−1) with 0.4% 

glucose and 0.3% casamino acids for three days at 25 °C with (200 rpm) and without (0 rpm) aeration. 

Culture supernatants were prepared by sterile filtration. Cultures were extracted with an equal volume 

of EtOAc, transferring the organic phase to a new vial, and evaporating under nitrogen gas until 

dryness. Fractionation by explorative solid-phase extraction (E-SPE) was performed according to [20]. 

Dry extracts and fractions were redissolved in 300 µL 80% EtOH for biological testing as described  

in [17]. For screening of colony material, marine bacteria were grown on Marine Agar 2216  

(Difco 212185) for 24 h at 25 °C, and a lump of colony material was placed on top of agar plates 

containing S. aureus [17] but without wells in the plates, and incubated for 48 h at 30 °C. By using a 

combination of reporter strains looking for both up- and -down regulation, we were able to detect and 

exclude strains being natural producers of β-galactosidase. 

3.3. Northern Blot Analysis 

S. aureus 8325-4 was grown in TSB at 37 °C at 200 rpm. Nigribactin was added at OD600 = 0.4 and 

samples for RNA extraction were taken after 30 and 90 min. Northern blot analysis using a probe  

targeting spa was performed as described previously [30]. Probes were made using the primers spa 

forward (5′-GGG GGT GTA GGT ATT GCA TCT G-3′) and spa reverse (5′-GGG GCT CCT GAA 

GGA TCG TC-3′). 

3.4. Purification and Structural Elucidation of Nigribactin 

Strain S2604 was grown in 2 L sea salt solution (Sigma S9883; 40 g·L−1) with 0.4% melibiose and 

0.3% casamino acids for three days (0 rpm) at 25 °C. On day 3, the culture was extracted with 750 mL 

EtOAc for 24 h. The organic extract was dry loaded onto 10 g Sepra ZT C18 (Phenomenex, Torrance, CA) 

and dried before packing into a 60 g SNAP column (Biotage, Uppsala, Sweden) with 50 g pure resin in 

the base. Using an Isolera flash purification system (Biotage) the extract was subjected to a crude 

fractionation using an acetonitrile (MeCN)/H2O gradient (flow rate 40 mL·min−1) starting with 10% 

MeCN (2 column volumes (CV), isocratic), increasing to 100% MeCN (10 CV) before washing with 

100% MeCN (2 CV). Fractions were automatically collected using UV detection (210 and 320 nm). 

The fractions inducing spa activity (120 mg) were pooled, evaporated, and redissolved in 1.2 mL 

EtOAc/methanol (MeOH; 1:3 v/v) for diol separation (Isolute diol, Biotage) on the Isolera system.  
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A total of nine fractions (fraction size 12 mL) were collected from the diol column (10 g SNAP column) 

ranging from heptane, dichloromethane (DCM), EtOAc to pure MeOH, running under gravity. The 

fractions (28 mg total) with spa activity (25% DCM in heptane to 100% MeOH) were pooled and 

purified on a Luna II C18 column (250 × 10 mm, 5 μm) (Phenomenex) using a 45%–70% MeCN/H2O 

gradient (buffered with 20 mM formic acid, flow rate 4 mL·min−1) over 20 min on a Gilson 322 liquid 

chromatograph with a 215 liquid handler/injector (BioLab, Risskov, Denmark). All fractions were 

analysed by LC-UV-MS according to standard procedures [20] before pooling. This yielded 1.6 mg  

of nigribactin.  

NMR spectra were recorded on a Varian Unity Inova 500 MHz spectrometer equipped with a 5 mm 

probe using standard pulse sequences. 13C data was confirmed on a Bruker Avance 800 MHz 

spectrometer at the Danish Instrument Center for NMR Spectroscopy of Biological Macromolecules. 

The NMR data used for the structural assignment of nigribactin (Figure 7) were acquired in DMSO-d6 

(Table 2). 

Figure 7. Structure of nigribactin with numbered atoms as assigned in Table 2. 

 

Table 2. NMR spectroscopic data (DMSO-d6) of nigribactin. 

Atom δC (ppm) δH (ppm) (multiplicity, J (Hz)) HMBC 

1a 43.2 3.38 (1H, m) 1′, 2, 3, 12 
1b 43.2 3.36 (1H, m) 1′, 2, 3, 12 
2 26.8 1.77 (2H, m) - 
3 36.3 3.26 (2H, m) 1, 2, 5 
4 - 8.74 5 
5 169.4 - - 
6 114.8 - - 
7 149.4 - - 
8 145.9 - - 
9 118.6 6.88 (1H, d, 7.6) 7, 8, 11 
10 117.7 6.65 (1H, t, 7.6) 6, 8 
11 116.9 7.22 (1H, d, 8.0) 5, 7, 9 
1′a 44.6 3.68 (1H, m) 2′, 12 
1′b 44.6 3.56 (1H, m) 2′, 12 
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Table 2. Cont.  

2′ 28.2 1.95 (2H, p, 7.2) 1′, 3′ 
3′ 36.3 3.38 (2H, m) 1′, 2′, 5′ 
4′ - 8.83 5′ 
5′ 169.6 - - 
6′ 114.8 - - 
7′ 149.4 - - 
8′ 145.9 - - 
9′ 118.6 6.88 (1H, d, 7.6) 7′, 8′, 11′ 
10′ 117.7 6.65 (1H, t, 7.6) 6′, 8′ 
11′ 116.9 7.26 (1H, d, 8.0) 5′, 7′, 9′ 
12 168.3 - - 
13 64.2 5.36 (dd, 9.5, 6.7) 12, 15 
14a 69.2 4.77 (1H, t, 7.5) 12, 13, 15 
14b 69.2 4.54 (1H, t, 8.9) 12, 15 
15 165.3 - - 
16 109.6 - - 
17 158.6 - - 
18 116.4 6.97 (1H, d, 8.3) 16, 17, 20 
19 133.9 7.44 (1H, t, 7.9) 17, 21 
20 118.9 6.93 (1H, t, 7.6) 16, 18 
21 127.9 7.62 (1H, dd, 7.8, 1.1) 17, 19 

22 (–OH) - 11.7 16, 17, 18 
–OH - 12.7 - 
–OH - 12.6 - 
–OH - 9.12 - 
–OH - 9.09 - 

4. Conclusions 

This study shows that a substantial number of marine bacteria (80%), collected from various  

marine habitats worldwide, are able to influence S. aureus virulence gene expression. From Vibrio 

nigripulchritudo we isolated a new siderophore, nigribactin, which enhances the expression of spa 

encoding Protein A. While the crude extract of this bacterium also showed hla-repressing activity, we 

failed to isolate a single compound both repressing hla and inducing spa expression. However, since a 

large number of strains displayed this combination of activities such compounds are likely to be 

abundant. From a biological perspective, it is intriguing that bacteria from marine habitats produce 

compounds that influence virulence gene expression of a pathogen normally associated with  

warm-blooded animals. Thus, our study shows that marine bacteria are a source of compounds that 

affect virulence gene expression in S. aureus and ultimately, such compounds may aid in the treatment 

of infectious diseases. 
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