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Abstract: It took decades to arrive at the general consensus dismissing the notion that the immune
system is independent of the central nervous system. In the case of uncontrolled systemic
inflammation, the relationship between the two systems is thrown off balance and results in cognitive
and emotional impairment. It is specifically true for autoimmune pathologies where the central
nervous system is affected as a result of systemic inflammation. Along with boosting circulating
cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation,
leakage of the blood–brain barrier, and the production of circulating antibodies that cross-react
with brain antigens. One of the most disabling autoimmune pathologies known to have an effect
on the central nervous system secondary to the systemic disease is systemic lupus erythematosus.
Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models
that develop an autoimmunity-associated behavioral syndrome. These models are very useful
for studying how the peripheral immune system and systemic inflammation can influence brain
functions. In this review, we summarize the experimental data reported on murine models developing
autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms
explaining how systemic inflammation can result in behavioral deficits, with a special focus on
in vivo neuroimaging techniques.

Keywords: autoimmunity; systemic lupus erythematosus (SLE); neuropsychiatric lupus (NPSLE);
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1. Introduction

The effects of systemic inflammation on the central nervous system (CNS) are quite well illustrated
in neuropsychiatric systemic lupus erythematosus (NPSLE), a poorly understood, severe form of
systemic lupus erythematosus (SLE) disease that can affect up to 75% of SLE patients. This dramatic
form of lupus disease covers a wide range of manifestations that are divided into focal and diffuse
ones. Focal symptoms (e.g., seizures, cerebrovascular disease, aseptic meningitis) usually result from a
stroke occurring in a specific structure and can be readily detected by magnetic resonance imaging
(MRI), while diffuse symptoms (e.g., depression, cognitive dysfunction, mood and anxiety disorders,
acute confusional state, psychosis), however, are much harder to identify accurately by MRI and can
have debilitating consequences for patients as well. It is thought that diffuse symptoms proceed due
to neuroinflammatory processes both in the periphery and the CNS, which we seek to explore in this
review. After summarizing the main features of the pathology and the mouse models that recapitulate
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the human disease in terms of peripheral inflammation and behavioral deficiencies, we inquire into
how advanced MRI techniques can be used non-invasively in mice to identify NPSLE symptoms and
how this might translate to the human disease. At last, the way in which neuroinflammation may
cause central nervous symptoms in these murine lupus-prone models is explored.

2. Systemic and NP Aspects of Lupus Disease

2.1. General Presentation of SLE

SLE is a chronic relapsing-remitting autoimmune disease characterized by a rupture of
self-tolerance and systemic inflammation mainly resulting from the hyperactivation of peripheral B and
T cells [1], resulting in high levels of pathogenic autoantibodies (autoAbs), tissue deposition of immune
complexes, and, ultimately, multiple and various organ injuries (e.g., skin, kidneys, heart, lungs,
brain) [2–4]. The disease primarily affects females of childbearing age (90% of patients) [5], and its
etiology, which appears multigenic, is not fully understood due to it being also influenced by hormonal
and environmental factors (e.g., UV radiation, diet, smoke, infections, pollutants, stress) [6–8].

2.2. CNS Involvement in Human SLE: The Neuropsychiatric Lupus Disease (NPSLE)

Depending on the study, a varying number of SLE sufferers (from 15% to 75%) present with
neuropsychiatric (NP) symptoms that cover the whole spectrum of psychiatric dysfunction [9,10].
These NP manifestations are associated with a reduced quality of life [11–13] and, when severe, they
substantially contribute to the morbidity and mortality rates of SLE patients [14]. Nowadays, the etiology
of NPSLE remains poorly understood, as is also the case for SLE and most autoimmune diseases.

In 1999, the American College of Rheumatology (ACR) recognized 19 wide-ranging NP
manifestations related to SLE [15]: some affect the CNS, in which case they can be focal or diffuse [16],
and the others affect the peripheral nervous system (Table 1). This widely adopted classification
was meaningful from a clinical point of view but presents some limitations with respect to the
variety of symptoms and their specific attribution to SLE [11]. In 2001, Ainiala et al. revised
this original categorization and discarded certain minor NP symptoms, such as headaches and
anxiety disorders [17,18]. When compiling recently published data, it clearly appears that this
novel classification has affected the NPSLE prevalence values, pointing to the lack of consensus
on straightforward and uncontroversial NPSLE diagnosis (e.g., definition of impairment, selection of
patients and of cognitive tests used). Since then, various NPSLE diagnostic criteria have been proposed
but none of them have achieved both high sensitivity and specificity [19]. In fine, there is currently no
consensus about inclusion or exclusion criteria for NPSLE, resulting commonly in an overdiagnosis of
NPSLE and the administration of unnecessary immunosuppressive treatments.

Table 1. ACR case classification of the NP manifestations described in SLE [15].

Central Nervous System Peripheral Nervous System

Focal manifestations Diffuse manifestations
Cerebrovascular disease Depression Cranial neuropathy
Seizures Cognitive dysfunction Autonomic neuropathy
Aseptic meningitis Mood and anxiety disorders 1 Mononeuropathy (single/multiplex)
Movement disorder Psychosis Polyneuropathy
Myelopathy Acute confusional state Plexopathy
Demyelinating syndrome Headaches 1 Myasthenia gravis

Acute inflammatory demyelinating
polyradiculoneuropathy
(Guillain-Barré syndrome)

1 Anxiety disorders and headaches have been removed in the revised classification suggested by Ainiala et al. (2001) [18].
According to Hanly et al. (2018) [11], posterior reversible encephalopathy syndrome, neuromyelitis optica spectrum
disorder, and small fiber neuropathy should be included in a future revision of the ACR classification. Abbreviations:
ACR, American College of Rheumatology; NP, neuropsychiatric; SLE, systemic lupus erythematosus. Adapted from
Jeltsch-David and Muller (2014) [10].
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One critical problem with the diagnosis of NPSLE remains the lack of objective and specific
biomarkers. Therefore, this aspect remains eminently challenging. Today, NPSLE is essentially
clinically defined by physical examination, serological measures, psychological and neurological
evaluations, and brain imaging. Hopefully, rapidly advancing progress in live imaging technology
will help and allow the establishment of reliable and specific diagnostic criteria for NPSLE.

Twenty autoAbs (11 brain-specific and 9 systemic) [20] and several cytokines found in the serum,
but more specifically in the cerebrospinal fluid (CSF) of patients, have been linked to NPSLE [10].
Focal manifestations can be detected by MRI techniques and reflect, usually, cerebral vasculopathy,
thrombosis, and complement activation [10,11,16]. The presence of antiphospholipid (aPL) autoAbs
in the CSF correlates with some of these events [16]. Diffuse symptoms are harder to identify [21]
and seem related, instead, to inflammation elicited by several mediators (e.g., interferon (IFN)α,
anti-N-methyl-D-aspartate receptor (NMDAR and anti-ribosomal P autoAbs), which induce not only
leakage of the blood–brain barrier (BBB) but also other barriers, as briefly addressed below [22–27].

The brain is protected from the periphery by three distinct structural and functional interfaces
with systemic circulation: the BBB, the blood–CSF barrier (BCSFB), and the meningeal barrier [28].
These entities comprise endothelial cells (ECs) connected by tight junctions that prevent free passage
of soluble macromolecules and cells, control the influx of nutrients and efflux of toxic molecules,
and maintain a regulated microenvironment optimal for neuronal signaling [29,30]. The BBB has been
proposed to be leaky both in SLE patients and lupus-prone mice [31], resulting in the deleterious
diffusion of proinflammatory factors. In humans, this alteration has been evidenced mainly by the
presence of serum albumin and immunoglobulins G (IgGs) in the CSF [26,32,33] and through the use
of MRI [34]. Previously, it was claimed that BBB disruption was directly responsible for the passage
of peripheral molecules to the brain, initiating NPSLE disease. However, recent data obtained from
experiments with mice argue that the peripheral molecules reach the brain through the BCSFB rather
than via the BBB [22], providing interesting hypotheses in favor of BCSFB leakage in human patients
as well [35], and refining the BBB leakage dogma.

2.3. Modelization of the Disease in Mice

There are obvious limits to the search for mechanisms of CNS disease in human patients.
Thus, murine models offer several advantages for elucidating the early mechanisms of NP
manifestations of SLE and help to distinguish between CNS-specific and -nonspecific mechanisms [36].
Neuroinflammatory mechanisms of NPSLE are quite well recapitulated in lupus-prone murine models
that develop a lupus-like disease [37], including NP events, manifesting through the production of
autoAbs in the serum [38] and CSF [39,40]. Some animal models are spontaneous, as the BXSB mice,
the Murphy Roths Large (MRL) mice, and the F1 hybrid of the New Zealand Black (NZB) and New
Zealand White (NZW) mouse strain (called (NZB × NZW) F1) [41]. Others are genetically engineered,
such as the 564Igi mouse [42,43]. All these murine models help to provide valuable insights into how
the CNS can be affected by systemic inflammation. Nevertheless, after the identification of autoAbs
targeting the brain, NPLSE-like inducible NPSLE models have also been developed. In these induced
models, human autoAbs are passively injected or, alternatively, mice are immunized against these
specific brain self-antigens, leading to the development of NPLSE-like disease without the severe
peripheral autoimmune damage [44–47]. Even if none of these animal models reflect the human disease
perfectly, they all provide some key elements involved in the disease’s pathogenesis, leading to the
development of safer and more efficient treatments, as was very well depicted in a recent review [48].

The MRL/lpr strain is one of the best-established spontaneous models of SLE and is the
most commonly investigated in lupus-related NP studies. This strain displays an autoimmune
phenotype, and its composite genome is derived from LG/J (75%), AKR/J (12.6%), C3H/HeDi
(12.1%), and C57BL/6J (0.3%) mice [49]. MRL/lpr mice spontaneously develop an autosomal recessive
lymphoproliferation (lpr) mutation affecting the Fas gene [50]. Identified as an intron deletion in the
Fas gene, this mutation leads to aberrant Fas mRNA splicing [50] and the loss of protein expression [51].
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Interestingly, this mutation does not necessarily increase the proliferative capacity of lymphocytes
but rather allows them to escape the negative and positive selection processes [50,51]. The parental
strain of MRL/lpr mice, the MRL/MpJ mouse (also named MRL+/+ later in the text), does not carry
the lpr mutation and develops the autoimmune syndrome, albeit weaker and delayed in life, thus
representing a natural and adequate control [52]. Over the past decade, the MRL/lpr exhibited a
“fortuitous attenuation” of symptoms of still unknown origin, and the MRL/lpr original stock was
re-established in 2008 (http://jaxmice.jax.org/strain/006825.html) [36,41].

The disease developed by MRL/lpr mice mimics human SLE. In particular, in both settings,
a leaky BBB and the presence of circulating autoAbs directed against dsDNA and Smith (Sm) antigen
are observed, the only serological biomarkers of SLE in humans. As in human SLE, where a strong
gender preference is usually described (9:1 female to male ratio), female MRL/lpr mice develop a more
severe disease [41]. Finally, comparable to some NP symptoms evidenced in SLE patients, autoimmune
MRL/lpr mice spontaneously develop pathological changes in the brain and an autoimmunity-associated
behavioral syndrome (e.g., depression, emotional and cognitive dysfunction) that can be characterized
with a battery of behavioral tests, summarized below (Figure 1). However, it is important to emphasize
that, in this murine model, the disease-associated brain atrophy remains poorly understood.
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Figure 1. Tests used for behavioral evaluation of mice. (A) Forced-swim test (or Porsolt test) used to
assess depressive-like behavior; (B) elevated plus-maze and (C) dark/light preference test to measure
anxiety-like behavior; (D) Morris water maze (or paddling test) [53]; (E) T-maze that is considered very
sensitive to alteration in hippocampal pathways.

2.3.1. Tests of Depression

• Forced-swim test (Porsolt test; Figure 1A)

In this experimental procedure, a mouse is forced to swim in a small container without the
possibility to escape. Quickly, after a time of struggling and swimming, the animal stops any attempt
of escape and becomes almost motionless (e.g., floating on the water surface and moving its limbs only
to rebalance itself). Periods of activity alternate with periods of immobility, and the duration of the
latter increases with time. Within this framework, immobility objectivizes behavioral helplessness and
is interpreted as behavioral “distress” that ensues when the animal realizes that it cannot escape [54].
This model of behavioral despair is repeatedly validated by the pharmacological plan to detect the
efficacy of antidepressants. The quicker the animal becomes immobile and stops trying to escape,
i.e., the longer it stays immobile, the greater extent to which it is thought to display depressive

http://jaxmice.jax.org/strain/006825.html
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symptoms. As compared to their parental MRL+/+ littermates used as controls, MRL/lpr mice exhibit
defects [55–57] implying an autoimmunity-associated syndrome.

• Sucrose preference test

This test evaluates deficiencies in motivated and goal-directed behavior and anhedonia, i.e.,
a reduced sensitivity to positive stimuli. Here, MRL/lpr mice manifest a reduced preference for
palatable drinking solutions with sucrose compared to control MRL+/+ mice. This observation is well
established and can be detected both early in life and later during disease progression [57–61].

• Open-field locomotor activity test

Depressive-like manifestations also include apathy and fatigue, which are reflected as a decrease
in spontaneous exploration of a novel environment, like an open field. Generally, as compared to
control mice, MRL/lpr mice show such a decrease in spontaneous locomotion [55,56,62].

2.3.2. Anxiety Tests

• Elevated plus-maze and dark/light preference tests (Figure 1B,C)

The elevated plus-maze and the dark/light preference tests are usually implemented in
pharmacology for the screening of anxiolytic molecules [63–65]. The plus-maze test consists of a cross
structure with two arms with walls (closed arms) and two wall-free arms (open arms). The dark/light
preference test consists of two boxes, one is dark and the other is well lit, and an opaque tunnel that
connects the dark box with the lit one. Both tests create an approach-avoidance conflict between the
natural tendency of mice to explore and their aversion to open or brightly lit spaces. Generally, the
more anxious the animal is, the less it will venture and stay in the open or lit compartments. Some
debatable results have been reported in MRL/lpr mice with the elevated plus-maze test. Sakić and
colleagues observed anxiety in MRL/lpr mice, i.e., diminution of the time spent in the open arms [55],
while other groups noted the opposite result, with MRL/lpr mice being significantly less anxious than
their MRL+/+ littermates [57,66,67]. An important experimental difference between these two sets of
studies is that some experiments were conducted with males [55] and others with females [57,66,67].

• Open-field test

The open-field test is sometimes used to measure anxiety-related behavior, as quantified by the
duration for which the mouse avoids the central part of a novel enclosed arena and remains in close
proximity of the walls (thigmotaxis) [68,69]. In this test, as compared to control MRL+/+ mice, MRL/lpr
mice disclose anxiety-like behavior, as evidenced by increased thigmotaxis and impaired exploration
of space [55,57].

Controversial results have been reported for open-field and elevated plus-maze tests that might
be explained by the use of different strains and sex of mice [70,71]. To discuss the absence of
consensus in detail is beyond the scope of this essay but, as well depicted in an exhaustive review, it is
worth mentioning that independent of the strain, male and female mice display inherently different
anxiety-coping mechanisms [72]. Potential processes underlying sex differences in anxiety states
include emerging evidence supporting the existence of two anatomically and functionally distinct
serotonergic circuits that modulate conflict anxiety and panic-like anxiety, respectively. Regarding
the MRL/lpr strain, female MRL/lpr mice seem to display, as in human SLE, a strong bias in severity
(e.g., higher levels of IgG in the CSF) [40] and rate of progression of the autoimmune disease (e.g., earlier
apparition of serum autoAbs) [57], which manifest in stronger cerebral pathology [56,66,73]. Therefore,
sex differences in the expression of anxiety behavior are not surprising or unexpected in MRL/lpr mice.

2.3.3. Cognitive Tests

The detection of cognitive deficits in animals seems to be task-dependent. This finding is hardly
surprising with regard to the fact that there are multiple “types” of memory, which are differently
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sensitive to brain damages [74]. Even if the three tests listed below are classified as “cognitive” tasks,
they do not measure the same “cognitive processes” (working (or short-term) visual memory in
the novel object recognition test [75], spatial working and reference (or long-term) memory in the
Morris water maze, spatial working memory in the T-maze that is also sensitive to nonspatial learning
aspects (e.g., temporal discriminations) [76]). Furthermore, these tests differ in terms of perceptual
stimuli cueing choice behavior, and their accomplishments rely on different mechanisms, some being
noncognitive (e.g., motivational factors), subserved by the activity of many brain regions.

• Novel object recognition test

This test is based on the tendency of rodents to preferentially explore novel objects. First, a mouse
is placed into an arena and allowed to explore two identical novel objects. After a fixed period of
exploration (defined as rearing on the object, whisking, sniffing, touching with nose and/or forepaws),
the mouse is removed. Next, one of the objects is changed to a novel object and the mouse is
reintroduced into the arena. Mice naturally tend to explore novel objects, so the duration of exploring
the novel object is taken as the measure of visual working memory. In this paradigm of testing,
MRL/lpr mice perform as well as MRL+/+ controls [66] or even outperform them [57].

• Morris water maze (Figure 1D)

The Morris water maze test evaluates spatial memory in rodents [77]. The animal is placed into
a tank filled with opaque water in which a platform is hidden beneath the surface. In this aversive
situation, mice must learn using spatial cues placed in the testing room to navigate and find the
platform. Longer latencies to find the platform reflect poorer performances. In this test, MRL/lpr mice
show pronounced thigmotaxic swimming but no clear-cut impairment in learning/memory abilities
compared to MRL+/+ littermates [56,78,79].

• The T-maze alternation test (Figure 1E)

This test, shaped like the letter T, is based on the willingness of rodents to explore a new
environment, i.e., they prefer to visit a new arm of the maze rather than the familiar one. The solving
of this task consists of two turns, i.e., right and left. Mice are first placed in the start arm of the
T-maze. Upon leaving the start arm, they choose between entering either the left or the right goal arm.
With repeated trials, the animals show less tendency to enter a previously visited arm. The percentage
of alternation (number of turns in each goal arm) is recorded. This test is currently used to evaluate
cognitive deficits in mice and test novel chemical entities for their effects on cognition. The T-maze test
is well known as particularly sensitive for detecting hippocampal dysfunction [80–83]. In MRL/lpr
mice, alternation impairments have been evidenced as compared to the MRL+/+ counterparts [84,85],
strongly supporting cognitive and, more specifically, hippocampal dysfunction in these mice.

2.3.4. Locomotor function

• Beam-walking test

The beam-walking test assesses the capacity of mice to coordinate movement on a narrow beam [67].
Mice are placed on the beam and the latency to cross and the number of paw slips are recorded.
Interestingly, female MRL/lpr mice do not display locomotor deficits compared to their control MRL+/+

littermates [49,50]. However, males perform significantly worse [50]. The precise mechanisms of this
sex difference remain unclear but might be due to different hormonal backgrounds [86].

Other tests assessing locomotor functions have been described, such as the pole test and string
agility test, for example [68,69]. These tests, which require a good driving agility, give an idea of the
integrity of proprioceptive and vestibular pathways. Generally, they are used in order to quantify the
effects of either alterations in the CNS (motor cortex), those of various neuromuscular pathologies,
or those of fatigue on the fine motricity and proprioceptive functions. These tests also allow checking for
the presence of possible sensory-motor biases, which could affect observations obtained in other tests.
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The characterization of specific inflammatory factors giving rise to an autoimmunity-associated
behavioral syndrome has contributed to the development of NPSLE inducible murine models.
For example, some NP features have been observed in C3H/HeJ mice after ribonucleoprotein P human
autoAb intracerebroventricular injection [87]. Anti-NMDAR Abs effects have been studied following
injection of human anti-dsDNA Abs into the hippocampi of C57BL/6 mice [46] or immunization of
BALB/c mice with the DWEYS peptide [44,45,88,89]. To date, only a few inducible models have been
yet developed, but it is anticipated that a growing number of relatively specific models of NPSLE will
be generated in the nearest future. Taken together, we can conclude that spontaneous and inducible
NPSLE models fairly well recapitulate the human disease and provide important insights into how
systemic inflammation can induce CNS damage. This central aspect is discussed below.

3. Neuroimaging in NPSLE

3.1. Magnetic Resonance Imaging Modalities

As already mentioned, two distinct, but potentially complementary, pathogenic mechanisms
are distinguished in NPSLE: (i) vascular/thrombotic injury, likely implicating aPL Abs; and (ii)
inflammation-mediated injury, implicating other pathogenic autoAbs, proinflammatory cytokines
(e.g., interleukin (IL)-6, IFNα), and disruption of the BBB, the latter being favored, among other
factors, by the activation of the complement system and binding of immune complexes to ECs [90,91].
Nowadays, implementation of noninvasive anatomical and functional neuroimaging modalities is
highly recommended for the identification of outcomes of pathogenic mechanisms that impact the
structure, metabolism, and functionality of the brain.

MRI detects signals thanks to the properties of hydrogen nuclei in water and fat molecules, which
are found in biological tissues, including the brain. It is the most relevant neuroimaging technique
for the detection of structural alterations in the CNS (e.g., cortical atrophy, focal periventricular
and subcortical white matter lesions, diffuse gray matter changes, reduced volume of the corpus
callosum or the hippocampus) [92]. It is thus particularly sensitive to detecting acute focal NP
manifestations [93–101]. Unfortunately, its diagnostic value remains limited since, in the case of diffuse
manifestations, MRI usually gives unremarkable results or shows nonspecific abnormalities. To make
matters worse, cerebral MRI abnormalities can be observed in SLE patients without NP symptoms and
are even sometimes detected in healthy individuals [102–104].

Today, several advanced imaging modalities exist. These include diffusion-weighted imaging
(DWI) [105], magnetic transfer imaging (MTI) [106], magnetic resonance angiography (MRA) [107],
magnetic resonance spectroscopy (MRS) [108], diffusion tensor imaging (DTI) [109], and blood oxygen
level-dependent functional MRI (BOLD-fMRI) [93], and they ideally could be implemented for identifying
functional hallmarks of NPSLE and allow its diagnosis [11,110]. These methods are not detailed here,
as this review rather focuses on data obtained in preclinical research performed on murine NPSLE models.

3.2. Brain Imaging and MRL/lpr Mice

In NPSLE preclinical research, MRI remains, unfortunately, rarely used, largely due to the high
cost necessary for its implementation. However, some data in relation with anatomical findings have
been generated and are summarized below.

• MRI

Atrophied cerebral structures in MRL/lpr mice were identified several years ago using
paraformaldehyde (PFA)-fixed MRL/lpr brain [111]. Atrophy was noticeable in the superior colliculus,
periaqueductal gray matter, pons, and midbrain. However, as PFA fixation could affect both brain
morphology and MRI data [112], the conclusions raised from these studies remain to be confirmed.

We recently compared the brain morphology of 16-week-old female MRL+/+ (n = 10) and MRL/lpr
(n = 9) mice based on transverse relaxation time (T2)-weighted imaging (T2WI) MRI. MRI was
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performed using a 7/30 Biospec system (Bruker Biospin, Ettlingen, Germany) with ParaVision 6.0.1
software. Transmission was achieved with a quadrature volume resonator (inner diameter of 86 mm),
and a standard mouse brain quadrature surface coil (~19 × 19 mm2) was used for signal reception
(Bruker BioSpin, Ettlingen, Germany). A T2WI axial anatomical dataset was acquired using the
RARE sequence (256 × 256 acquisition matrix, 23 slices, 0.5 mm slice thickness, in-plane resolution
of 78 × 78 µm2, repetition time (TR) of 3 s, echo time (TE) of 30.6 ms, RARE-Factor of 8). Animals
were anesthetized with 2% isoflurane, the respiration was noninvasively monitored using a magnetic
resonance-compatible system, and the body temperature was maintained constant at 37–38 ◦C. In this
study, an asymmetrical enlargement was noticeable in MRL/lpr brains (Figure 2A,B) with significantly
increased ventricular volume on the left side, as demonstrated by the increased left/right ratio for
ventricular volume (p = 0.035; Figure 2C). Interestingly, a significant loss of brain weight was noted
in diseased MRL/lpr mice (p = 0.022; Figure 2D), but no difference concerning the CSF volume
could be noted between MRL+/+ and MRL/lpr mice (p = 0.842; Figure 2E). Ventricular dilation and
cerebral atrophy have also been previously reported in human NPLSE patients [94]. The meaningful
enlargement of the left ventricle in MRL/lpr mice remains largely unstudied but might reveal
lateralized brain damage [113] that, for example, has already been observed in neurodegenerative
diseases [114]. Such asymmetry might be viewed as a major feature of the disease, which also raises
questions on the nature of this lateralization.
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Figure 2. Cerebral abnormalities measured in MRL+/+ and MRL/lpr mice. Conventional mid-axial
T2-weighted MRI revealed a dilation of ventricles (red arrow) in 16-week-old female MRL/lpr mice
(B) as compared to the age-matched counterparts MRL+/+mice (A). In the MRL/lpr strain, this
enlargement is more remarkable on the left side, as revealed by analysis of the right/left ventricle
volume ratio (C). Furthermore, a significant loss of brain weight was detected in these mice (D), even if
the normalized volume of CSF did not show significant difference between both strains (E). Statistics:
All data were analyzed with unpaired t test, and significance was defined as p < 0.05 (*) Errors bars
are mean standard deviation. Sample size is indicated as n. Abbreviations: CSF, cerebrospinal fluid;
lpr, lymphoproliferation; MRI, magnetic resonance imaging; MRL, Murphy Roths Large.
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• MEMRI

MEMRI is a relatively new imaging technique that is not dependent on blood flow. As a
paramagnetic contrast agent, Mn2+ is of special interest in neuroimaging, as it enhances MRI contrast
in vivo by shorting both T1 (longitudinal) and T2 (transverse) relaxation times. Mn2+ ions enter neurons
and excitable cells during the excitation phase through voltage-gated calcium channels. As such, MEMRI
has unique capabilities for defining cerebral architecture, mapping neuronal pathways, and studying
connectivity in morphological and functional imaging studies [115].

This MRI modality was applied to explore the olfactory pathway in mice with experimental
NPSLE induced after intracerebroventricular injection of anti-ribosomal-P Abs [116]. Passive transfer of
anti-ribosomal-P Abs induced a depressive-like behavior with a significant deficit in olfactory function.
MEMRI of these mice demonstrated significant reduction in normalized Mn2+ enhancement ratios
of olfactory structures, as compared to control mice. Thus, an impaired olfactory neuronal function
in mice with experimental depression, mediated by passive transfer of human-anti-ribosomal-P Abs,
can be spotted by MEMRI.

• 1H-MRS

MRS uses the principles of MRI and, as with nuclear magnetic resonance spectroscopy,
allows identification of specific metabolites in vivo at concentrations ranging from 0.5 to 10 mM.
1H-MRS determines the 1H spectra of molecules [117]. The molecules that can be studied include
choline-containing compounds (markers of cellular membrane turnover), creatine (involved in energy
metabolism), N-acetylaspartate (NAA; marker of neuronal viability), and lactate (marker of anaerobic
metabolism, necrosis, and/or infections). 1H-MRS is more sensitive than MRI, evidencing lesions in
white and gray matter that appear normal in a conventional MRI of SLE patients.

1H-MRS studies have shown significant metabolic differences between MRL+/+ and lupus-prone
mice in the hippocampus and the cortex [66], structures that, as we already emphasize in this
review, are involved in the regulation of cognition and memory. In MRL/lpr mice, these metabolic
abnormalities were shown to reflect dysfunction of neuronal (and/or glial) activity, but they did not
correlate to structural changes that were detectable by MRI [66]. Both methods are, therefore, necessary
to generate a complete picture.

MRI data evidencing an altered cerebral metabolic state in MRL/lpr mice confirm insights on
the neuroinflammatory mechanisms of NPSLE in these mice. One major advantage of MRI is its
applicability in vivo, allowing the real-time study of the disease progression. At this stage, additional
investigations have to be carried out to understand the reasons for the ventricular system asymmetry
in MRL/lpr mice, a phenomenon never described until now.

4. Neuroinflammation in Lupus-Prone Mice

4.1. Characteristic Elements Occurring in the Brain of Lupus-Prone Mice

A summary of the different autoAbs and cytokines detected in MRL/lpr mice and suspected to
play a role in NPSLE is shown in Table 2.

4.1.1. Pathogenic AutoAbs

Evidence supporting the role of autoAbs in the CNS pathology and subsequent negative
behavioral outcomes includes the higher levels of autoAbs in the serum of diseased MRL/lpr mice
that develops earlier in females [57,66] (for extensive reviews, see [36,41]).

There is further demonstration that some of these serum autoAbs recognize brain antigens, such as
a subtype of NMDAR glutamate [118,119], an excitatory neurotransmitter. When injected directly
into the brain of healthy mice, or when injected peripherally into animals with a breached BBB, these
autoAbs are neurotoxic and induce deficits in cognition and emotional behavior [46,120]. We focus
attention on this issue in greater detail in Section 4.3.
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Intrathecal administration of anti-ribosomal P Abs induces depression-like behavior in the forced
swim test [87]. The relation between serum or CSF levels of autoAbs and NPSLE disease processes is
complex, but it is likely that intrathecal CSF brain-reactive autoAbs titers [39] may be more critically
related to NPSLE pathogenesis and symptoms than serum ones [121].

Table 2. Potential NPSLE biological hallmarks found in MRL/lpr mice.

Hallmarks Location Levels/Expression References

AutoAbs

aPL (e.g., anticardiolipin) Serum Increased levels [122]
Anti-dsDNA Serum Increased levels [123]

Anti-nucleosome * Serum Increased levels [124]
Anti-ribosomal P protein Serum Increased levels [125]

Anti-Sm Serum Increased levels [125]
Anti-ribosomal S10 Serum Increased levels [126]

Anti-NMDAR Serum Increased levels [57,66]

Cytokines

IL-1β Serum
CNS Increased levels [127–130]

IL-2 T cells Decreased expression [131,132]

IL-6 Serum
CSF Increased levels [127,133–135]

IL-9 Serum Increased levels [128,130,136]

IL-10 B cells
CNS Dysregulation [128,130,137,138]

IL-12 Serum Increased levels [139]
IL-17 Serum Increased levels [140]
IL-18 Serum Increased levels [141,142]
IL-21 Serum Dysregulation [143]
IL-22 Serum Increased levels [144]

M-CSF Serum Increased levels [145]
MIF Serum Increased levels [146]

IFNγ
Splenocytes

CNS Dysregulation [128,147,148]

TNFα Serum Increased levels [127,129,149]
TWEAK CNS Tendency to increase [150]

Receptors

sIL-6R Serum Increased levels [133]
Fn14 (TWEAK receptor) CNS Increased levels [150]

* Molecules indicated in italics are those for which relevance in NP manifestations remains to be confirmed.
Abbreviations: aPL, antiphospholipid; CSF, cerebrospinal fluid; ds, double-stranded; IFN, interferon; IL, interleukin;
lpr, lymphoproliferation; M-CSF, macrophage colony-stimulating factor; MIF, macrophage migration inhibitory
factor; MRL, Murphy Roths Large; NMDAR, N-methyl-D-aspartate receptor; sIL-6R, soluble IL-6 receptor; Sm, Smith;
TNF, tumor necrosis factor; TWEAK, TNF-like weak inducer of apoptosis.

4.1.2. Cytokines

As it is not necessary that they pass the BBB to regulate neural function, cytokines and chemokines
are critical early factors involved in behavioral defects [151]. The role of several cytokines in behavioral
disturbances in MRL/lpr mice is supported by numerous studies (see [36]). More specifically, the early
dysregulation of cytokine production, especially IL-1, IL-2, IL-6, and tumor necrosis factor (TNF)α,
corresponds to the onset of symptoms of depressive-like behavior, such as anhedonia and behavioral
despair. Interestingly, anhedonia is ameliorated by cyclophosphamide, which suppresses the typically
early and significant rise of IL-6, and can be replicated by exogenous IL-6 [58]. Furthermore, high levels
of proinflammatory cytokines may also impair the function of the BBB and, thus, may be permissive to
the deleterious effects of certain autoAbs and lymphocytes.
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In MRL/lpr mice, the CNS actively responds to the systemic production of several cytokines,
as an upregulation of adhesion molecule expression is observed in the brain of diseased mice [129,152].
Upregulated in the peripheral blood of MRL/lpr mice, TNFα, IL-1α, and IL-1β are able to diffuse into
the CSF and brain parenchyma [153,154] where they increase the expression of ICAM-1 and VCAM-1,
leading to the recruitment of immune cells and subsequently to damage by either direct cytotoxicity
or exacerbation of neuroinflammation. As suggested by the observation that inhibition of ICAM-1
in MRL/lpr mice prevents peripheral nerve damage, inhibiting cell adhesion molecule expression
in NPSLE could be a promising therapeutic option. However, this line of treatment did not reduce
infiltration to the choroid plexus (CP) [155], indicating that, though potentially beneficial, this therapy
alone is not sufficient to allow complete resolution of NPSLE signs.

Of the various cytokines suspected to be involved in NPSLE pathogenesis, we make special
mention the possible role of macrophage colony-stimulating factor (MIF), which is a proinflammatory
cytokine displaying multifunctional properties. Operative in innate and adapted immunity [156,157],
it plays an important role in regulating macrophage effector functions and T cell division [158].
MIF has moreover been highlighted in different structures of the CNS (e.g., hippocampus, cortex,
cerebellum, pons) [159,160]. Its implication in the pathogenesis of many autoimmune/inflammatory
diseases (e.g., multiple sclerosis (MS), Guillain Barré syndrome) is quite well described both in
experimental and clinical studies [161–163]. MIF contributes also, with sex-specific regulation,
to the emergence of depression and psychiatric disorders, likely via the dysregulation of the
hypothalamic–pituitary–adrenal (HPA) axis and glucocorticoid secretion [164,165]. MIF is upregulated
in SLE patients, where its level correlates positively with disease progression [166], as well as in
MRL/lpr mice [146]. Moreover, the deletion of the MIF gene protects MRL/lpr mice from renal and
skin manifestations of the disease [167] and reduces depressive symptoms in C57BL/6 mice [164].
Even more, as specific inhibitors of MIF attenuate the clinical course of SLE, therapeutic antagonism
of MIF may be investigated as an opportunity for targeted therapy [167]. All these data, as well as
the fact that MIF is also involved in autophagy [166], emphasize the important role played by MIF in
the effector pathways of immune-mediated inflammatory damage both in SLE patients and murine
lupus models [146,166,168–170]. They also point to its potential therapeutic use for treating NPSLE. In
agreement with this hypothesis, an immunomodulatory peptide, hCDR1, which reduces NPSLE-like
symptoms in lupus-prone mice [171], has been found to act on the MIF pathway by reducing its
overexpression in the hippocampus [172]. Unfortunately, the effects of MIF and its inhibitors have not
yet been further investigated in human NPSLE.

4.1.3. Peripheral Immune Cell Infiltration

Some years ago, the discovery of lymphatic vessels within the dura mater surrounding the brain
provoked the dismissal of the existence of CNS immune privilege [173–175]. Regarding SLE and
NPSLE, the access of peripheral immune cells, of which the best studied are lymphocytes, to the CNS
through the CP has now been demonstrated in MRL/lpr mice [22]. Indeed, CD3+ T cells are detected
in various areas of the MRL/lpr brain (e.g., ventricles, CP, interhemispheric fissure, hippocampus,
meninges, stria medullaris, cerebellar parenchyma), while CD19+ B cells are only found in the CP and
the interhemispheric fissure [176]. Among the CD3+ T cells, brain parenchyma is largely infiltrated
by inactive CD8+ T cells [177], while, in the CP, the larger fraction of infiltrating cells are effector
CD4+ T cells, which were further identified as T follicular helper (Tfh) cells [73]. Whereas a specific Tfh
subset promotes B cell differentiation in the CP, CD4+ cells are probably responsible for the increased
production of proinflammatory cytokines upon detection of brain-derived self-antigens, leading to
the recruitment of other immune cells and parenchymal infiltration [178]. Deletion of the CD4+ T
cell phenotype has proven to be a successful therapy in mice developing CNS disease, indicating
that targeting this cell phenotype might be an approach for treating NPSLE [179]. Unfortunately, this
therapeutical option induces deleterious effects in other organs, probably as a result of the deletion of
CD4+ T regulatory cells, a cell phenotype that attenuates inflammation [180].
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4.1.4. Glial Cells

Although poorly explored and not well understood, the role of glial cells, the “sentinels
of the brain”, is expected to be central during the neuroinflammatory process of lupus [84].
Some authors reported the upregulation of ionized calcium binding adaptor molecule 1 (Iba1;
a microglia/macrophage-specific calcium-binding protein) and of CD68 (glycoprotein expressed
by macrophages) in microglia of lupus-prone mice [43,44]. When activated, these cells express
proinflammatory molecules and, as mentioned below, perform “synaptic pruning” [43]. Moreover,
they probably incur damage by yet unidentified mechanisms. On the other hand, astrocytes are also
activated during the disease, as evidenced by elevated astrogliosis in MRL/lpr mouse brain [181].
Further investigations focusing on the function of these cells in the pathogenic mechanisms of NPSLE
are needed to better understand their precise role.

4.2. Hippocampus as the Possible Primary Target of Neuroinflammatory Lupus

NP symptoms observed in mouse models of lupus are commonly attributed to the dysfunction
of the hippocampus, an observation also seen in human patients in whom reduced volumes of the
hippocampal CA1 and CA4 regions have been associated with worse cognitive performances [182].
Accordingly, hippocampal neurons in MRL/lpr mice show signs of degeneration when stained by
Fluoro-Jade B [153] that are backed by increased levels of proinflammatory cytokines (e.g., IFN-γ,
IL-1β, IL-6). Nonetheless, the concomitant presence of anti-inflammatory and immunomodulatory
cytokines, for example, IL-10, highlights the complexity of the inflammatory context that occurs in
the brains of these mice. In a comparable line, the simultaneous dysregulated production of both
proinflammatory and anti-inflammatory cytokines has also been observed in SLE patients at the
periphery [183]. This apparently common immunopathogenic aspect strengthens even more the
immunopathogenic relevance of the murine models of lupus used to approach human SLE.

Several important properties of the hippocampus may explain both the neuroinflammatory
and neurodegenerative processes affecting this cerebral structure during lupus disease. Firstly,
the hippocampus is located next to the CP that, in addition to the meninges, as already pointed out
above, is a common site of immune peripheral infiltration [176]. Furthermore, immunohistochemistry
techniques have revealed that some peripheral immune cells infiltrate the hippocampus itself,
homing in on structures that are much beyond their initial site of penetration. Thus, hippocampal
proximity to immune infiltration sites could partially explain the susceptibility to NPSLE in this
setting. Secondly, the hippocampus is a zone of prominent neurogenesis containing proliferating
and maturing cell populations [184–186]. In MRL/lpr mice, replicating neuronal cells may display
abnormal distribution throughout the CNS [187]. Moreover, the CSF of diseased mice evidences
cytotoxicity toward proliferating neuronal cells [121,188]. Two general lines of hypotheses might
explain why neurogenesis renders the hippocampus particularly sensitive to autoimmune diseases.
One assumption is that newly forming neurons express surface markers different from those
of differentiated neurons. Maturing neurons would express NMDAR [189] that is targeted by
brain-reactive autoAbs. When it occurs, such binding elicits immediate excitotoxic neuronal death [190].
The second line of assumption questions the involvement of complement factors in neurogenesis and
disease pathogenesis [191,192]. The complement components C1q and C3, produced by microglia, can
be considered proinflammatory factors, as they play effector roles in a range of functions, including T
cell activation and survival, chemotaxis, mast cell degranulation, and macrophage activation. Some of
these activities participate in the synaptic loss and death of developing neurons [43,193]. In addition
to neurogenesis, the hippocampus is a site of intense synaptic plasticity during ontogenesis and
the learning phase [194]. Synaptic plasticity requires the trimming of specific neuronal circuits and
reinforcement of others. Normally, this trimming, called “synaptic pruning”, occurs during early fetal
development and adolescence in humans (corresponding to 4 weeks post-natally in mice), but it can
also be observed during adulthood [195]. Synaptic pruning is performed by microglia in the CNS [196]
and also depends on complement factors [194]. Its overactivation results in injury in NPSLE [43].
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Although further research is needed, this observation suggests that some zones of higher synaptic
plasticity where new neuronal circuits are developing, for instance, in the hippocampus [195], could
be particularly sensitive to autoimmune dysfunction. Overall, treatments promoting hippocampal
neurogenesis and inhibiting the complement cascade might be regarded as promising therapeutic
approaches against NPSLE [193,197,198].

Though the hippocampus seems to be centrally involved in NPSLE, other cerebral areas are
affected in this disease, such as the cortex [199], the paraventricular nucleus (PVN) [39,193,200,201],
the cerebellum [130], and probably a few others. For example, damage to the PVN alters the
sucrose preference behavior [58,60] and increases anxiety. PVN damages are also linked to systemic
inflammation as excessive proinflammatory cytokines inhibit the negative feedback of the HPA axis,
increase the permeability of the BBB, and disturb the glutamatergic balance [200,202]. At this stage,
however, the mechanisms underlying these processes are not clear.

4.3. Potential Mechanisms of Neuroinflammation in NPSLE

In lupus-prone mice, different studies using TUNEL and Fluoro-Jade staining have
reported neurodegeneration and apoptosis phenomena in the hippocampus, the PVN, and the
cortex [153,193,201,203,204]. Today, a causal relationship between such damages and CNS exposure to
autoAbs is fairly well documented, and the anti-NMDAR autoAbs are of special interest in NPSLE.
These Abs specifically bind the NMDAR and lock it in an open position, leading to the uncontrolled
entry of calcium ions into the cell. This passage eventually causes neuronal cell death through a
mechanism known as “excitotoxicity” [190] (Figure 3).
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(controlled neuronal death) occurs (3). On the other hand, calcium can activate cytosolic enzymes 
(e.g., phospholipases, proteases, endonucleases) that will damage neurons intracellularly, leading to 
necrosis (4). Abbreviations: Ab, antibody; AIF, apoptosis-inducing factor; Cyt c, cytochrome c; MPTP, 
mitochondrial permeability transition pore; NMDAR, N-methyl-D-aspartate receptor; ROS, reactive 
oxygen species. 

Of interest is excitotoxicity-related dysfunction, such as calcium overload in mitochondria, as it 
can result in dendrite degeneration [205]. This process could explain how long-term excitotoxicity 
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Figure 3. Acute excitotoxicity in NPSLE. The binding of anti-NMDAR Abs to NMDAR allows the
free entry of calcium ions (1). Intracellularly, the ions are taken up by mitochondria in order to buffer
incoming calcium, leading to increased cellular respiration and ROS production. Concomitant with
the increase in calcium concentration, the mitochondrial membrane potential collapses, and MPTPs
open (2). Consequently, proapoptotic molecules (e.g., Cyt c, AIF) are released, and apoptosis
(controlled neuronal death) occurs (3). On the other hand, calcium can activate cytosolic enzymes
(e.g., phospholipases, proteases, endonucleases) that will damage neurons intracellularly, leading to
necrosis (4). Abbreviations: Ab, antibody; AIF, apoptosis-inducing factor; Cyt c, cytochrome c; MPTP,
mitochondrial permeability transition pore; NMDAR, N-methyl-D-aspartate receptor; ROS, reactive
oxygen species.

Of interest is excitotoxicity-related dysfunction, such as calcium overload in mitochondria, as it
can result in dendrite degeneration [205]. This process could explain how long-term excitotoxicity may
lead not only to neuronal death but also to dendritic spine degeneration and retraction [206] in NPSLE.
Neuronal damage can also be induced by these same Abs through the overactivation of the already
mentioned mechanism of synaptic pruning [43]. Here, anti-NMDAR autoAbs present on the surface
of neurons are recognized by the complement factor C1q [44]. This binding leads to the recruitment
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of other complement proteins and activation of the classical complement pathway that results in the
deposition of the C3b complement factor on the neuronal target surface. In turn, C3b deposits are
recognized by the CD11b receptor displayed by microglia. Upon activation of the CD11b receptor,
microglia might engulf Ab-tagged structures, removing parts of the neuron [207] (Figure 4).
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Figure 4. Neuroinflammatory model of NPSLE. In the CNS, under normal physiological conditions,
microglial cells act as resident immune cells of the CNS and notably eliminate apoptotic cells. Systemic
inflammation renders the BBB permeable to circulating inflammatory factors, for example, certain
cytokines and autoAbs (e.g., anti-NMDAR) (1). After penetration into the brain, anti-NMDAR Abs
can induce apoptotic death of neurons through the process of “excitotoxicity” (2). On the other hand,
microglial cells can eliminate dendritic spines (the anatomical location of synapses) through a mechanism
called “synaptic pruning” (3). Hypothetically, anti-neuronal autoAbs bind neuronal antigens recognized
by the complement factor C1q (synthetized by the CNS), leading to the production of C3b. Dendritic
processes displaying C3b are recognized and phagocytosed by microglia. Furthermore, CNS cells
activated following BBB’s leakage upregulate ICAM-1 and VCAM-1 and modulate cytokine expression,
resulting in the recruitment of peripheral immune cells (4). CD4+ T cells infiltrate the CP and the brain
parenchyma, while CD19+ B cells are only found in the CP. This suggests that CD4+ T cells might sample
the brain environment in the parenchyma and activate CD19+ B cells in the CP, leading to the production
of Abs that circulate into the CSF. Abbreviations: Ab, antibody; BBB, blood–brain barrier; BCSFB,
blood–cerebrospinal-fluid barrier; CNS, central nervous system; CP, choroid plexus; CSF, cerebrospinal
fluid; ICAM-1, intercellular adhesion molecule-1; NMDAR, N-methyl-D-aspartate receptor; VCAM,
vascular cell adhesion protein 1.

The mechanism highlighted above is supported by experimental data evidencing that in lupus-like
disease, neurons not only die, as noted previously, but also lose their dendritic processes [44,45,204].
The fact that defective synaptic pruning can be stopped by a depletion of microglia or by suppression
of C1q [44] or C3 [197] components further corroborates such a mechanism. Interestingly, deletion of
the alternative complement pathway could reduce CNS damage [208] but it remains unclear whether
the attenuation in brain pathology is related to the reduction in systemic inflammation or if it is
brain-specific. It is also unknown whether brain-reactive Abs reach the brain by diffusion through the
disrupted BBB [209] or if they are produced intrathecally by infiltrating immune cells that home in on
the brain. The presence of plasma cells in the CP suggests that, at least in part, Abs could be produced
locally [176].

As indicated above, in MRL/lpr mice, a compromised BBB may allow for the diffusion, into the
brain, of molecules present in the systemic circulation [150,210] (Figure 4). It remains to clarify how a
leakage in the BBB appears in MRL/lpr mice, however. According to some authors, excessive systemic
signaling by circulating cytokines and complement factors could induce a process of controlled cell
death (apoptosis) of ECs of the CNS vasculature, thus rendering the BBB leaky [209,211]. In this context,
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particular reference can be made to the TNF-like weak inducer of apoptosis (TWEAK)/fibroblast
growth factor-inducible 14 (Fn14) pathway, which has been identified as the potential culprit of
the breach of the BBB [150,181,212]. TWEAK is increased in the cerebral cortices of MRL/lpr mice.
Moreover, as compared to MRL/lpr mice, MRL/lpr mice deficient for this pathway perform better
in tests of cognition and are less depressed [150]. They also display reduced levels of CSF Igs,
decreased peripheral immune cell infiltration, less complement deposition, impaired inducible
nitric oxide synthase (iNOS) production, as well as reduced neuronal death [181]. Conversely,
intracerebroventricular injection of Fn14 has the opposite effect (e.g., depression-like behavior,
learning/memory deficits, macrophage/microglia activation, increased brain cell apoptosis, and
astrogliosis) [212]. Consequently, this pathway may be considered as an important target for NPSLE
modulation, as it could prevent the initial autoAbs and other effector molecules from penetrating
the CNS.

A major question concerning how (and if) brain antigen-specific plasmocytes do mature in NPLSE
remains open. An interesting hypothesis involving Tfh cells and generation of ectopic lymphoid
structures in the CNS has been proposed and was brought forward with respect to MS [213]. In MS,
B cells simultaneously exchange between the CNS and the deep cervical lymph nodes, where they
mature into Ab-secreting plasmocytes with the help of local Tfh cells without the need to form ectopic
lymphoid structures in the brain [214]. As no ectopic lymphoid structures have been reported in brain
parenchyma during NPSLE yet, it is likely that the latter MS mechanism of B cell activation occurs also
in NPSLE. It should be noted, however, that Tfh cells are found in the CP of MRL/lpr mice, suggesting
that B cells could continue their activation in this structure as well [73].

Even though the precise sequence of neuroinflammatory processes in NPSLE is not fully
elucidated, the current results strongly support a determining role of brain-reactive autoAbs. In the
CNS, these autoAbs trigger proinflammatory responses by primed CNS cells, which leads to the
recruitment of peripheral immune factors and induces further damage (Figure 4).

4.4. Is NPSLE a Primarily CNS Disease?

The model of “CNS primarily disease” for NPSLE states that, in MRL/lpr mice, NP events arise
due to CNS intrinsic mechanisms. It has been shown that bone marrow transfer from young healthy
MRL+/+ mice to young (still healthy) MRL/lpr mice could not save the NP phenotype of the recipient
mice, leading to the conclusion that systemic inflammation might effectively be dispensable for the
emergence of these symptoms [215]. In good agreement with these results, the depletion of B cells in
MRL/lpr mice at the age of 14 weeks does not suppress the NPSLE phenotype [216]. Since MRL+/+

and MRL/lpr mice differ in one fundamental aspect, which is the presence of a Fas gene mutation
leading to loss of lymphocyte selection [41], the results obtained by the authors could be explained
according to two possible lines of thought: either the Fas gene is responsible for the NP symptoms in
MRL/lpr mice, or the activated systemic inflammation primes or induces damage in the CNS early in
life and persists through life. The first hypothesis would exclude systemic inflammation as the culprit
of NP disease.

An opposing comprehensive study showed that most of the behavioral and neurodegenerative
symptoms arising in MRL/lpr mice are due to the systemic inflammation and not to the lpr
mutation [200]. This study compared an MRL/lpr mouse strain that spontaneously displays an
attenuated autoimmune profile and yet still carries the lpr mutation (stock #0006825; Jackson
Laboratory) to the original MRL/lpr mouse strain (stock #000485; Jackson Laboratory). This research
found that mice with an attenuated disease do not exhibit the vast majority of NPSLE-like symptoms.
At last, a study conducted in patients refractory to standard therapy proposed that hematopoietic
stem cell transplantation (HSCT) might be proposed as a therapeutic option [217,218]. Interestingly,
a remission in NP symptoms has been observed in some cases [219,220], confirming the relation
between systemic inflammation and NPSLE symptoms.
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Another argument mitigating the hypothesis of “CNS primarily disease” has been evoked with
the demonstration that production of type I IFNs, which are produced systemically during the course
of the lupus disease [221], prime microglia for damage in lupus-prone mice. Mice deficient for IFN-α/β
receptor (IFNAR) are protected from the damaging effects of synaptic pruning [43]. Furthermore, NP
symptoms appear early in the life of MRL/lpr mice. For example, depression-like symptoms can be
observed at as early as 8 weeks of age in MRL/lpr mice. This was the age that Stock et al. performed
the adoptive bone marrow transfer [215]. It is an important point because the autoimmune processes
could have had negative effects on the CNS in these mice prior to the bone marrow transfer. Indeed,
proinflammatory factors are increased systemically early in the life of MRL/lpr mice [222], and damage
by anti-NMDAR Abs lasts even after their removal [45]. Most importantly, it has been shown by two
separate studies that the treatment of systemic inflammation attenuates brain damage in lupus-prone
mice [223,224]. Another point to consider in this assumption is the effect of maternal autoAbs on the
fetus. Some of the behavioral deficits might be difficult to attribute to the systemic inflammation that
develops with age, because the fetus could be affected in utero and some specific behavioral deficits
could be already present at birth [55,199]. More specifically, it has been shown that, when pregnant
mice were immunized against NMDAR or exposed to human anti-NMDAR Abs, their pups developed
thinner cortical layers and performed worse in cognitive tasks, showing how the fetus can be affected
by the autoimmune status of the mother [199]. In this context, however, it should be noted that the
MRL/lpr model, like all experimental models, has its own pitfalls. NPSLE patients could have a
genetic CNS intrinsic predisposition to develop NP symptoms, which would require further study on
specific gene candidates and additional experiments in an NPSLE-specific mouse model.

In conclusion, even though some behavioral symptoms appear to be related to the Fas mutation
in MRL/lpr mice, most of these dysfunctions seem to be rather associated with systemic inflammation.

5. Therapeutic Approach to NPSLE

5.1. Current Treatments

The treatment of NPSLE is currently empirical and symptomatic and remains mainly palliative
and nonspecific. Two general therapeutic approaches are distinguished, i.e., anti-ischemic and
anti-inflammatory, both respectively stemming from the two presumed mechanisms of NPSLE
pathogenesis, i.e., vascular/thrombotic and inflammatory [11].

State-of-the-art therapeutic strategies for NPSLE have been recently reviewed in great detail by
Magro-Checa et al. [225] and Hanly et al. [11]. This aspect is not discussed in detail here. Nevertheless,
we would like to stress the importance of the prompt management of NP symptoms in SLE patients.

Due to an absence of a “gold standard marker” in NPSLE diagnosis, attribution of NP symptoms
to SLE represents a clinical challenge. Without any objective biomarkers, diagnosis solely relies on the
exclusion of other potential causes (e.g., infections, hormonal/metabolic dysfunctions, medication-related
adverse-effects). In the case of “confirmed” NPSLE diagnosis, therapy should be individualized to
each specific patient, and the strategy of choice will depend on major symptoms and their severity.
For example, patients presenting with seizures are administered anticonvulsants, those suffering from
psychosis are treated with antipsychotics, depression is medicated by antidepressants, and headaches
with analgesics or nonsteroidal anti-inflammatory drugs (NSAIDs) [226–228]. If symptoms are severe,
specific and sometimes aggressive treatments are required [225].

In clinical practice, depending on the suspected underlying pathophysiological processes, therapy
is directed at the prevention of ischemic/thrombotic events or at inflammation. Focal symptoms that
arise due to the damage or blockage of arteries supplying the brain with oxygen and nutrients are
addressed with anti-ischemic therapies, such as anticoagulants and antiplatelets. In the case of diffuse
symptoms, which arise due to inflammation, an immunosuppressive therapy is primarily warranted,
alone or in combination with anti-inflammatory medication (e.g., corticoids, cyclophosphamide) [225].
The efficacy of cyclophosphamide in treating NPSLE-like disease has been confirmed in MRL/lpr



Int. J. Mol. Sci. 2018, 19, 3588 17 of 34

mice [223], thus indicating that novel therapies evaluated in this murine strain might be beneficial in
human patients as well (Table 3).

Table 3. Some therapeutic molecules acting in the brain and tested in lupus-prone murine models.

Therapeutic Molecule Molecular Target Neuroinflammatory Process Reference

Crry-Ig C3 convertase

Complement deposition
Apoptosis

Neurodegeneration
Cytokine production

Adhesion molecule expression

[193,197]

Anti-ICAM-1 Ab ICAM-1 Sciatic nerve conductivity [155]

Anti-CD4 Ab CD4+ T cells Immune cell infiltration
Inflammation of the CP [179]

Cyclophosphamide Immune cell dsDNA Synaptic pruning [223]

BI-BTK-1 BTK Immune cell infiltration [224]

GW2580 CSF-1R Cytokine expression [229]

PLX5622 CSF-1R Synaptic pruning [44]

Captopril ACE Microglial activation
Synaptic pruning [44]

hCDR1 peptide/Edratide Anti-dsDNA Ab

Inhibition of neurogenesis
Complement deposition
Immune cell infiltration

Neurodegeneration

[171,198]

FTY720/Fingolimod
(Gilenya) S1P receptor

BBB leakage
Immune cell infiltration

Cytokine production
Neurodegeneration

[230,231]

P140 peptide/Lupuzor HSPA8 CMA regulation [85]

Abbreviations: Ab, antibody; ACE, angiotensin converting enzyme; BBB, blood–brain barrier; BTK, Bruton’s
tyrosine kinase; CMA, chaperone-mediated autophagy; CP, choroid plexus; crry, complement regulator complement
receptor 1-related gene/protein-y; CSF-1R, colony stimulating factor 1 receptor; ds, double-stranded; HSPA8, heat
shock protein A8; ICAM-1, intercellular adhesion molecule; Ig, immunoglobulin; S1P, sphingosine-1-phosphate.

5.2. A Potential Therapeutic Option: The Hypothesis of Autophagy

Autophagy (from Ancient Greek, “self-devouring”) is a vital, finely regulated intracellular
process that results in the engulfment and destruction of self-components. Its main purpose is
the generation of energy during periods of fasting and destruction of faulty cytoplasmic proteins
and organelles [232–234]. Three major types of autophagy coexist, namely, macroautophagy (the best
studied at present and which is negatively regulated by mechanistic target of rapamycin (mTOR)) [235];
microautophagy, which directly engulfs cytosolic material into lysosomes via the formation of
characteristic invaginations of the lysosomal membrane [236]; and chaperone-mediated autophagy
(CMA), in which an HSPA8/HSC70-containing complex recognizes proteins with a KFERQ-like
motif [237].

Increasing evidence suggests autophagy’s important role in both innate and adaptative
immunity [238], and thereby its influence on the pathogenesis of inflammatory diseases (see [239]).
Autophagy is particularly involved in inflammation by modulating and controlling the development,
homeostasis, and survival of inflammatory cells, including B and T lymphocytes. In general,
proinflammatory signals and cytokines induce autophagy, while autophagy itself can either increase
or reduce proinflammatory cytokine secretion depending on the cellular and inflammatory context
(see [240] for an extensive review of the question).

Altered autophagy is found in systemic manifestations of murine SLE [241] and other
neuroinflammatory diseases, such as MS and experimental autoimmune encephalomyelitis,
an experimental model of MS [85,242–245]. In these settings, upregulation of the protein kinase
mTOR has been described. Indeed, treatment with rapamycin—an immunosuppressant also known
as sirolimus—that inhibits mTOR and, thus, stimulates macroautophagy [246], ameliorates some
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clinical and histological signs of the disease [247,248]. Interestingly, comparable beneficial effects were
reported two decades ago in murine SLE [249] and, more recently, also in human SLE [250]. Overall,
these data support the view that molecules exerting immunomodulatory effects, and particularly
modulating autophagy pathways, should be further investigated and exploited in the therapy of
several autoimmune disorders [251].

Autophagy in microglia has been implicated in the development of neuroinflammatory and
neurodegenerative diseases [252]. More particularly, a role for microglial autophagy in synaptic
pruning and maturation of neuronal connections during development and in the formation
of social behaviors has been described recently [253], bringing new insights to NPSLE. Of
important note, synaptic pruning in microglia is dependent on microtubule-associated protein light
chain 3 (LC3)-associated phagocytosis (LAP) [254]. Dysfunction of LAP is thought to be important
in the development of SLE [255], as LAP ablation in the myeloid cell lineage (including microglia)
renders mice prone to developing lupus, whereas deletion of macroautophagy itself failed to increase
lupus-like symptoms [241]. In the brain of lupus-prone mice, accumulation of neuronal material has
been reported in microglia, suggesting that LAP might also be deficient [43]. Concomitantly, elevated
levels of autophagy-related proteins (BECLIN-1, LC3, sequestosome-1 (SQSTM1)) have been observed
in the brain of diseased MRL/lpr mice, pointing to an increase of autophagy initiation/LAPosome
formation with a defect in their degradation rate [256]. On the other hand, and as described above,
treatment of SLE with activators of autophagy may lead to better outcomes [249]. The LAP axis is
a noncanonical form of autophagy, besides other canonical processes of autophagy, which may be
specifically involved in lupus-like disease [241]. To summarize, we hypothesize that NPSLE could
greatly benefit from a therapy specifically targeting the formation of LAPosomes in order to increase
dendrite arborization and reduce synaptic pruning.

As autophagy can have both beneficial [257] and deleterious [258] effects depending on the disease
context [252], we should be very cautious when interpreting the global effects of autophagy-targeting
treatment because it could be cell- and time-specific. We already observed that the aberrant autophagy
activity (downregulation or hyperactivation) that occurs in pathological settings is not a general feature
that equally affects all organs or tissues of any individual [259]. On the contrary, dysregulation can
greatly differ from one organ to another, a conclusion also underpinning several autoimmune or
non-autoimmune indications [85]. Similarly, it would be fair to emphasize the possible existence of a
dichotomic regulation of autophagy (CNS vs. periphery) during SLE. Then, reduction of autophagy
should happen at the periphery, which benefits from mTOR inhibitors (e.g., rapamycin), whereas the
upregulation of autophagy should occur in the CNS, which would benefit from autophagy inhibitors
(e.g., mTOR agonists). If the hypothesis is correct, SLE patients treated with mTOR inhibitors should
be very carefully monitored for NPSLE.

We are currently performing behavioral evaluations on MRL/lpr mice administered with a
peptide targeting autophagy, particularly CMA, in lupus mice and likely SLE patients also [260,261].
This peptide, called P140, encompasses residues of the U1-70K spliceosomal protein and contains a
phosphoserine residue at position 140, hence its name [262]. Our investigations provide promising data
for treating SLE patients [263] and possibly also patients with NPSLE: we observed beneficial effects of
the peptide on spatial alternation deficits in 17-week-old female MRL/lpr mice [84,85]. Yet, it remains
to be determined if P140 can indeed help preserve neuron dendrite arborization in experimental
MRL/lpr mice.

6. Conclusive Remarks and Perspectives

NPSLE acts as a convincing example of generalized inflammation and autoimmunity leading to
CNS damage with behavioral outcomes. However, this is not a unique case of peripheral immune
processes propagating at the CNS level and inducing severe disturbances [264]. For example,
the assumption that systemic overexpression of IL-6 may contribute to BBB failure and the development
of amyotrophic lateral sclerosis has been formulated [265]. It has also been observed that systemic
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inflammation can induce emotional and cognitive impairments, called sickness behavior, which can
resolve on its own. However, in severe cases, like sepsis, the damage can be permanent. This aspect
has been extensively reviewed elsewhere [266].

Here, we propose that NPSLE-like disease developing, for example, in lupus-prone MRL/lpr
mice, should be regarded as a model of choice for allowing the study of how systemic inflammation
affects the brain. Neuroinflammatory mechanisms reported in these mice are comparable to those
described in other chronic inflammatory diseases and sepsis. Therefore, they should not be overlooked.

Further research dealing with human NPSLE and murine models of NPSLE should help to better
understand the pathophysiological events that trigger and sustain this strong form of lupus disease
and allow the validation of useful NPSLE biomarkers. This includes studies based on neuroimaging
and investigations aiming to identify serologic and CSF markers. This will be a fundamental step in
planning future randomized control trials on the treatment of NPSLE.
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Ab Antibody
ACR American College of Rheumatology
aPL Antiphospholipid
BBB Blood–brain barrier
BCSFB Blood–cerebrospinal-fluid barrier
BOLD Blood oxygen level-dependent
CD Cluster of differentiation
CMA Chaperone-mediated autophagy
CNS Central nervous system
CP Choroid plexus
CSF Cerebrospinal fluid
Cyt c Cytochrome c
dsDNA Double stranded DNA
DTI Diffusion tensor imaging
DWI Diffusion-weighted imaging
ECs Endothelial cells
Fas/APO-1/CD95 Apoptosis stimulating fragment
HPA Hypothalamic–pituitary–adrenal
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HSCT Hematopoietic stem cell transplantation
HSPA8 Heat shock 70-kD protein A8 isoform 1
Iba1 Ionized calcium binding adaptor molecule 1
ICAM-1 Intercellular adhesion molecule 1
IFN Interferon
IFNAR IFN-α/β receptor
Ig Immunoglobulin
IL Interleukin
iNOS Inducible nitric oxide synthase
LAP LC3-associated phagocytosis
LC3 Microtubule-associated protein light chain 3
lpr Lymphoproliferation
M-CSF Macrophage colony-stimulating factor
MIF Macrophage migration inhibitory factor
MPTP Mitochondrial permeability transition pore
MRA Magnetic resonance angiography
MRI Magnetic resonance imaging
MRL Murphy Roths Large
MRS Magnetic resonance spectroscopy
MS Multiple sclerosis
MTI Magnetic transfer imaging
mTOR Mechanistic/mammalian target of rapamycin
MTR Magnetic transfer ratio
NAA N-acetyl aspartate
NMDAR N-methyl-D-aspartate receptor
NPSLE Neuropsychiatric systemic lupus erythematosus
NSAIDs Non-steroid anti-inflammatory drugs
NZW New Zealand White
NZB New Zealand Black
PAF Paraformaldehyde
RARE Rapid acquisition with relaxation enhancement
ROS Reactive oxygen species
SQSTM1/p62 Sequestosome-1/p62
T1 Longitudinal relaxation time
T2 Transverse relaxation time
TE Echo time
Tfh T follicular helper
TNF Tumor necrosis factor
TR Repetition time
TWEAK TNF-like weak inducer of apoptosis
VCAM-1 Vascular cell adhesion protein 1
vs. versus
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