
Intercomparison of MR-informed PET image reconstruction methods
James Blanda), Abolfazl Mehranian, Martin A. Belzunce, Sam Ellis, and Casper da Costa-Luis
School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK

Colm J. McGinnity and Alexander Hammers
King’s College London & Guy’s and St Thomas’ PET Centre St Thomas’ Hospital, London, SE1 7EH, UK

Andrew J. Reader
School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK

(Received 13 January 2019; revised 23 August 2019; accepted for publication 23 August 2019;
published 4 October 2019)

Purpose: Numerous image reconstruction methodologies for positron emission tomography (PET)
have been developed that incorporate magnetic resonance (MR) imaging structural information, pro-
ducing reconstructed images with improved suppression of noise and reduced partial volume effects.
However, the influence of MR structural information also increases the possibility of suppression or
bias of structures present only in the PET data (PET-unique regions). To address this, further develop-
ments for MR-informed methods have been proposed, for example, through inclusion of the current
reconstructed PET image, alongside the MR image, in the iterative reconstruction process. In this
present work, a number of kernel and maximum a posteriori (MAP) methodologies are compared,
with the aim of identifying methods that enable a favorable trade-off between the suppression of
noise and the retention of unique features present in the PET data.
Methods: The reconstruction methods investigated were: the MR-informed conventional and spatially
compact kernel methods, referred to as KEM and KEM largest value sparsification (LVS) respectively;
the MR-informed Bowsher and Gaussian MR-guided MAP methods; and the PET-MR-informed hybrid
kernel and anato-functional MAP methods. The trade-off between improving the reconstruction of the
whole brain region and the PET-unique regions was investigated for all methods in comparison with
postsmoothed maximum likelihood expectation maximization (MLEM), evaluated in terms of struc-
tural similarity index (SSIM), normalized root mean square error (NRMSE), bias, and standard devia-
tion. Both simulated BrainWeb (10 noise realizations) and real [18F] fluorodeoxyglucose (FDG) three-
dimensional datasets were used. The real [18F]FDG dataset was augmented with simulated tumors to
allow comparison of the reconstruction methodologies for the case of known regions of PET-MR dis-
crepancy and evaluated at full counts (100%) and at a reduced (10%) count level.
Results: For the high-count simulated and real data studies, the anato-functional MAP method per-
formed better than the other methods under investigation (MR-informed, PET-MR-informed and
postsmoothed MLEM), in terms of achieving the best trade-off for the reconstruction of the whole
brain and PET-unique regions, assessed in terms of the SSIM, NRMSE, and bias vs standard devia-
tion. The inclusion of PET information in the anato-functional MAP method enables the reconstruc-
tion of PET-unique regions to attain similarly low levels of bias as unsmoothed MLEM, while
moderately improving the whole brain image quality for low levels of regularization. However, for
low count simulated datasets the anato-functional MAP method performs poorly, due to the inclusion
of noisy PET information in the regularization term. For the low counts simulated dataset, KEM LVS
and to a lesser extent, HKEM performed better than the other methods under investigation in terms
of achieving the best trade-off for the reconstruction of the whole brain and PET-unique regions,
assessed in terms of the SSIM, NRMSE, and bias vs standard deviation.
Conclusion: For the reconstruction of noisy data, multiple MR-informed methods produce favorable
whole brain vs PET-unique region trade-off in terms of the image quality metrics of SSIM and
NRMSE, comfortably outperforming the whole image denoising of postsmoothed MLEM. © 2019
The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Associa-
tion of Physicists in Medicine. [https://doi.org/10.1002/mp.13812]
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1. INTRODUCTION

Positron emission tomography (PET) is a versatile and clini-
cally impactful medical imaging modality, in the diagnosis or

management of neurological disorders, cancers, and cardio-
vascular diseases. Despite PET’s clinical utility, the associ-
ated image quality is generally inferior to other anatomically
driven imaging modalities, such as magnetic resonance
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imaging (MRI). There are two dominant factors that degrade
the reconstructed PET image quality: (a) high Poisson noise
in the PET data, a consequence of the limited injected dose
and limited sensitivity of current clinical PET scanners; (b)
poor spatial resolution (~4 mm), due to the finite detector
size, photon acollinearity and positron range (among other
factors). The limited PET system resolution leads to partial
volume effects (PVEs), such as the spillover of small high-in-
tensity regions to neighboring voxels, introducing bias in
regional quantification. To address these issues, anatomical
images (such as MR) have been exploited, through utilizing
shared PET-MR structural information within the reconstruc-
tion process. Anatomical MR images, such as T1 or T2
weighted, provide structural information that the PET radio-
tracer distribution is likely to correlate with, at least in part.
This functional anatomical correspondence is particularly
evident for neurological [18F]fluorodeoxyglucose (FDG) PET
scans, where the radiotracer distribution is well delineated
between the white and gray matter boundaries. Numerous
such MR-informed reconstruction methodologies have now
been proposed in the literature.1–8

One recent example of MR-informed PET reconstruction
in the current literature is the MR-informed kernel method
(KEM).9,10 The kernel method extracts structural information
from the corresponding MR image, forming a set of spatial
basis functions. These structural basis functions reparameter-
ize the reconstruction process, restricting the reconstructed
image to be comprised from a linear combination of these
spatial basis functions. MR-informed KEM has subsequently
been extended to produce more spatially compact basis func-
tions, referred to as KEM largest value sparsification (LVS),11

to aid the recovery of PET-unique features. PET-unique fea-
tures are considered to be structures that are present in the
PET image, but which are not present or have a different
structure in the MR image. In contrast to conventional KEM,
KEM LVS uses a composite feature vector comprised of both
MR intensity and spatial information, the relative weighting
between these two features is used to select the contributing
voxels for each basis function. Therefore, in relatively uni-
form MR regions where the MR intensity values are similar,
spatially close voxels will be selected over more disparate
voxels, thereby helping recovery of PET-unique features.
More generally, KEM has been applied to a range of recon-
struction problems,12–21 and is an example of a broader
cohort of algorithms that reparameterize the emission image
into an alternative set of basis functions.22–24

In contrast to reparameterizing the reconstruction process,
MR information can alternatively be included into the recon-
struction process through the addition of a regularizing term
in either a Bayesian maximum a posteriori (MAP) or penal-
ized maximum likelihood (PL) framework.25,26 In this work,
the regularized methods investigated are restricted to an
image-weighted quadratic potential function in the prior.
Multiple alternatives to the quadratic prior have been pro-
posed in the literature (e.g., relative difference, total varia-
tion, Lange, Kaipio),27–29 which predominantly seek to
reduce smoothing across genuine boundaries in comparison

with the quadratic prior. However, due to the inclusion of
anatomical boundary information through the image-weight-
ing factors, shared PET-MR boundaries are expected to be
well recovered irrespective of the potential function used in
the prior. For such reasons, the consequence of varying pen-
alty functions (for instance using the relative difference
instead of the quadratic penalty function) while including
image-weighting factors in the prior has been shown to be
minimal.30

The selection of MR(only)-informed weighting factors
under comparison in this work is the Gaussian similarity ker-
nel31,32 and the asymmetric Bowsher prior,5 due to their
enduring popularity, and ability to match the performance of
more involved MR-informed methods.30,33,34 In addition,
these methods use spatial similarity matrices to extract MR
structures, in a comparable way to the kernel methods. Thus,
all methods investigated in this study can be considered to be
part of the same group of algorithms which include MR
information through similarity matrices. These MR-derived
similarity matrices are incorporated into the reconstruction
process via the kernel method (KEM & KEM LVS) or MAP
(Gaussian MR-Guided and Bowsher).

The kernel and MAP MR-informed reconstruction
methodologies have all demonstrated reduced noise35 and
reduced PVE properties, in comparison with the routinely
used maximum likelihood expectation maximization
(MLEM)36 or ordered subsets expectation maximization
(OSEM) algorithms.37 Due to the reduction of PVE through
incorporating MR information, major improvements in regio-
nal quantification can be realized.38,39 This is of particular
importance for the assessment and diagnosis of neurological
diseases including Alzheimer’s, epilepsy, and Parkinson’s
disease, where quantification of MR visible anatomical
regions is essential.6,40–44 Despite these beneficial properties
achieved through the inclusion of MR information, adverse
consequences also arise, such as increased susceptibility to
suppressing PET-unique high-intensity regions.10,30 This is a
major pitfall for the visual diagnostic interpretation of PET
images, in particular for oncological cases, where PET imag-
ing has been shown to improve the diagnosis and subsequent
treatment of cancers.45 Specifically, for brain and neck can-
cers [18F]FDG PET has played an increasing role in the diag-
nosis and planning.46,47 One potential avenue currently under
investigation for reducing the suppression of these high-in-
tensity PET-unique regions is to extend the MR guidance to
include the reconstructed PET image at each iteration. This
concept was implemented firstly via MAP (regulariza-
tion)3,48,49 and has recently been extended to a kernel (repa-
rameterization)50,51 implementation. Such methods shall be
referred to as PET-MR-informed, from which this work shall
compare the anato-functional (a MAP method),52 and the
hybrid kernel method (HKEM).50,51 Alternative PET-MR-in-
formed methods are present in the literature, which incorpo-
rate both PET and MR information in the regularization term,
including joint Shannon entropy4,53 and parallel level sets pri-
ors.54,55 While such methods remain active within the PET
reconstruction field, they do not lie within the same group of
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algorithms under comparison that determine PET-MR simi-
larity via a local neighborhood similarity matrix.

In this work, a comparison between MR-informed and
PET-MR-informed kernel and MAP methods is undertaken,
in order to clarify whether the inclusion of MR information
into the PET reconstruction process in the above forms can
universally improve the reconstructed images, for shared and
discrepant PET-MR regions alike. In particular, we focus on
the trade-off between whole brain image quality, evaluated in
terms of structural similarity (SSIM) and normalized root
mean square error (NRMSE), and the faithful recovery of
structures unique to the PET data, evaluated in terms of bias
and mean values, and whether the inclusion of PET data into
the guidance process reduces the suppression of the PET-
unique regions.

2. MATERIALS AND METHODS

2.A. Theory

The reconstructed PET image represents the spatial distri-
bution of an injected radiotracer. The injected radiotracer
undergoes radioactive decay within the patient, expelling
positrons that rapidly annihilate, with each annihilation event
producing a pair of photons with opposite trajectories that are
detected by the PET scanner along a particular line of
response. The measured counts (m) for each and every line of
response correspond to a set of Poisson random variables, the
values of which can be related to the expected counts through
the Poisson likelihood. Through maximizing the Poisson
likelihood with respect to the emission image (h), the most
likely expected counts distribution is calculated. The EM

algorithm is a popular iterative method to maximize the Pois-
son likelihood objective function56:

L q hð Þ;mð Þ ¼P
i
mi logðqiÞ � qi (1)

q hð Þ ¼ Ahþ b (2)

h
nþ1ð Þ
EM ¼ h nð Þ

AT1A
T m

Ah nð Þþb

� �
(3)

where A is the system matrix, b is the scatters and randoms
(background counts), and q is the model of the expectation of
the measured projection data. In addition to the measured
PET data which are susceptible to noise, alternative sources
of information can be incorporated into the reconstruction
process to reduce the noise and PVEs in the reconstructed
image. As alluded to above, the inclusion of prior information
(in particular anatomical boundaries) can be achieved
through either kernel (reparameterization) or MAP (regulari-
sation) reconstruction methods. The particular methods
investigated are summarized in Tables I and II.

2.A.1. Kernel method

MR-informed KEM reparameterizes the emission image
into a set of MR-derived spatial basis functions (K).

h ¼ Ka (4)

The coefficients að Þ of these spatial basis functions (K)
are estimated through maximizing the reparameterized Pois-
son log likelihood objective function, with respect to the
basis function coefficients. Through the reparameterization
of the emission image, and the nonnegativity constraint of

TABLE I. Summary of the six magnetic resonance (MR)-informed methods expressed in terms of the generalized Gaussian [Eq. (19)], indicating how each weight
matrix or basis function is derived.

Method zj x; h nð Þ; r
� �

MR-derived weights PET derived weights k-nearest neighbors Weights and basis functions

Regularization

Gaussian MR-guided xj
rMR

e

� xj�xlj jj j2
2r2

MR 1 Uses whole neighborhood

Bowsher 0 1 1 w.r.t. xj

Anato-functional xj
rMR

;
h nð Þ
j

rPET

� �
e

� xj�xlj jj j2
2r2

MR e

� h
nð Þ
j

�h
nð Þ
lj jj j2

2r2
PET Uses whole neighborhood

Reparameterization

KEM xj
rMR

e

� xj�xlj jj j2
2r2

MR 1 w.r.t. xj

KEM LVS xj
rMR

;
rj
rr

h i
e

� xj�xlj jj j2
2r2

MR e

� rj�rlj jj j22
2r2

MR 1 w.r.t. xj
rMR

;
rj
rr

h i

HKEM xj
rMR

;
h nð Þ
j

rPET

� �
e

� xj�xlj jj j2
2r2

MR e

� h
nð Þ
j

�h
nð Þ
lj jj j2

2r2
PET w.r.t. h nð Þ

j

HKEM, hybrid kernel method; LVS, largest value sparsification; PET, positron emission tomography.
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the EM algorithm, the possible solution space is restricted.
Provided the basis functions are of sufficient size, the emis-
sion image will be inhibited from forming noisy images,
while retaining shared PET-MR structures.

Kernel basis functions are spatial similarity matrices
between each voxel and their neighboring voxels. Each kernel
basis function is described through comparing a central voxel
with its neighboring voxels. Only comparing voxels that lie
within a predefined spatial neighborhood prevents the inclu-
sion of long-range correlations and reduces the computa-
tional burden. In a similar vein to the Bowsher prior, only the
k-nearest neighbors (kNN) in feature space are selected to
contribute to a given voxel’s basis function. The Euclidean
distance was used to determine the k-nearest neighbors. The
values of the kernel basis functions (within the spatial neigh-
borhood) are generally calculated from the radial Gaussian
kernel [see Eq. (5) below], acting on the feature vector repre-
sentation of each voxel. Figure 1 illustrates this basis function
calculation for a generalized patch feature vector. For all
methods compared, the spatial neighborhood has a side
length of five and the feature vector is implemented as a sca-
lar, simply by using only the individual voxel intensity. For
MR-informed KEM this gives

Kjl ¼ e
�jjxj�xl jj2

2r2
MR ; xl 2 kNNof xj

0; otherwise

(
(5)

where x refers to the MR voxel intensity values and rMR is
the standard deviation applied for the MR voxel-based Gaus-
sian. The resultant kernel basis functions together form the
kernel matrix K, with which the emission image is reparame-
terized. The kernel matrix for all kernel implementations is
row normalized in accordance with.9 Through reparameteriz-
ing the EM update equation, the spatial basis function coeffi-
cients að Þ are found, which maximize the likelihood with

respect to the measured projection data:

a nþ1ð Þ ¼ a nð Þ
KTAT1K

TAT m
AKa nð Þþb

� �
(6)

An alternative means of sparsifying the kernel method has
been proposed in Ref. [11], which uses a composite feature
vector based on a weighted combination of the MR voxel val-
ues and their spatial location:

Kjl ¼ e
� zj xj ;rjð Þ�zl xl ;rlð Þj jj j22

2 ; zl 2 kNN of zj
0; otherwise

(
(7)

zj xj; rj
� � ¼ xj

rMR
rj
rs

 !
(8)

where rj refers to the spatial location of voxel j and rs refers
to the spatial standard deviation. This method will be referred
to as KEM LVS and has been shown to lead to more localized
basis functions (Fig. S1), and thus better recovery of PET-
unique regions. A further extension of the kernel method is
HKEM. HKEM includes the reconstructed PET image at
each iteration into the kernel basis function value calcula-
tions, extending the Gaussian term to be comprised of a
Gaussian applied to the current intensities of the recon-
structed PET image, in product with a Gaussian applied to
the intensities of the MR image. rPET refers to the standard
deviation applied for the PETvoxel-based Gaussian:

K nð Þ
jl ¼ e

� xj�xlj jj j2
2r2

MR e

� h
nð Þ
j

�h
nð Þ
lj jj j2

2r2
PET ; h nð Þ

l 2 kNN of h nð Þ
j

0; otherwise

8<
:

(9)

The HKEM implementation by Ref. [50,51], uses all vox-
els within a spatial neighborhood to contribute to a basis
function. An alternative implementation of HKEM would be

TABLE II. Summary of each magnetic resonance (MR)-informed method’s parameters. Each method underwent a restructured grid search, using a 108 and 107

count three-dimensional-simulated dataset, to determine the chosen parameters, which gave the best whole brain to positron emission tomography (PET)-unique
region structural similarity index (SSIM) trade-off. The range of values over which the grid search was evaluated, and the chosen parameters are stated.

Method

Parameters for high-count data Parameters for low-count data

Fixed Varied Chosen Fixed Varied Chosen

Regularization

Gaussian MR-guided N/A rMR ¼ 0:01� 5
b ¼ 0� 106

rMR ¼ 0:1 N/A rMR ¼ 0:01� 5
b ¼ 0� 107

rMR ¼ 0:5

Bowsher N/A k ¼ 0� 60
b ¼ 0� 106

k ¼ 20 N/A k ¼ 0� 60
b ¼ 0� 107

k ¼ 40

Anato-functional rMR ¼ 0:1 rPET ¼ 0:001� 0:5
b ¼ 0� 106

rPET ¼ 0:01 rMR ¼ 0.5 rPET ¼ 0:001� 0:5
b ¼ 0� 107

rPET ¼ 0:5

Reparameterization

KEM N/A rMR ¼ 0:01� 5
k ¼ 0� 60

rMR ¼ 1 N/A rMR ¼ 0:01� 5
k ¼ 0� 60

rMR ¼ 0.5

KEM LVS rs= 40 rMR ¼ 0:01� 5
k ¼ 0� 60

rMR ¼ 0:5 rs= 40 rMR ¼ 0:01� 5
k ¼ 0� 60

rMR ¼ 0:5

HKEM rMR ¼ 0:1
kMR ¼ 124

rPET ¼ 0:001� 0:5
kPET ¼ 0� 124

rPET ¼ 0:01 rMR ¼ 0:5,
kMR ¼ 124

rPET ¼ 0:001� 0:5
kPET ¼ 0� 124

rPET ¼ 0:5
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to implement the k-nearest neighbors search based on both
PET and MR voxel values weighted by their standard devia-
tion, in a similar manner to KEM LVS.

2.A.2. Maximum a posteriori (MAP)

Regularization of the objective function, in accordance
with MAP or PL is achieved through the inclusion of a prior
term R to the objective function, as follows:

X ¼ L q hð Þ;mð Þ � bR hð Þ (10)

Markov random fields are a common choice of prior that
identify interactions between short-range neighboring voxels
(called cliques). For this case, R hð Þð Þ is equivalent to the
Gibbs energy function and is purely influenced by relation-
ships between voxels within the same clique. The quadratic
function can be chosen as the inter-voxel penalty function,
which will suppress the differences between neighboring vox-
els, encouraging a smooth radiotracer reconstruction. A gen-
eral expression for the quadratic prior function is given by

R hð Þ ¼
X
j

X
l2Nj

wjl hj � hl
� �2

(11)

with the weighting factors wjl quantifying how similar we
expect the neighboring voxel hl to be to the central voxel hj
within a given spatial neighborhood Nj

� �
. A separable form

of the MAP objective function for this weighted quadratic
prior term [Eq (11)] is found through implementing De Pier-
ro’s decoupling rule,57 which employs a surrogate penalty
term (using the principle of optimization transfer). The sepa-
rable iterative update formula is explicitly presented in Ref.
[32,58] and repeated here for clarity:

h nþ1ð Þ
j ¼ 2h nþ1ð Þ

j;EM

P
i
Aij

D nð Þ
j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D nð Þ

jð Þ2þ4CjB
nð Þ
j

q (12)

D nð Þ
j ¼P

i
Aij � b

2

P
l2Nj

wjl h nð Þ
j þ h nð Þ

l

� �
(13)

B nð Þ
j ¼ h nþ1ð Þ

j;EM

P
i
Aij (14)

Cj ¼ b
P
l2Nj

wjl (15)

In the case of no anatomical information, the weighting
factors are indiscriminately set to 1/Nj, resulting in smooth-
ing across uniform and boundary regions alike. Alterna-
tively, the weighting factors can be obtained from a co-
registered MR image that shares boundary information with
the PET data, to prevent over-smoothing across shared PET-
MR boundaries. These weighting factors calculate the simi-
larity between a chosen voxel and the voxels that lie within
its spatial neighborhood. Two popular MR-derived weights
use the Gaussian and asymmetric Bowsher-based formula-
tions. Each method compares the central voxel’s feature vec-
tor with the feature vector of each of its neighboring voxels,
in turn. The Gaussian MR-guided prior uses the radial Gaus-
sian in feature space to determine the similarity of neighbor-
ing voxels, to a chosen voxel (again, as previously indicated,
only single voxel scalar values are used as feature vectors in
this work):

wjl ¼ e

� xj�xlj jj j2
2r2

MR
(16)

The weighting factors for all MAP methods are normal-
ized, with the sum of all weighting factors within a given vox-
el’s neighborhood set to 1. The Bowsher prior sets the
weighting factors for the k most similar voxels (determined
by the Euclidean distance in feature space) within a spatial
neighborhood to 1, and the others to 0:

FIG. 1. The formation of the kernel basis functions for the MR-informed kernel (top) and the hybrid kernel (bottom). The neighborhood comparison is shown for
the generalized patch case. The resulting basis functions are equivalent to the weighting factors used in the magnetic resonance (MR)-guided Gaussian and
anato-functional maximum a posteriori methods, provided the number of k-nearest neighbors is equal to the spatial neighborhood. [Color figure can be viewed at
wileyonlinelibrary.com]
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wjl ¼ 1; xl 2 kNN of xj
0; otherwise

	
(17)

The anato-functional reconstruction methodology extends
the MR-guided Gaussian prior to include similarity weights
from the current PET image update. The composite weighting
factor is the product between the PET and MR Gaussian simi-
larity kernels, where the PET similarity kernel is calculated
from the image for each iteration update:

w nð Þ
jl ¼ e

� xj�xlj jj j2
2r2

MR e

� h
nð Þ
j

�h
nð Þ
lj jj j2

2r2
PET

(18)

As the anato-functional and HKEM priors rely on a previ-
ous activity estimate, no theoretical convergence guarantee
can be provided for these adaptively weighted regularization
methods. Although, our preliminary findings showed that
empirically these reconstruction methods converge to a fixed
point solution at which the objective function remains
unchanged. All methods presented in both the kernel and
MAP sections are based on the formation of similarity
weights between voxels confined within a spatial neighbor-
hood. These weights, or kernel basis function values, can be
described through the general expression [Eq. (19)], based on
a composite feature vector (z). Subsequently, the k most simi-
lar voxels to the central voxel (the k-nearest neighbors) are
identified, where the voxels’ similarity can be assessed in
terms of single voxel intensity, patch intensity, spatial posi-
tion, or any alternative feature vector. Weighting factors (or
basis function elements) that correspond to voxels that lie
outside the central voxel’s k-nearest neighbors are set to zero.
All MR-informed methods are expressed in this formulation
in Table I.

w nð Þ
jl orK nð Þ

jl ¼ e
� zj x;h nð Þ ;rð Þ�zl x;h nð Þ ;rð Þj jj j22

2
(19)

2.B. Simulation studies

A three-dimensional-simulated [18F]fluorodeoxyglucose
(FDG) PET phantom was constructed with a voxel-side
length of 1 mm, based on the BrainWeb59 segmented MR
database. The gray and white matter tissue classes were
assigned intensities with the ratio of 4:1 in keeping with
the expected uptake from an FDG tracer.30,60,61 Real PET
images have more structural variation than the produced
piecewise constant simulated phantom. To discourage
overly piecewise constant images, Gaussian smoothed ran-
dom structures were incorporated into the simulated PET
phantom, in accordance with Eq. (20), producing more
varied tissue structure:

hrand ¼ h 1þ H 2G rand; rsmð Þ � 1ð Þð Þ (20)

where rand are uniformly distributed random numbers
between 0 and 1 for each image voxel, G corresponds to con-
volution with a Gaussian kernel of width rsm, and H is an
amplitude parameter. Four high-intensity structures (lesions)
were added to the PET phantom (only). The two smaller
lesions are located in the white matter, whereas the larger
lesions are positioned across MR boundaries that differ
(Fig. 2). Profiles through each of these PET-unique regions
are also shown in Fig. 2, with the intensity of tumors C and
D equal to three times the intensity of the gray matter. The
PET phantom was projected into span 11 sinograms using a
reconstruction software which models the Siemens Biograph
mMR PET-MR scanner.62 A 4.5 mm point spread function

FIG. 2. (Left) Simulated positron emission tomography (PET)-unique high-intensity regions (tumors A, B, C and D) that differ in structure to the corresponding
regions in the T1 magnetic resonance (MR) phantom. (center) Simulated [18F]fluorodeoxyglucose (FDG) PET phantom based on the BrainWeb phantom, with
the four PET-unique high-intensity regions added. (right) T1 image. All images are shown at MR resolution. The gray matter intensity value shown in the tumor
profiles is approximately 0.1 arbitrary units. [Color figure can be viewed at wileyonlinelibrary.com]
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(PSF) was applied in the forward model, to simulate the over-
all effects of photon acollinearity, positron range, and finite
crystal width.63 The simulated sinograms were rescaled to
high- and low-count level datasets (108 and 107 prompts,
respectively), each with a randoms fraction of 20% and a
scatter fraction of 20%, prior to introducing Poisson noise.
This was repeated for 10 noise realizations. The simulated
sinograms were reconstructed at mMR resolution (voxel size
of 2.09 9 2.09 9 2.03 mm3), with resolution modeling
(PSF) included in the reconstruction.

2.B.1. Simulation studies parameter selection

All methods underwent a restricted grid search of the
parameter range, for both the high-count and low-count simu-
lated datasets. All images were reconstructed up to 300 itera-
tions, with images resized to the original 1 mm resolution of
the ground truth phantom for the calculation of the error met-
rics. The structural similarity index (SSIM)64 was used to
determine the similarity between the reconstructed images
and the ground truth, as is generally perceived to provide a
closer numerical representation of visual perception. SSIM
has previously been used in the PET and image processing
literature to evaluate novel methodologies,54,65,66 and to
assess structural similarity between multimodality images as
part of a proposed methodology,17 among other uses. The
simplified formulation of SSIM employed in this work is

SSIM h; hGT
� � ¼ 2lhGT lhþC1ð Þ 2rhGT hþC2ð Þ

l2hþl2
hGT

þC1

� �
r2hþr2

hGT
þC2

� � (21)

where lh refers to the spatial local mean, rh refers to the local
standard deviation, and rhGTh is the cross-covariance between
the image hGT and h. C1 and C2 are constant values depen-
dent on the dynamic range of the image. The parameters for
each reconstruction method were compared for their ability
to improve the SSIM metric, for regions where the PET and
MR phantom notably differ (PET-unique regions), and for
the whole brain region. For each reconstruction method, the

SSIM trade-off curve that is positioned closest to the SSIM
value of 1 for both the whole brain and PET-unique regions,
that is, produced the largest sum of the unique SSIM squared
and whole brain SSIM squared, was selected. The chosen
parameters for each reconstruction method are presented in
Table II. It should be noted that the performance of the PET-
MR-informed methods of HKEM, and anato-functional was
found to be highly sensitive to the chosen parameters (in par-
ticular rPET ) and the noise level of the PET image under
reconstruction.

2.B.2. Simulation studies multiple noise
realizations

The chosen parameter ranges for each reconstruction
method were employed to reconstruct 10 noise realizations of
the simulated data, for both the 108 and 107 count levels. The
reconstructed images were assessed using a variety of error
and image quality metrics for individual voxels and across
regions of interest (ROI), to determine which MR-informed
method provided the best trade-off between the reconstruc-
tion of the whole brain and PET-unique regions. The values
calculated for SSIM (Figs. 3 and 6) are now for multinoise
realization data and were averaged across all noise realiza-
tions. The voxel-wise metrics of mean, bias, and standard
deviation (presented in the Appendix for tumor regions
Figs. S2 and S3) are calculated across the multiple noise real-
izations (Nnoise) in accordance with the following equations:

�hj ¼ 1
Nnoise

PNnoise

n
hj;n (22)

Biasj ¼ �hj � hGTj (23)

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nnoise

PNnoise

n
hj;n � �hj
� �2s

(24)

ROI-based error metrics of bias and standard deviation are
also calculated across multiple noise realizations. These

(1) (2) (3) (4)

FIG. 3. All the results shown are for the high counts (108) simulated dataset, over multiple noise realizations. (1) Bias vs standard deviation for the whole brain
region. (2) Whole brain normalized root mean square error (NRMSE) vs the positron emission tomography (PET)-unique region NRMSE (averaged over the four
PET-unique regions). (3) Whole brain structural similarity index (SSIM) vs the PET-unique region SSIM (averaged over the four PET-unique regions). (4) PET-
unique region bias (averaged over tumor regions B and D only) vs whole brain standard deviation. The methods investigated are shown for increasing b values
(MAP) or k-nearest neighbors (KEM). Maximum likelihood expectation maximization is shown for increasing levels of post reconstruction smoothing. [Color
figure can be viewed at wileyonlinelibrary.com]
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metrics are an extension of the metrics above; the metric
value (squared) is now summed over each voxel within the
ROI and is normalized according to the ground truth. ROI
bias vs standard deviation curves are presented for the whole
brain region, and each of the PET-unique regions (Figs. 3, 6;
Figs. S2 and S3).

BiasROI %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNROI

j
�hj�hGTjð Þ2PNROI

j
hGTjð Þ2

s
� 100 (25)

rROI;1 %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNnoise

n

PNROI
j

�hj�hj;nð Þ2
Nnoise

PNROI
j

hGTjð Þ2
s

� 100 (26)

Normalized root mean square error (NRMSE) as shown in
Figs. 3 and 6, over a specific ROI can then be calculated as:

NRMSE %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2ROI þ r2ROI;1

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNnoise
n

PNRoi
j hj;n � hGTj

� �2
NNoise

P
kðhGTk Þ2

vuuut � 100

(27)

Alternative error metrics that only depend on a single
noise realization are also included to allow direct comparison
with the real data studies (Figs. 5, 8, 10 and 12). The tumor
mean values were compared to the white matter standard
deviation (calculated using an eroded ROI) to allow the
trade-off between the retention of PET-unique features and
noise suppression of each method to be assessed. These sin-
gle noise realization error metrics are

�hROI ¼ 1
NROI

PNROI

j
hj (28)

rROI;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NROI

PNROI

j
hj � �hROI
� �2s

(29)

However the tumor mean vs white matter standard deviation
metric is incomplete and does not penalize the distortion of
tumor regions, bias of the cortical regions, or the smoothing of
different intensities across regional boundaries (PVEs). To
address the issue of PVEs, the mean value of the white matter,
gray matter, and cerebral spinal fluid (CSF) regions (using the
full noneroded ROI including edges) is also examined. These
regional mean values are plotted against their corresponding
standard deviation values. The regional standard deviation val-
ues used for these plots are also calculated using the full none-
roded ROI. Methods that reduce PVEs across these regional
boundaries should result in a reduction in white matter and
CSF mean values, and an increase in the gray matter mean
value relative to unsmoothed MLEM, (while over-smoothing
methods will produce the converse trends). Improved recon-
struction methods should therefore ideally lead to a fixed
tumor mean relative to unsmoothed MLEM, reduced white
matter standard deviation relative to unsmoothed MLEM, and
follow the aforementioned regional mean trends.

2.C. Real data studies

2.C.1. FDG dataset

Real [18F]FDG data from a patient scan (Alzheimer’s dis-
ease) was reconstructed using all seven methods previously
considered. The dataset was acquired from the Siemens Bio-
graph mMR simultaneous PET-MR scanner, allowing simple
acquisition of co-registered PET-MR data. The [18F]FDG
scan had a total prompt count of 4.69 9 108 and a scan dura-
tion of 23 min. The tracer activity at time of injection
(81 minutes prior to start of image acquisition) was
229 MBq. A T1 MPRAGE scan provided the anatomical
image, which was resampled to the PET resolution
(2.08626 mm 9 2.08626 mm 9 2.03125 mm) for use in
anatomical guidance.

2.C.2. Augmented FDG dataset

Four simulated tumors were added to the FDG dataset
to give known PET-unique regions relative to the corre-
sponding MR structure. The intensity profiles of the
tumor regions are shown in Fig. 9 (the PET intensity of
the gray matter is approximately 0.4 arb. units). This
augmented dataset is reconstructed at the normal full
(100%) count level and then also resampled to a lower
count level of 10% (relative to the total prompt count
level). The parameters used for the 100% and 10% count
level-augmented FDG real data studies were those chosen
for the high- and low-count simulation studies, respec-
tively. However, the rPET parameters employed by the
anato-functional method and HKEM were reselected for
each count level, due to the dependence of rPET on the
PET image intensity. As previously evaluated in the simu-
lated data studies, the mean value of each PET-unique
region was compared to the standard deviation of an
eroded white matter region, in order to assess the ability
of each method to simultaneously recover the PET-unique
region while suppressing noise in an (assumed) approxi-
mately uniform region. The white matter mask was
extracted from the T1 image using FSL.67 The mean
value of the white matter, gray matter, and cerebral spinal
fluid (CSF) regions (using the full noneroded ROI includ-
ing edges) is also examined for the real data studies, to
help in investigating the PVE properties of each recon-
struction method.

3. RESULTS

3.A. Simulation Studies

For most of the figures presented (Figs. 3, 5, 6, 8; Figs. S2
and S3), either the regularization parameter bð Þ is increased
(for MAP methods), or the number of k-nearest neighbors is
increased (for kernel methods) along each curve. The original
full neighborhood implementation of HKEM50,51 is equiva-
lent to the last point on each HKEM curve (kPET = 124). The
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popular reconstruction method of MLEM is also shown for
comparison, at varying levels of postreconstruction smooth-
ing.

3.A.1. Simulation Studies High Counts

Figure 3 shows a series of trade-off curves for all recon-
struction methods under investigation, applied to the 10 noise
realizations of the high-count (108) simulated dataset. The
bias vs standard deviation plot for the whole brain region
(Fig. 3 column 1) demonstrates the improvements of all regu-
larized and reparameterized MR-informed and PET-MR-in-
formed reconstruction methods over postsmoothed MLEM,
across the whole brain region where the majority of the MR
structure matches the PET. The use of MR information in
these methods enables smoothing across MR uniform regions
(reducing noise), while preserving MR boundaries and reduc-
ing PVEs. Of particular interest in this work is the ability to
maintain these positive attributes of MR-informed methods,
while also maintaining genuine high-intensity features (tumor
regions) present only in the PET data and not in the MR. To
address this question, both NRMSE and SSIM curves are
presented in Fig. 3 (columns 2 and 3 respectively), showing
the trade-off between the accurate reconstruction of the whole
brain region vs the PET-unique regions (averaged over the
four PET-unique regions). Both the NRMSE and SSIM
curves (Fig. 3) show that the anato-functional method
achieves the best trade-off relative to the other investigated
methods, although the improvement is less apparent in terms
of NRMSE. The KEM LVS and HKEM also perform well in

terms of the SSIM trade-off between the PET-unique and
whole brain regions, whereas if evaluated in terms of the
NRMSE trade-off, the Bowsher method performs more favor-
ably. The PET-unique region bias vs whole brain region stan-
dard deviation trade-off curve (Fig. 3 column 4) also
demonstrates the improved performance of the anato-func-
tional method and KEM LVS, both attaining a reduced bias
(for the PET-unique regions B & D) for a fixed whole brain
standard deviation (image noise level) in comparison with
postsmoothed MLEM.

The points indicated by arrows on the NRMSE curves
(Fig. 3 column 2) indicate the parameters that produce
approximately equivalent whole brain NRMSE. The corre-
sponding images with fixed whole brain NRMSE are shown
in Fig. 4, in which all MR-informed methods can be seen to
yield a sharper reconstruction of the regions with shared
PET-MR structure, in comparison with postsmoothed
MLEM. Additionally, the anato-functional method can be
seen to perform favorably in reconstructing PET-unique
regions with a relatively high, constant intensity value and
well-defined boundaries (e.g., tumor D, Fig. 4 bottom row),
whereas the MR-guided and Bowsher MAP methods and
KEM LVS perform better in the reconstruction of high-inten-
sity PET-unique regions with a smoothed structure (e.g.,
tumor B).

The ability of each reconstruction method to suppress
image noise, without in turn suppressing the PET-unique
regions was also assessed through tumor mean vs white
matter standard deviation curves (Fig. 5). These graphs
show the improvement attained by the anato-functional

FIG. 4. All the results shown are for the high counts (108) simulated dataset for a single noise realization, at positron emission tomography (PET) resolution.
Reconstructed images for each of the methods under investigation. A zoomed in transverse region is shown along the bottom row. All magnetic resonance (MR)-
informed methods are shown at approximately fixed whole brain normalized root mean square error (NRMSE, as indicated by the arrows on the NRMSE curves,
Fig. 3 column 2. [Color figure can be viewed at wileyonlinelibrary.com]
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method, HKEM and to lesser extent, KEM LVS relative
to the other MR(only)-informed reconstruction methodolo-
gies for the high-intensity tumor regions B and D. The
anato-functional method and HKEM can achieve mean
values similar to that of unsmoothed MLEM for the high-
intensity PET-unique regions, while markedly reducing the
standard deviation across the white matter region. All
MR-informed and PET-MR-informed methods also lead to
a reduction in the white matter mean and an increase in
the gray matter mean in comparison with MLEM (Fig. 5,
bottom row), as expected for methods that reduce the

PVEs in these regions. This demonstrates the capability
of MR-informed methods to counteract PVEs that cause
spill-out effects for high-intensity regions. The PET-unique
regions of A and C appear to have insufficient intensity
to really benefit from the inclusion of PET information in
the PET-MR-informed methods, with both the MR-in-
formed and PET-MR-informed methods producing similar
tumor mean vs white matter standard deviation curves
(Fig. 5, top and middle rows), as such, the information
that can be drawn from the PET-unique regions A and C
is limited.

FIG. 5. All the results shown are for the high counts (108) simulated dataset, averaged over the multiple noise realizations. (top and middle row) The tumor mean
value vs white matter standard deviation, for all methods under consideration, for each positron emission tomography (PET)-unique region. The mean and stan-
dard deviation values were calculated within the specified (eroded) regions of interest (ROIs) at PET resolution, and then averaged across the multiple noise real-
izations. The maximum likelihood expectation maximization (MLEM) noise-free mean values for the different tumor regions are: 0.0624 for tumor A, 0.155 for
tumor B, 0.0575 for tumor C and 0.137 for tumor D. (bottom row) Regional mean value vs regional standard deviation using the full ROI including edges. The
expected trend for methods that reduce partial volume effects is a reduction in the white matter and cerebral spinal fluid mean, and an increase in the gray matter
mean. The b (MAP) or k (KEM) parameter values are increased along each curve. MLEM is also shown for increasing level of postreconstruction smoothing.
[Color figure can be viewed at wileyonlinelibrary.com]
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3.A.2. Simulation studies low counts

Figure 6 (columns 2 and 3) shows the NRMSE and
SSIM trade-off curves between the PET-unique (averaged
over the four PET-unique regions) and whole brain regions,
for the low count (107) simulated dataset. Both the NRMSE
and SSIM plots show KEM LVS performing better than
the other reconstruction methods, achieving both an
improvement in whole brain and PET-unique region image
quality in comparison with unsmoothed MLEM. This trend
can also be clearly seen in the bias (for tumor regions B
and D) vs whole brain standard deviation plot (Fig. 6

column 4), with KEM LVS achieving the lowest tumor bias
for a fixed whole brain noise level. The Bowsher method
also performs well, when evaluated in terms of NRMSE
trade-off (Fig. 6 column 2), but less so if evaluated in
terms of SSIM trade-off (Fig. 6, column 3) or bias vs stan-
dard deviation trade-off (Fig. 6, column 4) where instead
the HKEM performs better than the other methods exclud-
ing KEM LVS.

The points indicated by arrows on the NRMSE curves
(Fig. 6, column 2) correspond to the parameters that pro-
duce approximately equivalent whole brain NRMSE, with
the reconstructed images shown in Fig. 7. In Fig. 7, KEM

(1) (2) (3) (4)

FIG. 6. All the results shown are for the low counts (107) simulated dataset, using multiple noise realizations. (1) Bias vs standard deviation for the whole brain
region. (2) Whole brain normalized root mean square error (NRMSE) vs the positron emission tomography (PET)-unique region NRMSE (averaged over the four
PET-unique regions). (3) Whole brain structural similarity index (SSIM) vs the PET-unique region SSIM (averaged over the four PET-unique regions). (4) PET-
unique region bias (averaged over tumor regions B and D only) vs whole brain standard deviation. Each method is shown for increasing b values (MAP) or k-
nearest neighbors (KEM). Maximum likelihood expectation maximization is shown for increasing levels of post reconstruction smoothing. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 7. All the results shown are for the low counts (107) simulated dataset, for single noise realization, at positron emission tomography (PET) resolution.
Reconstructed images for each of the methods under investigation. A zoomed in sagittal region is shown along the bottom row. All magnetic resonance-informed
methods are shown at approximately fixed whole brain normalized root mean square error (NRMSE), as indicated by arrows on the NRMSE curves, Fig. 6 col-
umn 2. MLEM is shown with post reconstruction smoothing with a FWHM of 3.5 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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LVS and HKEM show a marginally sharper recovery of the
PET-unique regions in comparison with the remaining meth-
ods. Figure 8 shows the tumor mean vs white matter region
standard deviation for the low count dataset, with KEM LVS
and HKEM performing well in comparison to the other
methods investigated. The two high-intensity PET-unique
regions (B and D), particularly demonstrate the noise sup-
pression abilities of the KEM LVS and HKEM methods, for
a fixed tumor mean value. KEM also achieves a reduced

white matter standard deviation for a relatively fixed PET-
unique region mean value in Fig. 8, despite visually its PET-
unique regions being more distorted than the corresponding
KEM LVS and HKEM PET-unique regions (as shown in
Fig. 7). This highlights the limitations of using ROI-based
error metrics. Figure 8 (bottom row) shows an increase in
the white matter mean value and a reduction in the gray
matter mean value for the MR-guided and anato-functional
methods due to an increased smoothing across the white–

FIG. 8. All the results shown are for the low counts (107) simulated dataset, averaged over multiple noise realizations. (top and middle row) The tumor mean
value vs white matter standard deviation, for all methods under consideration, for each positron emission tomography (PET)-unique region. The mean and stan-
dard deviation values were calculated within the specified regions of interests (ROIs) at PET resolution, and then averaged across the multiple noise realizations.
The maximum likelihood expectation maximization (MLEM) noise-free mean values for the different tumor regions are: 0.00624 for tumor A, 0.0155 for tumor
B, 0.00575 for tumor C and 0.0137 for tumor D. (bottom row) Regional mean value vs regional standard deviation using the full ROI including edges. The
expected trend for methods that reduce partial volume effects is a reduction in the white matter and cerebral spinal fluid mean, and an increase in the gray matter
mean. b (MAP) or k (KEM) parameter values were increased along each curve. MLEM is also shown for increasing level of postreconstruction smoothing. [Color
figure can be viewed at wileyonlinelibrary.com]
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gray matter boundary (PVEs). Therefore, the MR-guided
and anato-functional methods (with their low count chosen
parameters) have lost their PVE correction capabilities that
were demonstrated in the high counts simulation studies
(Fig. 5).

3.B. Real data studies

3.B.1. 100% count level-augmented FDG dataset

Figure 10 shows the tumor mean vs white matter stan-
dard deviation trade-off plots (top and middle row) in
addition to the white matter, gray matter, and CSF regio-
nal mean plots (bottom row), for the augmented FDG
dataset (Fig. 9), at the 100% count level. The anato-func-
tional method is shown to perform well for the high-
count real data studies, achieving the lowest white matter
standard deviation (noise level) for a fixed tumor mean
value (for three out of the four tumor regions). The
KEM LVS and HKEM methods also perform better than
the remaining MR-informed methods when evaluated in
terms of tumor mean vs white matter standard deviation
trade-off (Fig. 10). Figure 10 (bottom row) shows that all
MR-informed methods produce images with a reduced
white matter mean, and an increased gray matter mean
for moderate levels of regularization (or reparameteriza-
tion). These trends correspond to a reduction in PVEs, in
particular for the KEM and Bowsher methods. Figure 11
shows the reconstructed images for each of the MR-in-
formed methods, with the parameters chosen to present
an approximately fixed white matter standard deviation
(as indicated by the arrowheads in Fig. 10). Figure 11
also shows the improved definition and delineation
between the white and gray matter when using the Bow-
sher method and KEM.

3.B.2. 10% count level-augmented FDG dataset

Figure 12 shows the tumor mean values vs white matter
standard deviation plots (top and middle row) in addition to
the white matter, gray matter, and CSF regional mean plots
(bottom row), for the augmented FDG dataset at the 10%
count level. KEM LVS, HKEM and to a lesser extent, the
anato-functional method perform well in maintaining the
mean value of the PET-unique regions, while reducing the
white matter standard deviation (Fig. 12, top and middle
rows). Figure 12 (bottom row) shows that the anato-func-
tional and MR-guided methods lead to an increase in white
matter mean value and decrease in gray matter mean values.
This trend demonstrates that the anato-functional and MR-
guided methods have lost their PVE reduction capabilities
that were demonstrated in the high-count real data studies
(Fig. 10). Figure 13 shows the reconstructed images for each
of the MR-informed methods, with the parameters chosen to
present an approximately fixed white matter standard devia-
tion (as indicated by the arrowheads in Fig. 12).

4. DISCUSSION

4.A. Simulation studies high count

The results from the high-count simulation studies show
that the anato-functional method excels in concurrently
improving the reconstruction of the whole brain and PET-
unique regions, when assessed via the majority of metrics
presented in Figs. 3–5. The KEM LVS and HKEM also per-
form well in terms of the SSIM trade-off (Fig. 3) between the
PET-unique and whole brain regions, and achieve a reduced
white matter standard deviation for a fixed tumor mean value
(Fig. 5). The Bowsher method achieves the lowest whole
brain NRMSE (Fig. 3) and notably reduces PVEs, however it

FIG. 9. Real patient [18F]fluorodeoxyglucose (FDG) dataset, augmented with simulated tumor regions, to produce genuine regions of positron emission tomogra-
phy (PET)-magnetic resonance (MR) mismatch. (left) Tumor regions and profiles from the maximum likelihood expectation maximization (MLEM) recon-
structed image for the 100% count level. (middle) MLEM reconstructed image of the whole brain region, shown at 300 iterations for the 100% count level.
(right) T1 MPRAGE image. All images shown at PET resolution. The gray matter PET intensity value is approximately 0.4 arb. Units. [Color figure can be
viewed at wileyonlinelibrary.com]
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clearly suppresses the mean values of the PET-unique regions
(Fig. 5). The remaining MR-informed methods are not the
foremost method in respect to any of the presented metrics.

The superior performance of the anato-functional method
over HKEM can be attributed to the added flexibility pro-
vided by tuning the b regularization parameter. This is impor-
tant due to the lack of PET structure present in the
reconstructed PET image at low iterations, as such, the
weighting factors (for the anato-functional method) and basis
functions (for HKEM) will be strongly influenced by the MR

structure only, producing reconstructions similar to MR-in-
formed methods. Thus, a low level of regularization for the
anato-functional method is beneficial for high-count datasets
to prevent PET-unique features being suppressed at low itera-
tions. For HKEM, fewer voxels can be selected to contribute
to the basis function (lower kNN) to prevent PET-unique fea-
tures being suppressed. As can be seen in Fig. 3 column 4,
HKEM performs similarly to the anato-functional method for
kNN = 5, however for larger values of kNN the tumor
regions are generally more biased. Therefore, the added

FIG. 10. All results shown are for the 100% count level-augmented real dataset. (top and middle rows) Tumor mean vs white matter (eroded mask) standard devia-
tion. The arrows indicate the mean vs standard deviation trade-off of the chosen parameters for the images shown in Fig. 11. (bottom row) Regional mean value
vs regional standard deviation using the full regions of interest including edges. The expected trend for methods that reduce partial volume effects is a reduction
in the white matter and cerebral spinal fluid mean, and an increase in the gray matter mean. [Color figure can be viewed at wileyonlinelibrary.com]
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flexibility of the regularised anato-functional method
improves its recovery of PET-unique regions as well as the
shared PET-MR regions, in comparison with HKEM.
Although for high regularization levels (high b), the anato-
functional methods will also suppress the PET-unique
regions.

Despite the beneficial attributes of the anato-functional
method over MR(only)-informed methods, it should be noted
that the inclusion of PET information for both HKEM and
anato-functional does degrade their noise reduction ability
for regions with differing PET and MR structures as shown in
the standard deviation images and bias vs standard deviation
trade-off plots for the PET-unique regions (Fig. S2). In addi-
tion, the effective reduction in regularization that occurs for
these PET-MR-informed methods at the PET-unique regions
may leave the corresponding reconstructed images more vul-
nerable to Gibbs like artefacts.68,69 This is clearly a downside
of the PET-MR-informed methods, however the increase in
standard deviation (noise) is only observed in these particular
regions (where the PET and MR structures differ) and at large
b values. Both improvements in the noise reduction proper-
ties of PET-MR-informed methods, and more effective sup-
pression of Gibbs like artefacts can be achieved through
selecting a larger rPET parameter (as done for the low count
simulations), resulting in broader PET similarity kernels.
However, this will impair the discussed PET-MR-informed
methods capability of reconstructing PET-unique regions.

4.B. Low-count simulation studies

The results from the low-count simulation studies show
that KEM LVS performs better than the other investigated

methods in terms of the majority of metrics evaluated, such
as NRMSE trade-off, SSIM trade-off (Fig. 6 columns 2 and
3) and tumor bias vs tumor standard deviation trade-off
(Fig. S3). The lack of dependence of KEM LVS on PET data
helps to suppress the noise in the image, while the compact-
ness of the basis functions enables improved recovery of the
PET-unique regions (relative to the other MR-informed meth-
ods). HKEM also performs well when evaluated in terms of
SSIM trade-off, tumor bias vs whole brain standard deviation
trade-off (Fig. 6, columns 3 and 4), or tumor mean vs white
matter standard deviation (Fig. 8). Both KEM and Bowsher
methods lead to large reductions in whole brain NRMSE
(Fig. 6, columns 2) and PVEs (Fig. 8, bottom row), however
this is at the expense of suppression and possible deformation
of the tumor regions (as shown in Fig. 7 and Fig. S3 bias-std
trade-off and profiles). In contrast to the high-count simula-
tion studies, the anato-functional method performs poorly in
terms of the all the metrics presented (Fig. 6–8) for the low-
count simulation studies.

The noise present in the low-count dataset clearly has a
negative impact on the anato-functional method, which fails
to outperform the rival methods as it did for the high-count
dataset, (Figs. 6 vs 3). For the anato-functional method, to
preserve PET only edges requires the value of rPET to be rela-
tively small. However, for noisy PET data, most of the PET
voxel values will be quite different to the central voxel value,
leading to most of the weighting factors going to zero. This
limits the extent of regularization for the anato-functional
method resulting in noisy reconstructed images. This prob-
lem can be resolved by using a larger value of rPET (as cho-
sen for the low count simulations), but this limits the
influence of the PET update image, and hence the recovery of

FIG. 11. The reconstructed images are shown for each of the reconstruction methods investigated, applied to the 100% count level-augmented real dataset. A
zoomed in transverse region is shown along the bottom row. All magnetic resonance-informed methods are shown at approximately fixed white matter standard
deviation, as indicated by the arrows in Fig. 10. Maximum likelihood expectation maximization is shown with postreconstruction smoothing (FWHM 4 mm).
[Color figure can be viewed at wileyonlinelibrary.com]
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PET-unique regions. By comparison, HKEM uses the kNN
sparsification to select voxel to contribute to the basis func-
tion, based on their PET voxel value. The kNN sparsification
allows PET features to be extracted, while allowing a large
rPET value to be selected. Therefore, a fixed number of vox-
els are selected to contribute to each basis function, effec-
tively fixing the level of regularization (irrespective of the
noise present in the PET image). This allows HKEM to
achieve an improved trade-off in comparison to the anato-
functional method.

A further comparison of the high- and low-count simula-
tion studies (Figs. 4 vs 7) shows a major change in the MR-
guided (and anato-functional) method’s capability to

delineate white and gray matter regions. This is due to the
different rMR values selected (as shown in Table I), for the
different count levels. For the high counts dataset, a smaller
value of rMR is selected (in comparison to the low count data-
set value), emphasizing differences in MR voxel values, and
thus enhancing edges in the reconstructed PET image.
Whereas, for the low counts dataset, a larger value of rMR

was selected, leading to similar weighting values for all MR
voxels as differences in the MR voxels are effectively
ignored, producing spatially smooth PET images. This trend
is also observed for the high- and low-count real data studies,
where the same rMR parameters are used as in the corre-
sponding simulation study.

FIG. 12. All results shown are for the 10% count level-augmented real dataset. (top and middle row) Tumor mean vs white matter (eroded mask) standard devia-
tion. The arrows indicate the mean vs standard deviation trade-off of the chosen parameters for the images shown in Fig. 13. (bottom row) Regional mean value
vs regional standard deviation using the full regions of interest including edges. The expected trend for methods that reduce partial volume effects is a reduction
in the white matter and cerebral spinal fluid mean, and an increase in the gray matter mean. [Color figure can be viewed at wileyonlinelibrary.com]
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4.C. Augmented FDG dataset

For the high-count simulation and real data studies similar
trends are observed. In both studies, the anato-functional
method followed by KEM LVS and HKEM perform better
than the remaining MR-informed methods when evaluated in
terms of tumor mean vs white matter standard deviation
trade-off (Figs. 5 and 10). In particular, the anato-functional
method achieves the lowest white matter standard deviation
for a fixed tumor mean for three out of the four tumor regions
assessed (Figs. 5 and 10, top and middle row), while reducing
PVEs with respect to postsmoothed MLEM (Figs. 5 and 10,
bottom row). Therefore, the inclusion of PET information
into the reconstruction process via the anato-functional
method (and HKEM) appears to be beneficial in the high-
count simulated and real patient datasets investigated. All
MR-informed methods investigated also demonstrate
improved PVE correction for both simulation and real data
studies, in comparison to postsmoothed MLEM. Visual sup-
port of the improved gray–white matter delineation is shown
in Fig. 11.

For the low count simulation and real data studies, similar
trends are also observed in terms of accurately reconstructing
PET-unique regions, while concurrently suppressing noise,
with KEM LVS and to a lesser extent, HKEM performing
better than the other methods investigated. In both simulated
and real data studies, KEM LVS and HKEM achieve similar
PVE reduction and noise suppression properties (Figs. 8 and
12, bottom row) to the Bowsher method, while reconstructing
the PET-unique regions with an increased mean value (Figs. 8
and 12, top and middle row) relative to Bowsher. The perfor-
mance of the anato-functional method, however, does differ

slightly between the simulation and real data studies, with the
anato-functional method achieving an improved tumor mean
vs white matter standard deviation trade-off in the real data
study (Figs. 8 vs 12). This change can be attributed to the
rPET parameter, which was reselected for the real data stud-
ies. Excluding the anato-functional method, a similar trend is
observed between the simulated and real data studies for the
remaining MR-informed methods in terms of tumor mean vs
white matter standard deviation (Figs. 8 and 12, top and mid-
dle row). The regional mean values for the MR-informed
methods also show similar results between the simulated and
real data studies (Figs. 8 and 12, bottom row). In both cases,
KEM provides the best reduction in PVEs (reducing the
white matter mean and increasing the gray matter mean),
whereas the anato-functional and MR-guided methods show
the converse trend due to increased PVEs. The over-smooth-
ing of the MR-guided and anato-functional methods, in com-
parison with the other MR-informed methods investigated
(such as Bowsher) can be seen in Fig. 13.

5. LIMITATIONS

This study has used the image quality measures of
NRMSE and SSIM to evaluate the proposed methods, which
are useful for representing the performance of quantification
tasks. However, the ability to interpret such error metrics as
potential changes in patient diagnosis and management is
limited. The ultimate evaluation of medical image quality is
through task-based observer studies, using either a human
observer or a representative mathematical observer. Two pop-
ular means for undertaking such task-based observer studies
include receiver operating characteristic (ROC) curves and

FIG. 13. The reconstructed images are shown for each of the reconstruction methods investigated, applied to the 10% count level-augmented real dataset. A
zoomed in transverse region is shown along the bottom row. All magnetic resonance-informed methods are shown at approximately fixed white matter standard
deviation, as indicated by arrows in, Fig. 12. Maximum likelihood expectation maximization is shown with postreconstruction smoothing (FWHM 4 mm). [Color
figure can be viewed at wileyonlinelibrary.com]
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the use of the Hotelling observer.70–73 For the presented com-
parison study, the use of human observers (radiologists in the
case of PET-MR images) would be very time-consuming
given the evaluation required of multiple patients and recon-
struction methodologies. Ideally each scan would also be read
by multiple radiologists to account for inter-person variation
in the reading of PET scans. In related work, a preliminary
task-based observer study has been undertaken, in which a
reduced number of MR methods are evaluated for the diagno-
sis of Alzheimer’s disease or temporal lobe epilepsy from
reduced count PET images.74 Automating the task-based
observer process is still an area of active research within med-
ical imaging, even for the relatively simple task of tumor
detection.75,76.

6. CONCLUSIONS

Three regularized and three reparameterized MR-informed
PET reconstruction methodologies have been compared. The
capability of each method to reduce PVEs and the noise pre-
sent in the reconstructed image without biasing the recovery
of genuine high-intensity PET-MR mismatched regions was
investigated.

For the high-count dataset, the anato-functional method
provided the best SSIM and NRMSE whole brain to PET-
unique region trade-off relative to the other methods investi-
gated. The inclusion of the current PET image through the
calculation of the weighting factors, as presented by the
anato-functional MAP method, enables PVE correction and
noise suppression to be attained in regions of matching PET-
MR structure, while also reconstructing PET-unique regions
with a similar bias to unsmoothed MLEM.

For the low count simulated dataset, the use of spatially
compact basis functions (KEM LVS) achieved the best SSIM
and NRMSE trade-off for the reconstruction of PET-unique
and whole brain regions, outperforming the other methods
investigated. HKEM also performed well for the simulated
and real datasets in terms of tumor mean vs white matter stan-
dard deviation, relative to the remaining MR-informed meth-
ods. The presence of noise in the low count dataset (of
similar intensity to the PET-unique regions) leads to the
inclusion of noise in the reconstructed PET image for the
anato-functional (and the HKEM to a lesser extent) method if
certain parameters values were selected. Therefore, at low
count levels the inclusion of PET information into the recon-
struction process could be more beneficial if integrated in an
alternative manner.

To conclude, for the reconstruction of noisy data, multiple
MR-informed methods produce favorable whole brain vs
PET-unique region trade-off curves, very comfortably outper-
forming the whole brain denoising of postsmoothed MLEM,
for a fixed PET-unique region SSIM.
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Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Appendix S1: Appendix A: Comparison of KEM and KEM
LVS basis functions.
Appendix B. Extended evaluation of simulated dataset.
Fig. S1: Basis functions derived using either the conventional
kernel method (KEM) method or the KEM largest value spar-
sification (LVS) method. The impact of the different imple-
mentations on basis function shape is shown for a uniform
(top row) and structured (bottom row) magnetic resonance
(MR) region. Only the proposed KEM LVS can deliver com-
pact basis functions in uniform MR regions and also

structured basis functions in detail containing MR regions for
the same fixed set of parameters.
Fig. S2: All the results shown are for the high counts (108)
simulated dataset, using multiple noise realizations. Bias
Images: bias images for each of the positron emission tomog-
raphy (PET)-unique regions, shown for increasing level of b
(MAP) or k (KEM) for each reconstruction method. Std
Images: standard deviation images for each of the PET-
unique regions, shown for increasing level of b or k for each
reconstruction method. Bias-Std Trade-off: Bias vs standard
deviation plots for each of the PET-unique regions, for
increasing levels of b (MAP) or k (KEM) along each curve.
Tumor Profiles: tumor profiles through the mean image (aver-
aged across noise realizations) of each reconstruction method
(approximately fixed normalized root mean square error), for
each PET-unique region.
Fig. S3: All the results shown are for the low counts (107)
simulated dataset, using multiple noise realizations. Bias
Images: bias images for each of the positron emission tomog-
raphy (PET)-unique regions, shown for increasing level of b
(MAP) or k (KEM) for each reconstruction method. Std
Images: standard deviation images for each of the PET-
unique regions, shown for increasing level of b or k for each
reconstruction method. Bias-Std Trade-off: bias vs standard
deviation plots for each of the PET-unique regions, for
increasing levels of b (MAP) or k (KEM) along each curve.
Tumor profiles: tumor profiles through the mean image of
each reconstruction method (the selected parameters for
which correspond to an approximately fixed whole brain nor-
malized root mean square error, for each PET-unique region.
The maximum likelihood expectation maximization (MLEM)
profile has been taken from the mean image of MLEM with
post reconstruction smoothing applied (FWHM 3.5 mm).
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	 1.INTRODUCTIONPositron emis�sion tomog�ra�phy (PET) is a ver�sa�tile and clin�i�cally impact�ful med�i�cal imag�ing modal�ity, in the diag�no�sis or man�age�ment of neu�ro�log�i�cal dis�or�ders, cancers, and car�dio�vas�cu�lar dis�eases. Despite PET&a...

