
Bootstrapping Automated Testing
for RESTful Web Services

Yixiong Chen1 , Yang Yang1, Zhanyao Lei1 ,
Mingyuan Xia2 , and Zhengwei Qi1 �

1 Shanghai Jiao Tong University, Shanghai, China
{lawischen,ylxy452782520,leizhanyao,qizhwei}@sjtu.edu.cn

2 AppetizerIO, Shanghai, China
ken@appetizer.io

Abstract. Modern RESTful services expose RESTful APIs to integrate
with diversified applications. Most RESTful API parameters are weakly
typed, which greatly increases the possible input value space. This poses
difficulties for automated testing tools to generate effective test cases to
reveal web service defects related to parameter validation. We call this
phenomenon the type collapse problem. To remedy this problem, we in-
troduce FET (Format-encoded Type) techniques, including the FET, the
FET lattice, and the FET inference to model fine-grained information for
API parameters. Enhanced by FET techniques, automated testing tools
can generate targeted test cases. We demonstrate Leif, a trace-driven
fuzzing tool, as a proof-of-concept implementation of FET techniques.
Experiment results on 27 commercial services show that FET inference
precisely captures documented parameter definitions, which helps Leif to
discover 11 new bugs and reduce 72% ∼ 86% fuzzing time as compared
to state-of-the-art fuzzers.

Keywords: Fuzz Testing · RESTful Web Service · Type Inference.

1 Introduction

The REST (Representational State Transfer) architecture [28] nowadays has
dominated the design of complex web services, such as public clouds (e.g. AWS
and Azure), social networking (e.g. Facebook and Twitter), and code hosting
(e.g. GitHub and GitLab). Typically, a RESTful web service exposes a set of
RESTful APIs. A client requests an API providing parameter values, and the
service responds with data represented in some common exchange format (e.g.
JSON or XML). According to a recent survey of 40 real-world popular RESTful
web services [36], modern services involve an average of 64 APIs and over 20
parameters per API. Testing such an input space of possible parameter value
combinatorics is challenging, and therefore automated testing is indispensable.

Since RESTful APIs are intended for applications implemented by different
programming languages, API parameters are weakly typed. An investigation
on 27 RESTful web services [19] shows that over 67% of the parameters are

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 46–66, 2021.
https://doi.org/10.1007/978-3-030-71500-7 3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_3&domain=pdf
http://orcid.org/0000-0002-7209-2771
http://orcid.org/0000-0001-9890-8196
http://orcid.org/0000-0001-5899-0295
http://orcid.org/0000-0003-2730-2319
https://doi.org/10.1007/978-3-030-71500-7_3

Bootstrapping Automated Testing for RESTful Web Services 47

string-typed, about 32% are number-typed, and the remaining 1% are boolean-
typed or object-typed. Overusing primitive data types significantly increases
the possible input value space. For example, a string-typed parameter can
take values varying from a specific URL to a comment about a YouTube video.
This poses difficulties for generating effective test cases. Consequently, many
automated REST testing tools are ineffective while RESTful web services suffer
from various input-related attacks, such as integer overflow attacks and SQL
injection attacks [18]. We call this phenomenon the type collapse problem.

The solution is to bridge the gap for automated testing tools to have a better
understanding of parameters. We observe that though parameter types are weak,
their values usually have distinct formats. For example, a datetime parameter
may require an ISO8601 date string. This motivates us to introduce the FET
(Format-encoded Type) which combines data types and value formats to describe
parameters in fine grains. For instance, the SHA1 FET represents 40-digit-hex
string-typed parameters. Furthermore, we introduce the FET lattice which
hierarchically organizes a set of FETs by a partial order, along with the FET
inference which seeks suitable FETs among a FET lattice for parameters in an
unambiguous manner.

To manifest how to enhance automated REST testing by FET techniques, we
implement Leif, a trace-driven fuzz testing tool. Leif gains fine-grained parameter
information by performing FET inference on HTTP traffic and then mutates
parameter values to mimic real attacks based on the inferred results. We apply
Leif to real-world web services, and the experiment results are encouraging. FET
techniques provide better bug-finding capability and bring 72% ∼ 86% fuzzing
time reduction for Leif when compared to state-of-the-art fuzzing tools.

In particular, this paper makes the following contributions:

– We introduce FET techniques, including the FET, the FET lattice, and the
FET inference, to remedy the type collapse problem and serve as a cornerstone
for high-level automated testing tools.

– We implement Leif, a FET-enhanced fuzzing tool which showcases how to
construct a ubiquitous FET lattice for common RESTful APIs and embed
FET techniques in an existing testing workflow.

– We evaluate the accuracy of FET inference, and the result is encouraging
(67% exact matches, 32% partial matches, and 1% mismatches on average).

– We evaluate Leif’s bug-finding capability (11 distinct bugs detected in 27
commercial web services) as well as its testing efficiency (72% ∼ 86% fuzzing
time reduction as compared to existing fuzzing tools).

The remainder of the paper is organized as follows. Section 2 analyzes the type
collapse problem in detail. Section 3 introduces FET techniques to solve the type
collapse problem. Section 4 introduces Leif as a proof-of-concept implementation
of FET techniques. Section 5 presents the evaluation of FET techniques and Leif.
Section 6 discusses related works and Section 7 concludes.

48 Y. Chen et al.

2 Motivation

It is essential for automated REST testing tools to generate test cases by filling
parameters with automatically generated values. This procedure requires ade-
quate information about parameters. Otherwise, the possible candidate space
would become enormous even for one single parameter. Therefore, a majority of
state-of-the-art automated testing tools focus on reducing the candidate space
by sophisticated methodologies. For instance, RESTler [13] arranges multiple
APIs in the producer-consumer order, and uses response data gained from the
previous APIs to request the next. Chizpurfle [23] and EvoMaster [12] generate
optimal candidate values based on evolutionary algorithms.

Nevertheless, the previous works have not focused on the root cause of the
candidate space explosion. Since most RESTful APIs are designed for exchang-
ing data between programs implemented by different languages (e.g., Java for
mobile applications while Python for the service), only a few common primitive
data types can be used to represent API parameters. For example, Amazon’s
online shopping web service takes about 2,400 parameters, among which 748
are number-typed (31%) and 1,581 are string-typed (66%) [19]. That is, types,
which are supposed to be diversified, now collapse into very limited cases. Conse-
quently, existing automated testing tools encounter a huge candidate space, e.g.,
solely knowing a parameter is string-typed spans a boundless candidate space
from paragraphs of Shakespeare to specific datetime strings. In addition, it is
difficult to pick up effective values that can pass parameter checking, then reach
actual business logic, and finally trigger bugs. Figure 1 shows a code sample of
a RESTful API (requires four parameters: string-typed start, string-typed
end, number-typed amount, and number-typed interest). In order to generate
an effective value which can reach business logic for the parameter start, a
testing tool has to know it is an ISO8601 datetime string. Unfortunately, since
parameters are mainly in primitive data types, this information is usually hard
to obtain. Therefore, the testing tool may treat it as an ordinary string and
generate arbitrary strings which are all rejected by the parameter checking and
thus are basically useless.

1 def calculate_monthly_installment():
2 try:
3 start = parse(request.get("start"), "YYYY-MM-DDTHH:MM:SSZ")
4 end = parse(request.get("end"), "YYYY-MM-DDTHH:MM:SSZ")
5 amount = float(request.get("amount"))
6 interest = float(request.get("interest"))
7 except Exception:
8 return make_response("Invalid Parameter", 400, "Bad Request")
9 # business logic

10 ...

Fig. 1. A Code Sample of a RESTful API (Written in Python).

Bootstrapping Automated Testing for RESTful Web Services 49

The type collapse problem is the major obstacle to obtaining adequate pa-
rameter information and leads to inefficient automated testing. Therefore, our
solution is to provide a fine-grained description method for parameters by ex-
ploiting both its data type and its value format. Leveraged by such information,
we are able to bootstrap and enhance automated testing techniques to gain
efficiency improvement when testing RESTful web services.

3 FET Techniques

To address the type collapse problem, we introduce FET techniques, including
the FET (Format-encoded Type), the FET lattice, and the FET inference. A
FET models an API parameter by its data type and its value format. A FET
lattice hierarchically organizes a set of FETs based on a partial order. We design
FET inference algorithms to seek suitable FETs among a FET lattice for pa-
rameters, and the inferred results are the critical information for bootstrapping
test case generation strategies.

3.1 Type Lattice

The idea of the FET lattice is inspired by the type lattice [24] for programming
languages widely used in compilation and program analysis [33, 44, 45]. A type
lattice is a complete lattice defined on 〈T,�〉, where T is a set of data types (e.g.
long in C/C++) and � is a partial order representing type convertibility. Every
two lattice elements have a unique least upper bound and a unique greatest lower
bound. An element tj is said to cover another element ti if and only if ti � tj
but there does not exist a tm such that ti � tm � tj , where ti � tj means
ti � tj and ti �= tj . Type lattices can model class inheritance hierarchies for
object-oriented languages. In this context, for any two elements ti and tj , ti � tj
holds if and only if ti inherits from or equals to tj . Figure 2 depicts a type lattice
for java.util.Collection (each vertex represents a class or an interface, and
each directed edge stands for the inheritance relationship).

The type lattice is the cornerstone of type systems for modern programming
languages. In static compilation, the type lattice is applied to checking value
assignment and type casting for code validity [38]. In dynamic compilation, e.g.,
JIT (Just-in-time Compilation) [14], it is employed to predict variable types at
program points, so as to remove unnecessary type checking. The type lattice is a
powerful tool to ensure the correctness and efficiency of programs. However, in
the context of REST, API parameters only manifest limited primitive data types
due to the type collapse problem, where the type lattice is no longer sufficient.

3.2 FET Lattice

A FET lattice is defined on 〈Ψ ⊆ T ×F,�〉. A FET ψ ∈ Ψ is defined by (tψ, fψ),
where tψ ∈ T is a data type, and fψ ∈ F is a value format or more specifically
a set of values. � is a partial order that for any two FETs ψi and ψj , ψi � ψj

50 Y. Chen et al.

Interface

Abstract Class

Class

Abstract
List

Abstract
Set

Sorted
Set

Iterable

Collection

SetList Abstract
Collection

Tree
Set

Array
List

Hash
Set

Linked
ListVector

NoType

Fig. 2. A Type Lattice for the Java Collections Framework.

holds if and only if tψi is type-convertible to tψj and fψi is a subset of fψj ,
denoted by tψi

� tψj
and fψi

⊆ fψj
. A FET ψi covered by ψj implies that ψi

describes parameter features in a finer grain than ψj . ψ� and ψ⊥ are defined
as (AnyType, U) and (NoType, ∅), where U is the set containing arbitrary values.
Figure 3 depicts an example FET lattice (a FET’s name describes its value
format, and FETs at the same level are identically colored).

FET Acceptance for Parameter Values. Similar to type lattices, FET
lattices help to determine FETs for given parameter values. To achieve this, we
define that a value v is accepted by a FET ψ if and only if typeof(v) � tψ and
v ∈ fψ, denoted by ψ ∈ acceptance(v). Otherwise v is said to be rejected by
ψ, denoted by ψ /∈ acceptance(v). Spontaneously, ψ� accepts all values while
ψ⊥ accepts none. A value v can be accepted by more than one FET, while the
greatest lower bound of the acceptances describes the value in the finest grain.
We call such an acceptance the minimum acceptance of v. The predecessors
of the minimum acceptance accept v but describe it in a coarser grain, while
the siblings reject v but describe other similar values in the same grain. The
minimum acceptance, the predecessors, and the siblings of v compose a tree,
denoted by ψ-tree(v). For example, for a SHA1 string v, its minimum acceptance
(the SHA1 FET in Figure 3), the predecessors (Hash, String, and ψ�) and the
siblings (MD5, and SHA256) compose the ψ-tree(v).

Avoiding the Ambiguity of FET Lattices. As seen in Figure 3, if a sin-
gle value is accepted by two sibling FETs (e.g. MD5 and SHA1), the minimum
acceptance will fall into the trivial ψ⊥. Generally, a FET lattice is said to be
ambiguous if there exist two FETs with the same predecessor can both accept
the same value. To avoid ambiguity, a validation procedure is obligatory after
a FET lattice is constructed, which is to ensure the value formats of every two
sibling FETs with the same data type are always disjoint.

Bootstrapping Automated Testing for RESTful Web Services 51

Decimal
IdentifierDatetime Hash

URI UUID
Date

Only

ISO

8601
SHA1MD5

StringNull Number

Integer

Package

Name

Version

Tag

Epoch

String

SHA

256
Boolean

Fig. 3. An Example FET Lattice.

In practice, we specify value formats by the regular language, and provide
a ubiquitous FET lattice [20] to model the most common RESTful parameters.
We will elaborate FET lattice construction and verification in Section 4.2.

3.3 FET Inference

Tree-merging FET Inference. As discussed previously, for a single value
v, a unique ψ-tree(v) can always be found in an unambiguous FET lattice. A
RESTful API parameter usually involves multiple values in practice. Hence we
give the tree-merging FET inference. For a parameter with values v1, · · · , vn,
the tree-merging inference is to compute ψ-tree(v1), · · · , ψ-tree(vn), and then
merge them into one tree. The merged tree is denoted by ψ-treen(Vn) where
Vn = {v1, · · · , vn}. The tree-merging inference can be described as a “find-
expand-merge” procedure: (1) find the minimum acceptance for a single value vi
by performing a depth-first searching from ψ� and add the predecessors along
the searching path into the tree; (2) expand the tree by adding the siblings and
then the ψ-tree(vi) is obtained; (3) repeat the step (1) and (2) for every value
and merge all the trees. Step (1) and (2) are illustrated in Figure 4, and step (3)
can be reduced to the DNS tree merging [25]. Assuming that the FET lattice
has l levels with m FETs, the time complexity is O(m) for computing one tree
and O(l) for merging two trees. Thus the time complexity of tree-merging FET
inference for a parameter involving n values is O(n · (m+ l)).
Bitfield-boosting FET Inference. In practice, we notice that the number
of FETs m in a lattice is a constant while the number of values n is a variate
(usually over 1,000). Therefore, we optimize the tree-merging FET inference
based on three observations: (1) each FET can be uniquely represented by one
bit in a m-bit bitfield, and therefore ψ-trees can be represented by several bits
in such bitfields; (2) given a minimum acceptance, its ψ-tree can be uniquely

52 Y. Chen et al.

~ ~

RejectionCurrent / Minimum Acceptance

Sibling~UnvisitedPredecessor

Fig. 4. Inferring ψ-tree(vi) for a Single Value vi.

determined, so the ψ-tree for every FET can be computed before inference; (3)
merging two ψ-trees is equivalent to performing a bitwise OR operation on their
corresponding bitfields.

Hence, we give the forward computation algorithm and the bitfield-boosting
FET inference. The forward computation traverses the lattice in breadth-first
order, assigns a unique bitfield ID per FET, and computes the ψ-tree, as shown
in Algorithm 1. Leveraged by the forward computation, the bitfield-boosting
inference only needs to find the minimum acceptance by the depth-first search-
ing, yields the bitfield tree, and merges it into the ψ-treei−1(Vi−1), as shown
in Algorithm 2. Therefore, the ψ-treen(Vn) can be efficiently computed by a
series of bitwise OR operations instead of graph computations, reducing the time
complexity from O(n · (m+ l)) to O(n ·m).

4 FET-enhanced REST Fuzzing

To manifest the utility of FET techniques, we design Leif, a FET-enhanced REST
fuzzing tool, and we implement it to a command-line tool in 2,796 lines of Python
code. This section elaborates the workflow of Leif, along with methodologies for
collecting HTTP traffic (Section 4.1), for constructing FET lattices (Section 4.2),
and for interfacing FET techniques with fuzzers (Section 4.3).

Figure 5 depicts Leif’s workflow and its interaction with existing systems
and tools. Leif assumes that the web service under test is already deployed
on a staging server or in a production environment. The developer acquires
the Leif program with a built-in FET lattice and traces HTTP traffic between
the service and the clients. Then Leif identifies RESTful APIs by parsing the
captured traffic and performs FET inference on parameter values. The inferred
results are provided to bootstrap test case generating. Finally, Leif emits test
cases and observes wrongful behaviors of the service.

Bootstrapping Automated Testing for RESTful Web Services 53

Algorithm 1: The Forward Computation.

Input: A FET Lattice.

1 ID ← 1; queue ← Queue(ψ�);
2 while !queue.isEmpty() do
3 current ← queue.pop();
4 current.ID ← ID;
5 ID ← ID << 1;
6 foreach ψ � current AND ψ �= ψ⊥ do
7 queue.push(ψ);

8 ψ�.pTree ← 0; ψ�.sT ree ← ψ�.ID;
9 ψ�.tree ← ψ�.pTree ∨ ψ�.sT ree;

10 queue ← Queue(ψ�);
11 while !queue.isEmpty() do
12 current ← queue.pop();
13 sTree ← 0;
14 foreach ψ � current AND ψ �= ψ⊥ do
15 sTree ← sTree ∨ ψ.ID;

16 foreach ψ � current AND ψ �= ψ⊥ do
17 ψ.pTree ← current.pTree ∨ current.ID;
18 ψ.sTree ← sTree;
19 ψ.tree ← pTree ∨ sTree;
20 queue.push(ψ);

4.1 Collecting and Parsing HTTP Traffic

As introduced in Section 3.3, the inferred result of a parameter is contributed by
its different values, and therefore the accuracy of FET inference increases when
Leif witnesses more value cases. Thus developers are expected to apply suitable
tracing methods. For example, monkey testing and scripted regression testing
are more preferred than unit testing to collect traffic. Leif takes the HAR file (an
archival format for HTTP traffic [39]), which is the standard output of network
proxies (Fiddler, MitmProxy [22], etc.), and browser inspection (e.g. Chrome,
and Safari). To identify parameters, the payload (including the headers, the
query string, and the body) of a captured request is parsed to key-value pairs
in JSON format. Due to the type collapse problem, only four data types are
present: boolean, number, string and object (including array). Non-object-
typed parameters are directly provided to FET inference while object-typed
parameters are flattened. Since a JSON object is a tree of properties, Leif flattens
it by splitting leaf properties to independent non-object-typed parameters and
assigning new keys named by their JSONPaths [29], as illustrated in Figure 6.
Then the flatten parameters are also provided to FET inference. Finally, FET
inference receives parameters for each API where each parameter has a unique
key and usually multiple values.

54 Y. Chen et al.

Algorithm 2: The Bitfield-boosting FET Inference.

Input: Parameter Values Vn = {v1, · · · , vn}.
Output: ψ-treen(Vn).

1 ψ-tree0(V0) ← 0;
2 for i ← 1 to n do
3 current ← ψ�;
4 accepted ← true;
5 while accepted do
6 accepted ← false;
7 foreach ψ � current do
8 if ψ ∈ acceptance(vi) then
9 current ← ψ;

10 accepted ← true;

11 ψ-treei(Vi) ← ψ-treei−1(Vi−1) ∨ current.tree;

12 return ψ-treen(Vn);

4.2 Ubiquitous FET Lattice

Regular Expressions for Value Formats. In Leif’s built-in ubiquitous FET
lattice, value formats are specified by regular expressions. We choose to use the
regular language rather than creating a new language to define value formats
because it has many advantages in this scenario. Firstly, regular expressions are
the de-facto descriptions of most string formats. Although regular expressions are
context-free, they can still distinguish different value formats. Secondly, they are
already familiar to developers, and therefore they are easy to construct without
extra learning costs. Finally, to ensure the unambiguity of a FET lattice is
to ensure the regular expression orthogonality of sibling FETs, which can be
formally determined by finite automata [46].
FET Lattice Constructing and Updating. We construct the ubiquitous
FET lattice by referencing popular RESTful services (e.g. Google Map, AWS,
Twitter, and GitHub): (1) we crawl API documents from these services and
then identify potential FETs used in these services; (2) we construct regular
expressions for these FETs by referencing related RFCs (e.g. RFC3339 [35] for
ISO8601, and RFC3986 [16] for URI), programming language specifications (e.g.
the Java specification [34] for PackageName), and database schema definitions
(e.g. the MongoDB data type definition [21] for Hash) to build a base FET
lattice; (3) we apply the Bayesian regular expression generation technique [42]
to discover new FETs from traffic and merge them into the base lattice; (4) we
verify the unambiguity by checking the orthogonality of regular expressions for
sibling FETs, using dk.brics.automaton library [37]. The verified lattice has
21 FETs organized in 5 levels, and we believe it is competent to model most of
the RESTful services. If a developer has application-specific FETs (at the first
usage or when major service updates take place), one can update the lattice by
adding FETs via step (3) and repeat step (4) for unambiguity verification.

Bootstrapping Automated Testing for RESTful Web Services 55

Inferred
-

Mutated requests

Responses

Requests

Responses

HTTP
tracer

Phase 1
Parsing raw
HTTP traffic

Phase 3
Bootstrapping

high-level automated
testing techniques

Phase 2
Performing the FET inference

based on the FET lattice

Leif built-in or user-
specified FET lattice

RESTful web
service

Leif

H
TT

P
tra

ffi
c

Identified APIs
and parameters

Applications

Fig. 5. The Workflow Architecture of Leif.

<object> {
“title”: “A Brief History of Time”,
“price”: 45.00,
“catalogue”: {

“main”: “Science”,
“sub”: {

“main”: “Cosmology”
}

}
}

(a) The Original Parameter.

title price

submain

$

catalogue

main

(b) The Tree Structure.

<string>
<number>
<string>
<string>

$.title: “A Brief History of Time”
$.price: 45.00
$.catalogue.main: “Science”
$.catalogue.sub.main: “Cosmology”

(c) The Flattening Result.

Fig. 6. An Example of Object Flattening.

Twinning FET Inference. We notice some parameters can be represented
by multiple data types and are minimally accepted by distinct FETs in different
data types. For example, an epoch datetime (elapsed seconds or milliseconds
since 1970-01-01 00:00:00) is accepted by the EpochString FET when it is
represented by string while is accepted by the Integer FET when in number.
Apparently, applying type casting to such parameters is very meaningful during
testing. To support this feature, we implement the twinning FET inference.
Before a value is inferred, Leif generates its twinning value if possible. If the
original value is number-typed, Leif generates a twinning string-typed value
(e.g. 1589809244481 → "1589809244481") and vice versa ("1589809244481"
→ 1589809244481). Then both values are inferred, and the resulting two ψ-
trees are merged as if Leif witnesses two independent values. By doing so, both

56 Y. Chen et al.

the Datetime and the Integer FETs are included in the final ψ-treen of an
epoch datetime parameter.

4.3 FET-aware Trace-driven Fuzzing

Trace-driven fuzzing tools generate test cases by replacing parameter values
of captured requests with candidate values. Therefore the success of a fuzzer
mainly depends on its quality of candidate values. In conventional tools, using a
larger candidate dictionary is the basic strategy to increase the opportunity for
triggering bugs, yet it lengthens the fuzzing time.

On the contrary, Leif provides a small but targeted dictionary for each FET
and we give several examples (corresponding to Figure 3): Number is tried with
integer overflows (8-bit, 16-bit, 32-bit, and 64-bit overflows) with signed and
unsigned values; Datetime is tried with year overflows (year 2038, and year

10,000), invalid dates (e.g. 2019-2-29), and timezone tweaks; ISO8601 is tried
with omitting meta characters ("-", ":", etc.); URI is tried with malformed URLs
(e.g. doubling "/", stripping "protocol://", and unescaped characters). With
each parameter tagged by a ψ-treen, Leif generates test cases by exhausting
dictionaries of all the FETs in the tree. Notice that, as discussed in Section 3.2,
the predecessors and the siblings of the minimum acceptance describe similar
but usually invalid values. Therefore, candidates from these FETs are the most
likely values which can pass parameter checking and trigger bugs. For an API
with multiple parameters, Leif exhausts dictionaries for one parameter each time
and tests such API by iterations of exhaustion. In this way, Leif increases the
opportunity to trigger bugs and meanwhile saves the fuzzing time.

5 Evaluation

In this section, we evaluate Leif with real-world RESTful web services, and the
complete dataset of our evaluation is publicly available [19]. Specifically, we
design three experiments to answer the following research questions:

RQ-1 How accurately do FET inference results describe RESTful API param-
eters of complicated real-world web services?

RQ-2 Can Leif generate effective test cases and therefore help developers to
detect web service vulnerabilities in practice?

RQ-3 Does Leif have better bug-finding capability with reduced fuzzing time
when compared to existing state-of-the-art trace-driven and specification-
driven fuzz testing tools?

5.1 FET Inference Accuracy Evaluation

In this experiment, we assume that API documents provided by the service
developers are the ground truth and we validate the accuracy of FET inference

Bootstrapping Automated Testing for RESTful Web Services 57

by comparing the inferred results with the ground truth. We choose GitHub3

and Twitter4, and we randomly pick up 50 RESTful APIs (25 from each). We
extract two pieces of information from document text: (1) parameter data types,
as explicitly listed in the documents; (2) parameter value formats, as provided
in the detailed descriptions (e.g. “This [the parameter since] is a timestamp in
ISO8601 format.”5). We feed example requests gained from the documents to
FET inference, compare the inferred FETs with the ground truth, and observe
three levels of matching:

(1) exact match, the inferred FET is said to be an exact match if it has the
exactly same data type and the value format as the ground truth;

(2) partial match, the inferred FET is said to be a partial match if it has
the exact data type, but its value format is a proper superset of the ground
truth;

(3) mismatch, for the remaining cases.

Intuitively, an exact match precisely describes a parameter such that a fuzzer
can exploit it to generate the most targeted values. A partial match is benign,
for it includes values that will not appear in practice, and a fuzzer may generate
a small set of useless values based on a partial match. A mismatch indicates that
the value format is not yet supported by the current FET lattice.

65
%

34
%

1%

70
%

28
%

2%

67
%

32
%

1%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

exact
match

partial
match

mismatch

M
at

ch
in

g
Le

ve
l R

at
io

s

GitHub Twitter Weighted Avg.

exact
match

partial
match

mis-
match

(a) FET Inference Accuracy.

boolean

number

string

Boolean

12%

Integer

16%

Decimal

11% String

14%

UUID

13%

ISO8601

9%

URI

5%SHA1

5%
Epoch

5%

Version

5%

MD5

5%

(b) Exact Match Distribution.

Fig. 7. FET Inference Accuracy Evaluation Results.

Figure 7(a) exhibits the ratios of matching on GitHub (137 parameters),
Twitter (86 parameters) and the weighted average (223 parameters). In total,
149 (67%) inferred results are exact matches, and 71 (32%) are partial matches.

3 https://docs.github.com/en/free-pro-team@latest/rest/reference
4 https://developer.twitter.com/en/docs
5 https://docs.github.com/en/free-pro-team@latest/rest/reference/gists

https://docs.github.com/en/free-pro-team@latest/rest/reference
https://developer.twitter.com/en/docs
https://docs.github.com/en/free-pro-team@latest/rest/reference/gists

58 Y. Chen et al.

And we observe 3 mismatches in two cases: one is a binary-array parameter
for file uploading and the other is an array of key-value pairs (e.g. [["key1",
"value1"], ["key2", "value2"], ...]). Binary arrays can be supported by
adding a FET ([01]* for the value format) to the current lattice, but Leif aims
to detect logic-related bugs while binaries are usually logic-free but content-
sensitive [43]. Therefore Leif simply does not mutate them. As for key-value pairs,
they are actually two-dimensional arrays where the first dimension is immutable
since it indicates the actual parameter key. We consider allowing developers
to specify which special parameters are immutable in Leif’s future version to
support such cases. For the partial matches, we review the documents, and the
top cases are application-specified formats such as comma-separated strings

and PGP signatures. These formats are less common and developers can add
application-specific FETs to their lattices by following the steps introduced in
Section 4.2. Figure 7(b) exhibits the breakdown of exact matches (the inner
ring is the distribution of the primitive data types and the outer ring is the
inferred FETs) to quantify how FET inference improves parameter information.
The coarse-grained number-typed (27%) and string-typed (61%) parameters are
divided into much smaller slices (5% ∼ 14%). The breakdown clarifies that FET
inference classifies parameters in balance, and therefore restores the collapsed
types. This enables a fuzzer to generate more targeted values, which shrinks
candidate space and increases the opportunity to find bugs.

5.2 Leif Effectiveness Evaluation

In this experiment, we select 27 popular mobile applications to evaluate the ef-
fectiveness of Leif. Each of them is backed by a commercial RESTful web service
serving millions and billions of users. We monkey-test [30] each application for
20 minutes, capture HTTP traffic and run the full-stack Leif workflow. Table 1
lists the subjects and the services have an average of 133 RESTful APIs with
over 19 parameters per API. We collect 46 requests per API on average which
yields adequate request samples for inference. Leif reports 5XX HTTP responses
as bugs along with the corresponding traffic. We have reached out to the service
owners, reported these bugs, and validated these bugs through analysis of traffic
(through API URLs, parameter key-value pairs, and response data) and analysis
of the involved applications (through reverse engineering and static code analysis
of APKs) to eliminate any false-positive or duplicated cases. Table 2 summarizes
the 11 distinct bugs found by Leif. The testing process is fully automated which
mimics how developers would use Leif as a black-box fuzzing tool in practice
and our following analysis mimics how to classify bugs and locate related code
lines based on Leif’s testing results.
Security Bugs with Information Leakage. Bug 1, 2 and 10 are security bugs
with information leakage problems. They can be reproduced by mutating the
parameter appVer (VersionTag), the parameter platform (Identifier), and
the parameter c.v (Integer). These bugs not only cause service crashes but also
expose sensitive information to end users (potential attackers). With the exposed
information, attackers can easily design specialized attacks. For example, the

Bootstrapping Automated Testing for RESTful Web Services 59

Table 1. Experiment Subjects of the Effectiveness Validation.

Application
Name

Category Downloadsa Version
Traffic

Size (MB)
Unique

APIs
Para-
meters

Amazon Shopping 205M+ 18.4.0.1 213 142 2,380
Baidu Tools 2.8B+ 11.15.0.12 453 332 4,742
Bilibili Video 220M+ 5.49.0 524 219 4,338
Damai Shopping 6.6M+ 7.6.4 596 104 1,535

Dianping Social 340M+ 10.19.12 629 148 2,247
Eleme Social 180M+ 8.26.3 230 57 992
Hupu Reading 11.1M+ 7.3.26 295 229 4,446
iQiyi Video 2.5B+ 10.10.0 1,338 257 7,063

Jianshu Reading 6.4M+ 4.16.0 339 111 1,609
Jingdong Shopping 950M+ 8.3.2 514 131 1,521
Kaola Shopping 15.3M+ 4.3.5 322 252 3,848

Mafengwo Trip 21.3M+ 9.3.33 340 151 3,178
Meituan Shopping 1.4B+ 10.3.401 1,111 58 1,151
MissFresh Shopping 16.3M+ 9.6.4 348 50 719

ONE Reading 4.8M+ 4.6.2 242 53 567
Pinduoduo Shopping 1.9B+ 4.77.0 795 79 866

Qunar Trip 330M+ 8.9.28 1,246 146 1,563
Shanbay Tools 2.91M+ 4.2.6502 84 9 94
Sina News News 110M+ 7.25.1 266 53 724
Smzdm Shopping 8.5M+ 9.5.26 267 104 1,866

Sohu News News 170M+ 6.1.8 591 201 3,144
Tencent News News 2.9B+ 5.9.00 1,045 142 1,796

Tmall Shopping 310M+ 9.1.0 177 49 635
Toutiao News 2.0B+ 7.4.8 1,198 323 12,408
Tuniu Trip 79.7M+ 10.19.0 217 68 772
WUBA Social 370M+ 9.1.2 79 123 5,490

Xiaohongshu Social 66.3M+ 6.19.0 295 20 334

Total 13,754 3,611 70,028
a

The statistic is from Tencent AppStore (https://sj.qq.com) up to Jan. 9th, 2020.

response data of bug 10 contains the full Java exception stack trace without
any obfuscation. From the stack trace, attackers can obtain that the service uses
an outdated Spring Framework6 version which suffers from numerous security
vulnerabilities [5,6,8–11]. By exploiting CVE-2020-5421 and CVE-2020-5398 [10,
11], attackers can initiate reflected file download attacks [31] to mislead users
into downloading malware. And by exploiting CVE-2018-1257 [5], attackers can
expose STOMP over WebSocket and then initiate denial of service attacks [17].
They can also obtain that the service uses com.alibaba.fastjson library7 to
deserialize user inputs. Therefore attackers can launch remote code executions
by exploiting known defects in that specific library version [7, 32].

Upon such cases, we suggest developers should first avoid information leakage
problems by checking the service data flow, ensuring that no sensitive methods

6 Spring Framework, https://spring.io/projects/spring-framework
7 Fastjson, https://github.com/alibaba/fastjson

https://sj.qq.com
https://spring.io/projects/spring-framework
https://github.com/alibaba/fastjson

60 Y. Chen et al.

Table 2. Bugs Found by Leif during the Effectiveness Validation.

Bug
ID

Involved
Application

Status
Code

API Path Description

1 iQiyi 500 /book/register A private API, served for user registration.

2 Pinduoduo 500 /cappuccino/splash
A private API, served for first-screen ad-
vertising.

3a Sina News 500 /oauth2/getaid.json
A deprecated public API provided by Sina
Weibo, served for user authorization.

4a Sina News 503 /oauth2/getaid.json
A deprecated public API provided by Sina
Weibo, served for user authorization.

5b Smzdm 502 /integration.php
A public API provided by Baidu, served for
inter-application integration.

6c Sohu News 502 /sendacc.jsp
A public API provided by 53KF, served for
customer service.

7c Sohu News 502 /sendacc.jsp
A public API provided by 53KF, served for
customer service.

8 Toutiao 502 /user/tab/tabs/v3
A private API, probably served for inter-
application redirecting.

9 Toutiao 504 /user/tab/tabs/v3
A private API, probably served for inter-
application redirecting.

10 Tuniu 500 /vip/recommend
A private API, served for content recom-
mendation.

11b WUBA 502 /integration.php
A public API provided by Baidu, served for
inter-application integration.

a

Bug 3 and bug 4 involve the same API but with different HTTP status codes.
b

Bug 5 and bug 11 involve the same API but different applications.
c

Bug 6 and bug 7 involve the same API path but different domain names.

(e.g., java.lang.Exception.toString) can be output to end users, and then
diagnose security problems by analyzing server logs. Besides, they should stay
alert to public vulnerability reports and timely upgrade their codebases.

Third-party API Bugs. We notice that 6 of the bugs involve APIs provided
by third parties. Bug 3 and 4 involve the API for user authorization provided by
Sina Weibo, a social networking platform serving over half a billion users. We
decompile the Sina News APK and locate the related code lines. We find out
the application uses a deprecated version of the API. When this API fails, an
unhandled exception is propagated and causes the application to crash. It can be
reproduced by injecting meta characters "/.:/" to the parameter packagename
(PackageName) and to the parameter mfp (Hash). Bug 6 and 7 involve the API
provided by a customer service platform. The application also suffers from the
deprecated API and crashes when the API fails. Bug 5 and 11 are detected in
different applications but involve the same API provided by Baidu. These two
bugs can be reproduced by mutating the parameter SdkVer (VersionTag).

Using third-party APIs is very common, but they are often overlooked during
testing. However, bugs in third-party code are as important as the application’s
own code, because they both mean application functionality failure to billions
of end users. Our results show that Leif can find bugs across into third-party

Bootstrapping Automated Testing for RESTful Web Services 61

APIs. We suggest that developers should capture application traffic and apply
Leif to test untrusted third-party APIs. In addition, they should design proper
exception handling logic for third-party code and timely upgrade to the latest
API versions with known bugs fixed.
Bugs with Limited Information. We obtain very limited information from
bug 8 and 9, because their responses solely contain HTTP status codes. These
bugs could be as critical as the security bugs since they involve a private API
and cause the service to crash. Therefore service developers can debug such APIs
by following the analysis methods for the security bugs as mentioned.

5.3 Comparative Evaluation

Leif vs. Trace-driven Fuzzers. We classify Leif as a trace-driven fuzzer and
we now compare it with state-of-the-art trace-driven fuzzing tools. We select
BurpSuite [2], a commercial security testing fuzzer for RESTful web services, and
Fuzzapi [3], an open-source general-purpose HTTP fuzzer. They provide built-in
candidate dictionaries but require a series of manual configurations, including
filling the URL for each API and the data type for each parameter. Therefore
we only apply them to Sina News, Toutiao, and Amazon Shopping (518 unique
APIs with 15,512 parameters in total). In addition, we implement NaiveFuzzer
as a baseline that only understands primitive data types and randomly mutates
parameter values solely based on such coarse-grained information. We construct
NaiveFuzzer’s candidate dictionaries by combining the dictionaries of BurpSuite
and Fuzzapi.

We evaluate the bug-finding capabilities of BurpSuite, Fuzzapi, Leif, and
NaiveFuzzer by comparing the number of bugs found by each tool, as reported
in Figure 8(a). And we evaluate their fuzzing time by comparing the averaged
number of test cases generated per parameter, as exhibited in Figure 8(b). Less
generated test cases mean less test execution time, leading to the more efficient
fuzzing. Considering the subjects are already well-tested before release, we be-
lieve the bug-finding capability of Leif is better than BurpSuite and Fuzzapi
for Leif finds extra bugs. And NaiveFuzzer has the same capability as BurpSuite
and Fuzzapi. This is because they share the same candidate space. As for fuzzing
time, BurpSuite, Fuzzapi and NaiveFuzzer respectively generate 5.0× ∼ 6.7×,
3.6× ∼ 4.7× and 6.3× ∼ 7.1× test cases of Leif, indicating FET techniques
bring 72% ∼ 86% fuzzing time reduction.
Leif vs. Specification-driven Fuzzers. We now compare Leif with existing
specification-driven fuzzers, which test RESTful web services based on parsing
API specifications. We select RESTler [13], a state-of-the-art research fuzzer,
and TnT-Fuzzer [4], an open-source robustness testing tool. They both require
OpenAPI specifications [40] as input, but most of the subject services do not
provide OpenAPI specifications. Therefore we construct OpenAPI specifications
for Sina News, Toutiao, and Amazon Shopping by parsing HTTP traffic and
referencing their official API documents.

We intend to run RESTler, but unfortunately neither the executable program
nor the source code is available. According to the paper, RESTler only supports

62 Y. Chen et al.

1 1

0

1

0 0

2 2

0

1 1

0
0

1

2

3

Sina News Toutiao Amazon

B

ug
s F

ou
nd

 in
 T

ot
al

BurpSuite Fuzzapi

Leif NaiveFuzzer

(a) Bug-finding Capabilities.

17
8

23
4

18
0

14
6

14
3

12
8

31 35 36

20
9

24
7

22
8

0

50

100

150

200

250

300

Sina News Toutiao Amazon

T

es
t C

as
es

 G
en

er
at

ed
 p

er
 P

ar
am

et
er

BurpSuite Fuzzapi

Leif NaiveFuzzer

(b) Fuzzing Time.

Fig. 8. Bug-finding Capabilities and Fuzzing Time of the Evaluated Fuzzers.

primitive data types and uses a plain candidate dictionary (consisting of 0, 1, "",
and "sampleString"). Yet none of the bugs found by Leif can be triggered by
these values, indicating that performing RESTler would fail to detect any of the
bugs. And TnT-Fuzzer generates candidate values simply based on the Python
random() function (i.e. purely random fuzzing). We configure it to generate
1,000 test cases per parameter (about 5× of NaiveFuzzer and 30× of Leif). Still,
TnT-Fuzzer fails to find any bugs in the three services. We conclude that the
two fuzzers’ effectiveness is limited by the practical hardness of finding well-
written OpenAPI specifications and the quality of their candidates. These are
also the main shortcomings of all specification-driven fuzzers. Besides, many
modern APIs require short-lived session tokens for access control or throttling.
Specification-driven fuzzers require manual configuration or even repeated re-
configuration for such parameters. In contrast, it is easy for trace-driven fuzzers
to achieve this requirement by mutating freshly captured requests.

6 Related Work

Model-driven Testing. Model-driven testing [15, 26, 27, 47, 48] is usually
white-box and requires using some specific modeling method (e.g. UML or
DSL) through the whole lifecycle of developing, which is human-intensive and
technically-limited for services across multiple servers and micro-services from
different vendors. Essentially, FET techniques are also model-driven (i.e. driven
by the lattice model) but only intervene in the test phase. Thus FET techniques
can be practically employed to test diversified RESTful web services in black-box
approaches.
Trace-driven Fuzzing. Trace-driven fuzzing generates test cases by mutating
recorded requests. Fuzzapi [3], BurpSuite [2], AppSpider [1] and Leif all fall
into this category. Existing trace-driven fuzzers mainly focus on improving the

Bootstrapping Automated Testing for RESTful Web Services 63

ability to capture and replay HTTP traffic. However, Leif demonstrates that FET
techniques provide fundamental parameter information to fuzzers, bringing the
enhanced bug-finding capability and significant fuzzing time reduction.
Specification-driven Fuzzing. Another main class of fuzz testing techniques
is specification-driven fuzzing, such as TnT-Fuzzer [4], EvoMaster [12], and
RESTler [13], which avoids the type collapse problem by assuming developers
provide well-defined specifications with detailed parameter information. How-
ever, the OpenAPI [40] is the only well-established standard up to now, yet is
not widely used. A survey [41] reveals that 71% developers lack the knowledge of
the OpenAPI framework. Therefore, the specification-driven fuzzing is still too
idealistic for testing real-world RESTful web services. In comparison, instead of
asking developers for good specifications, FET techniques generate fine-grained
specifications (i.e. ψ-treesn of parameters) on its own.
Security Penetration Testing. Fuzz testing techniques are also commonly
purposed for security penetration testing. Commercial security penetration tools,
such as BurpSuite [2], use values of SQL injections, unescaped HTML charac-
ters, XML/JSON external entities, etc., to expose system vulnerabilities. FET
techniques can also be employed in security penetration testing, as demonstrated
in Section 5.2. While our main goal is not limited to security testing for RESTful
web services, because FET techniques improve the value selecting strategy for
general-purpose REST fuzzing.

7 Conclusion and Future Work

In this paper, we analyze the type collapse problem and propose FET tech-
niques to remedy this problem. As a proof-of-concept, we design and implement
Leif, a FET-enhanced trace-driven fuzzing tool. We demonstrate that using FET
techniques greatly improves a fuzzer’s understanding of parameters, resulting in
more effective fuzz testing. Our experiment results show that Leif unveils 11 new
bugs in application-specific web services as well as general third-party open API
platforms with 72% ∼ 86% fuzzing time reduction.

FET techniques are capable of effectively bootstrapping automated testing
tools. We believe they are also helpful for parameter validity checking because
these two technical problems are isomorphic in a sense. Thus we are beginning to
study how to automatically generate or enhance parameter checking code based
on FET techniques for RESTful web services.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments.
This work was supported in part by National Key Research Development Pro-
gram of China (No. 2016YFB1000502), National NSF of China (No. 61672344,
61525204, and 61732010), Shanghai Pujiang Program (No. 19PJ1430900), and
Shanghai Key Laboratory of Scalable Computing and Systems.

64 Y. Chen et al.

References

1. AppSpider. https://www.rapid7.com/products/appspider

2. BurpSuite. https://portswigger.net/burp

3. Fuzzapi. https://github.com/Fuzzapi/fuzzapi

4. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer

5. CVE-2018-1257. Available from MITRE, CVE-ID CVE-2018-1257 (Dec 6 2017),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1257

6. CVE-2018-1275. Available from MITRE, CVE-ID CVE-2018-1275 (Dec 6 2017),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1275

7. CVE-2017-18349. Available from MITRE, CVE-ID CVE-2017-18349 (Oct 23
2018), https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18349

8. CVE-2018-15756. Available from MITRE, CVE-ID CVE-2018-15756 (Aug 23
2018), https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15756

9. CVE-2020-5397. Available from MITRE, CVE-ID CVE-2020-5397 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5397

10. CVE-2020-5398. Available from MITRE, CVE-ID CVE-2020-5398 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5398

11. CVE-2020-5421. Available from MITRE, CVE-ID CVE-2020-5421 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5421

12. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. 28(1), 3:1–3:37 (2019), https://doi.org/10.1145/
3293455

13. Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: Stateful REST API fuzzing.
In: Atlee, J.M., Bultan, T., Whittle, J. (eds.) Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-
31, 2019. pp. 748–758. IEEE/ACM (2019), https://doi.org/10.1109/ICSE.2019.
00083

14. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2), 97–113
(2003), https://doi.org/10.1145/857076.857077

15. Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I., Williams, C.: Model-driven
Testing: Using the UML Testing Profile. Springer Science & Business Media (2007)

16. Berners-Lee, T., Fielding, R., Masinterm, L.: RFC3986: Uniform Resource Iden-
tifier (URI): Generic Syntax. Internet Engineering Task Force (Jan 2005), https:
//www.rfc-editor.org/info/rfc3986

17. Breslaw, D., Bekerman, D.: How Mirai uses STOMP protocol to launch DDoS
attacks. Tech. rep., Imperva Inc. (Nov15 2016), https://www.imperva.com/blog/
mirai-stomp-protocol-ddos/

18. Chandrashekhar, R., Mardithaya, M., Thilagam, S., Saha, D.: SQL injection attack
mechanisms and prevention techniques. In: International Conference on Advanced
Computing, Networking and Security. pp. 524–533. Springer (2011)

19. Chen, Y., Yang, Y., Lei, Z., Xia, M., Qi, Z.: The public dataset of Leif evaluation
(Jan 2021), https://doi.org/10.6084/m9.figshare.12377150

20. Chen, Y., Yang, Y., Lei, Z., Xia, M., Qi, Z.: The ubiquitous FET lattice model
and verification (Jan 2021), https://doi.org/10.6084/m9.figshare.13622720

21. Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data Stor-
age. O’Reilly Media, Inc. (2013)

22. Cortesi, A., Hils, M., Kriechbaumer, T.: MitmProxy: A free and open source in-
teractive HTTPS proxy (2010), https://mitmproxy.org

https://www.rapid7.com/products/appspider
https://portswigger.net/burp
https://github.com/Fuzzapi/fuzzapi
https://github.com/Teebytes/TnT-Fuzzer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1257
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1275
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18349
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5397
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5398
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5421
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/857076.857077
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.imperva.com/blog/mirai-stomp-protocol-ddos/
https://www.imperva.com/blog/mirai-stomp-protocol-ddos/
https://doi.org/10.6084/m9.figshare.12377150
https://doi.org/10.6084/m9.figshare.13622720
https://mitmproxy.org

Bootstrapping Automated Testing for RESTful Web Services 65

23. Cotroneo, D., Iannillo, A.K., Natella, R.: Evolutionary fuzzing of android OS
vendor system services. Empirical Software Engineering 24(6), 3630–3658 (2019),
https://doi.org/10.1007/s10664-019-09725-6

24. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977. pp. 238–252. ACM (1977), https://doi.org/10.1145/512950.
512973

25. Cox, N.: Directory Services: Design, Implementation and Management. Elsevier
(2001)

26. Ed-Douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases
for REST APIs: A specification-based approach. In: 22nd IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2018, Stockholm, Swe-
den, October 16-19, 2018. pp. 181–190. IEEE Computer Society (2018), https:
//doi.org/10.1109/EDOC.2018.00031

27. Fertig, T., Braun, P.: Model-driven testing of RESTful APIs. In: Gangemi, A.,
Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Confer-
ence on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22,
2015 - Companion Volume. pp. 1497–1502. ACM (2015), https://doi.org/10.1145/
2740908.2743045

28. Fielding, R.: Representational state transfer. Architectural Styles and the Design
of Netowork-based Software Architecture pp. 76–85 (2000)

29. Goessner, S.: JSONPath - XPath for JSON. http://goessner.net/articles/JsonPath
p. 48 (2007)

30. Google: Android Monkey. https://developer.android.com/studio/test/monkey
31. Hafif, O., Spiderlabs, T.: Reflected file download: A new web attack vector. Trust-

wave. Retrieved March 15, 2016 (2014), https://bit.ly/2F8YZEp
32. Hao, M.: Fastjson 1.2.68 and earlier remote code execution vulnerability threat

alert. Tech. rep., NSFOCUS, Inc. (Jun 2020), https://bit.ly/3iG0jwh
33. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Pals-

berg, J., Su, Z. (eds.) Static Analysis, 16th International Symposium, SAS 2009,
Los Angeles, CA, USA, August 9-11, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5673, pp. 238–255. Springer (2009), https://doi.org/10.1007/
978-3-642-03237-0 17

34. Joy, B., Steele, G., Gosling, J., Bracha, G.: The Java language specification (2000)
35. Klyne, G., Newman, C.: RFC3339: Date and Time on the Internet: Timestamps. In-

ternet Engineering Task Force (Jul 2002), https://www.rfc-editor.org/info/rfc3339
36. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter

dependencies in RESTful web APIs. In: Yangui, S., Rodriguez, I.B., Drira, K.,
Tari, Z. (eds.) Service-Oriented Computing - 17th International Conference, IC-
SOC 2019, Toulouse, France, October 28-31, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11895, pp. 399–414. Springer (2019), https://doi.org/10.
1007/978-3-030-33702-5 31

37. Møller, A., Bakic, A., Moran, J., et al.: Package dk.brics.automaton. Aarhus Uni-
versity (Jul 4 2017), https://www.brics.dk/automaton/

38. Møller, A., Schwartzbach, M.I.: Static program analysis. Notes. Feb (2012)
39. Morlitz, D.: HTTP archive file (May 2002), US Patent App. 09/726,985
40. OAI (OpenAPI Initiative): The OpenAPI specification. https://github.com/OAI/

OpenAPI-Specification

https://doi.org/10.1007/s10664-019-09725-6
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1145/2740908.2743045
https://doi.org/10.1145/2740908.2743045
http://goessner.net/articles/JsonPath
https://developer.android.com/studio/test/monkey
https://bit.ly/2F8YZEp
https://bit.ly/3iG0jwh
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://www.rfc-editor.org/info/rfc3339
https://doi.org/10.1007/978-3-030-33702-5_31
https://doi.org/10.1007/978-3-030-33702-5_31
https://www.brics.dk/automaton/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

66 Y. Chen et al.

41. Open API CSA Working Group: Open API survey report. Tech. rep., Cloud
Security Alliance (Sep 2019), https://cloudsecurityalliance.org/blog/2019/09/11/
open-api-survey-report/

42. Ouyang, L.: Bayesian inference of regular expressions from human-generated ex-
ample strings. CoRR abs/1805.08427 (2018), http://arxiv.org/abs/1805.08427

43. Pham, V., Böhme, M., Roychoudhury, A.: Model-based whitebox fuzzing for
program binaries. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. pp. 543–553. ACM (2016), https:
//doi.org/10.1145/2970276.2970316

44. Raychev, V., Vechev, M.T., Krause, A.: Predicting program properties from “big
code”. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. pp. 111–124. ACM (2015), https://doi.
org/10.1145/2676726.2677009

45. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) Formal Methods
and Software Engineering - 18th International Conference on Formal Engineering
Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 10009, pp. 57–73 (2016), https://doi.org/10.1007/
978-3-319-47846-3 5

46. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11(6), 419–422 (Jun 1968), https://doi.org/10.1145/363347.
363387

47. Vu, H., Fertig, T., Braun, P.: Towards model-driven hypermedia testing for REST-
ful systems. In: Majchrzak, T.A., Traverso, P., Krempels, K..H., é rie Monfort, V.
(eds.) Proceedings of the 13th International Conference on Web Information Sys-
tems and Technologies, WEBIST 2017, Porto, Portugal, April 25-27, 2017. pp.
340–343. SciTePress (2017), https://doi.org/10.5220/0006353403400343

48. Yuan, Q., Wu, J., Liu, C., Zhang, L.: A model driven approach toward busi-
ness process test case generation. In: Liu, C., Ricca, F. (eds.) Proceedings of
the 10th IEEE International Symposium on Web Systems Evolution, WSE 2010,
3-4 October 2008, Beijing, China. pp. 41–44. IEEE Computer Society (2008),
https://doi.org/10.1109/WSE.2008.4655394

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://cloudsecurityalliance.org/blog/2019/09/11/open-api-survey-report/
https://cloudsecurityalliance.org/blog/2019/09/11/open-api-survey-report/
http://arxiv.org/abs/1805.08427
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.5220/0006353403400343
https://doi.org/10.1109/WSE.2008.4655394
http://creativecommons.org/licenses/by/4.0/

	Bootstrapping Automated Testing for RESTful Web Services
	1 Introduction
	2 Motivation
	3 FET Techniques
	3.1 Type Lattice
	3.2 FET Lattice
	3.3 FET Inference

	4 FET-enhanced REST Fuzzing
	4.1 Collecting and Parsing HTTP Traffic
	4.2 Ubiquitous FET Lattice
	4.3 FET-aware Trace-driven Fuzzing

	5 Evaluation
	5.1 FET Inference Accuracy Evaluation
	5.2 Leif Effectiveness Evaluation
	5.3 Comparative Evaluation

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

