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Salmonella enterica Pullorum is one of the leading causes ofmortality in poultry. Understanding themolecular response in chickens
in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There
have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships
among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis
(WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived
from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with
the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-
protein coupled receptor activity, Toll-like receptor signaling pathways, and immune systemprocesses; among them, 14 differentially
coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified.The global expression of module
genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression.
Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for
future studies of Salmonella infection.

1. Introduction

Chickens are an important component in the global agri-
cultural economy by serving as one of the primary sources
of proteins for humans. However, the poultry industry has
been consistently threatened by various diseases, including
those caused by viral, bacterial, and parasitic infections.
Salmonella enterica serovar Pullorum (S. Pullorum) is one
of the most important pathogens of poultry causing severe
systemic disease [1, 2]. To prevent and control 𝑆. Pullorum
in chickens, the host responses against this pathogen have
been studied for decades. Although significant advances have
been made, especially in the identification of molecules and
genes involved in the host immune response [3, 4] and
mucosal inflammation [5, 6], as well as their differential
expression during infection [7–10], the precise pathways

regulating immunity to Salmonella infection using a systems
biology approach have not been investigated. Although gene
differential expression analysis (DEA) provides important
information, such as identification of genes that are expressed
at different times during infection, which inform our under-
standing of pathogenesis, identifying gene interactions using
a systems biology approach greatly enhances our knowledge
at the mechanistic and regulatory levels. A large amount
of information regarding gene interactions is available in
microarray datasets and by applying network approaches the
gap between individual genes and systems can be bridged
[11–13]. The modularity in biological systems allows for both
the study of independent components and identification of
gene relationships withinmodules.Modern approaches, such
as weighted gene coexpression network analysis (WGCNA)
[14], can identify modules with expression levels that are
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highly correlated across samples and have been used to
identify new candidate regulatory molecules and networks
in Salmonella-infected pigs [15]. Differentially coexpressed
modules (DCMs) can also be identified [16]. The holistic
changes in modules would be reflected in transcriptional
and coexpression changes for individual genes. In general,
gene expression levels change during disease or infection, but
some have reported that seemingly nonsignificant DEGsmay
also play a key role in a disease because their interactions
with other genes change considerably [17]. These genes can
be identified via differential coexpression analysis (DCEA),
which can mine individual genes using a holistic approach
[17–19]. Hence, combining theWGCNA andDCEAmethods
can identify interacting modules and differentially coex-
pressed genes (DCG) during infection, compared with con-
trols. Here, we mined the molecular network relationships
of the differential coexpression modules and genes using
microarray data from spleens of 𝑆. Pullorum-infected and
uninfected chickens using WGCNA and DCEA (Figure 1).
The results complement traditional DEA and add to our
understanding of the regulatory mechanisms that occur
during Salmonella infection.

2. Materials and Methods

2.1. Microarray Data Harvesting and Processing. A compre-
hensive transcriptomics dataset derived from microarray
analysis of spleens from chickens challenged with 108 CFU
of Salmonella enterica serovar Pullorum or mock-challenged
with the same volume of distilled water (controls) was
obtained from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) (accession
number: GSE59663). The dataset was generated with the
Agilent oligo microarray chips containing 43,663 probe sets.
In this study, we first streamlined the dataset by excluding
14,920 probe sets that were either unmappable to any gene
IDs or mapped to multiple gene IDs. In the case of multiple
probe sets mapped to one identical gene, the probe set, which
is most often associated with the highest expression level,
was maintained to ensure that only one probe set was left
to investigate one gene. If more than one probe set was left
after the above steps, their intensities were averaged. Finally,
a one-to-one match between 13,538 probe sets and 13,538
genes was achieved.

Three biological replicates (chips) for each time point
were available in the challenged group for these datasets.
However, at each time point in the control group, only one
chip was used to hybridize with the equally mixed mRNA
sample containing the three control samples. We averaged
the replicates for each time point, except at day 21, with
the two replicates included and forming the dataset for the
challenged group with 10 samples; this dataset was equivalent
to the dataset of the control group. The dataset was quantile
normalized by the function of normalizeQuantiles in R
package limma [20].

2.2. Construction of Weighted Gene Coexpression Network
and Identification of Modules. Weighted gene coexpression
network analysis (WGCNA) was used to detect coexpression

modules from the dataset of challenged samples [14, 21]. The
R function of blockwise modules was implemented with the
following parameters: power = 12, minModuleSize = 100, and
networkType = “signed.” Microarray data were processed as
described below.

The pairwise Pearson’s correlation coefficients were cal-
culated for all the genes in the challenged groups, followed
by the construction of an adjacency matrix using the power
function:

𝛼𝑖𝑗 = (0.5 + 0.5 × cor (𝑥𝑖, 𝑥𝑗))𝛽 , (1)

where 𝑥𝑖 and 𝑥𝑗 were the 𝑖th and jth gene expression traits,
respectively, which formed a signedweighted correlation net-
work; and 𝛽 used default value (i.e., 𝛽 = 12). The topological
overlap measure (TOM) was calculated as follows:

TOM𝑖𝑗 = ∑𝑢 ̸=𝑖,𝑗 𝛼𝑖𝑢𝛼𝑢𝑗 + 𝛼𝑖𝑗
min (𝑘.total𝑖, 𝑘.total𝑗) + 1 − 𝛼𝑖𝑗 , (2)

where 𝑘.total is the sum of connection strengths for a gene
with the other network genes. 𝑢 is the other network genes.

Afterwards, 1-TOM was calculated as a biological impor-
tant measure for network interconnectedness. Genes with
highly similar coexpression relationships were grouped
together by performing hierarchical clustering on the topo-
logical overlap. Subsequently, genes were hierarchically clus-
tered using 1-TOM as the distance measure and modules
were determined by choosing a height cutoff of 0.995 for the
resulting dendrogram. Highly similar modules were identi-
fied by clustering and merged together using a dynamic tree-
cutting algorithm [14]. Eigengene refers to the first principal
component for a given module and could be calculated to
draw a module trajectory curve [14].

2.3. Identification of Differentially Coexpressed Modules. Dif-
ferentially coexpressed modules (DCMs) were identified
using gene-set coexpression analysis (GSCA) that adopted
the length-normalized Euclidean distance to measure the
coexpression difference for the pairwise correlations between
infected and control groups [16].

𝐷𝑚 = √ 1𝑃𝑚
𝑃
𝑚∑
𝑝=1

(𝑟𝑐𝑝 − 𝑟𝑖𝑝)2, (3)

where 𝑃𝑚 was the number of gene pairs from the pairwise
correlation for all the module genes. 𝑟𝑐𝑝 and 𝑟𝑖𝑝 were the
correlation coefficients for a gene pair in the control and
infected groups, respectively.

The null distribution for distance was constructed by
permuting samples across conditions for 10,000 times to yield
gene-set specific 𝑝 values. Modules with 𝑝 value < 0.01 were
considered as significantly differentially coexpressed.

2.4. Identification of Differentially Coexpressed Genes. The
differential coexpression analysis (DCEA) was implemented
by using R package DCGL, which is a useful tool to identify

https://www.ncbi.nlm.nih.gov/geo/
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Figure 1: Workflow of the comprehensive gene coexpression network analysis.

differentially coexpressed genes (DCGs) and differentially
coexpressed links (DCLs) [17–19]. The R function DCe was
applied and then the 𝑝 values were adjusted for a false
discovery rate (FDR) using the Benjamini-Hochberg method
to reduce a large amount of false positive results [22]. The
genes with FDR < 0.001 were selected as DCGs.

2.5. Gene Ontology (GO) and Pathway Enrichment for Coex-
pression Modules. GO enrichment and KEGG pathway anal-
yses for network modules were performed using Database
for Annotation, Visualization, and Integrated Discovery
(DAVID, v6.7) program using all chickens genes as the
background [23, 24]. The modified Fisher’s exact test with

an adjustment for multiple tests by Benjamini-Hochberg
method was used to identify significantly enriched terms for
module genes [22].

2.6. Network Visualization. The complex network bioinfor-
matics software Cytoscape (v3.1.1) was used to visualize the
pairwise relationships between genes [25].

3. Results

3.1. Weighted Gene Coexpression Network Analysis. Using
blockwiseModules R function (𝛽 = 12), a total of 19 modules
ranging from 100 to 3,000 genes were recovered for the 13,538
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Table 1: Module preservation and functions.

Module Size 𝑍 summary Function
Lightyellow 126 5.42 Nucleus (8.40𝐸 − 4)
Lightgreen 145 0.67 Jak-STAT signaling pathway (9.73𝐸 − 3)
Grey60 145 7.49 Extracellular matrix (5.10𝐸 − 4)

Cytoskeleton (7.84𝐸 − 3)
Lightcyan 155 0.52 Anchored to membrane (4.19𝐸 − 3)
Midnightblue 159 5.78

Cytoplasm (1.75𝐸 − 4);
Organelle membrane (4.67𝐸 − 3)
Endomembrane system (9.27𝐸 − 3)

Cyan 181 8.71 Cell adhesion molecules (3.24𝐸 − 5)
Cell adhesion (2.75𝐸 − 3)

Salmon 248 2.14 Neuroactive ligand-receptor interaction (2.60𝐸 − 6)
Tan 287 4.86 Lysosome (4.80𝐸 − 3)
Greenyellow 293 6.58 Ligase activity (3.41𝐸 − 3)
Purple 298 10.93

Proteasome complex (6.56𝐸 − 6)
Regulation of cytokine biosynthetic process (3.83𝐸 − 3)
Toll-like receptor signaling pathway (9.52𝐸 − 3)

Magenta 357 1.82 G-Protein coupled receptor activity (2.88𝐸 − 4)
Pink 418 13.36 Cellular macromolecular complex assembly (1.00𝐸 − 03)
Black 599 1.97 Postsynaptic membrane (2.35𝐸 − 3)

Synapse (2.72𝐸 − 3)
Red 648 14.89 Signal transducer activity (2.07𝐸 − 4)

Multicellular organism development (2.70𝐸 − 4)
Green 1056 27.63

Cell cycle phase (9.63𝐸 − 13)
DNA replication (3.67𝐸 − 7)
Response to DNA damage stimulus (1.45𝐸 − 6)
DNA repair (4.11𝑒 − 6)
Cytoskeleton organization (3.77𝐸 − 4)

Yellow 1122 32.83

Glucose catabolic process (4.03𝐸 − 5)
Glycolysis/gluconeogenesis (1.49𝐸 − 4)
Glycolysis (1.79𝐸 − 4)
Glucose metabolic process (3.95𝐸 − 4)

Brown 1349 18.99 ABC transporters (1.00𝐸 − 03)
Blue 2581 43.01

Immune system process (1.31𝐸 − 4)
Induction of apoptosis (1.98𝐸 − 4)
Antigen processing and presentation (2.06𝐸 − 4)
Lysosome (3.08𝐸 − 4)
Defense response to bacterium (6.06𝐸 − 3)

Turquoise 2998 51.56

Nervous system development (2.20𝐸 − 15)
Focal adhesion (2.04𝐸 − 9)
Wnt signaling pathway (7.56𝐸 − 9)
Regulation of actin cytoskeleton (1.64𝐸 − 7)
TGF-beta signaling pathway (4.42𝐸 − 7)

Note. The column “Size” gives the gene numbers contained in every module. “𝑍 summary” gives the 𝑧 score of module preservation. “Function” gives the
module functions enriched by DAVID.

distinct genes in the S. Pullorum-infected group (Table 1).
Each module was assigned a unique color, including gray
color for the 373 unassigned genes. Genes in the samemodule
shared the same or similar expression patterns that were
catalogued by the trajectory curves (Figure 2).

Subsequent analysis using DAVID identified biological
features in modules that were potentially associated with
the infection by 𝑆. Pullorum (Figure 6 and Table 1), such
as the Jak-STAT signaling pathway (module lightgreen)
[26], the extracellular matrix (ECM) (module grey60) [27],
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Figure 2: Module expression patterns.

cytoskeleton organization (module green), regulation of the
actin cytoskeleton (module blue) [28], G-protein coupled
receptor activity (modulemagenta), Toll-like receptor signal-
ing pathways (module purple), and immune systemprocesses
(module blue). ECM genes and cell adhesion genes are
significantly enriched in the module grey60 and cyan (FDR
= 5.10𝑒 − 4 and 2.75𝑒 − 3), respectively (Table 1). The grey60
and cyan modules also displayed significant similarity in
expression patterns (eigengenes’ correlation= 0.76;𝑝 = 0.01).
These observations were in congruent with those reported
earlier by others on the crucial role of host cell ECM proteins

and bacterial outer membrane structures in the adhesion and
invasion of Salmonella [27].

3.2. Module Stability. To test the reproducibility of the
identified modules, we performed a sampling test, in which
we randomly selected half of the samples to calculate the
new intramodule connectivity. The sampling was repeated
100 times and then the module stability was expressed as
the correlation of intramodule connectivity between the
original and sampled ones [29]. Most modules displayed
good stability; module salmon was the least stable (Figure 3).
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Figure 3: Correlation of intramodule connectivity for each module
after 100 samplings.

3.3. Module Preservation Analysis. We investigated whether
the S. Pullorum-infected module was preserved in the corre-
sponding controls by testingwhether the infection-associated
coexpression network can be replicated in the control groups.
The preservation scores for all the modules were listed in
Table 1, in which 𝑍 summary scores <2, between 2 and 10,
and >10 indicate no evidence, weak-to-moderate evidence,
and strong evidence for module preservation, respectively.
Preservation analysis provided strong evidence to support
the conservation of modules turquoise, brown, blue, yellow,
green, red, pink, and purple, which all contained considerably
large numbers of genes, but no evidence to support the
preservation of modules lightcyan, lightgreen, magenta, and
black associated with themembranes, the Jak-STAT signaling
pathway, G-protein coupled receptor activity, and synapses,
respectively (Table 1).

3.4. Module Gene Expression and Coexpression Comparison.
Wecompared themodule genes’ expression and coexpression
level between the infected and control groups.The violin plot
in Figure 4(a) showed that the gene expression for modules
in the infection versus control groups is not significantly
different, and the distribution for the expression intensities
is similar. Subsequently, we compared the gene coexpression
level by calculating the gene connectivity for each module.
Themodule turquoise exhibits the largest connectivities since
it includes the largest number of genes (2,998 genes).Modules
blue (2,581 genes), yellow (1,122 genes), brown (1,349 genes),
and green (1,056 genes), which include a considerable num-
ber of genes, display the next highest connectivities. In addi-
tion, the coexpression levels are different betweenmodules in
the two conditions.The coexpressions are strengthened in the
infected state (Figure 4(b)).

3.5. Identification of Differentially Coexpressed Modules.
Gene-set coexpression analysis (GSCA) revealed that 14 of
the 19 modules were significantly differentially coexpressed
(𝑝 < 0.01 by bootstrap sampling test) (Table 2). Among
them, modules black (𝑧 = 1.97), magenta (𝑧 = 1.82), salmon(𝑧 = 2.14), and lightcyan (𝑧 = 0.52) were significantly differ-
entially coexpressed. These observations were in agreement
with the module preservation analysis, in which significantly
differentially coexpressed modules (DCM) were only weakly
preserved in the control group.

3.6. Identification of Differentially Coexpressed Genes. A total
of 2,856 differentially coexpressed genes (DCG)were selected
with a false discovery rate (FDR) of less than 0.001 using the
DCe method in the DCGL package. And a total of 284,213
differentially coexpressed links (DCLs) were same signed,
82,619 were differently signed, and 272,491 were switched
links.

Furthermore, we mapped the DCGs for each module and
found that theDCMs enrich theDCGs. For example, a total of
152 DCGs appeared in the module magenta with𝑍 summary
of 1.82 (𝑝 = 0), 231 DCGs in module black with 𝑍 summary
of 1.97 (𝑝 = 0), and 147 DCGs in module salmon with 𝑍
summary of 2.14 (𝑝 = 0). In network biology, a hub gene is a
good representative of a module. We identified the hub genes
for all of the modules. Table 2 gives the gene names which are
not only hub genes but also DCGs in each module.

4. Discussion

We constructed a gene network for the 𝑆. Pullorum-infected
chickens using weighted gene coexpression network analysis
(WGCNA) from the data of time-series microarray. This
module detection strategy utilizes the biological variabil-
ity inherent in the prospective cohort study to reveal the
modular organization and function of transcriptional sys-
tems. The time series expression profiles allow the study
of the transcriptional regulation of these gene coexpres-
sion networks during infection. A network-based analysis
provides a systems-level understanding of the relationships
between members of a network by focusing on genome-
wide gene modules rather than individual genes [30]. Dif-
ferential expression analysis (DEA) aims to identify genes
that are expressed significantly higher or lower in one group
compared with another. By contrast, WGCNA is not biased
toward genes with significant changes in expression. More-
over, the dimensionality of microarray data in the present
study was reduced from 13,538 genes to 19 modules, which
significantly increased the ability to identify concordant
changes in the expression of multiple genes.

The module expression analysis showed that module
salmon was the least abundant but exhibited the largest
variation in gene expression causing the instability inmodule
construction. Gene expression was the most stable within
module midnightblue (Figure 4(a)). The expression distri-
bution for module genes in different conditions (infected
versus control) was the same. The coexpression level was
further compared. The coexpression comparison showed
significant changes for different conditions. We investigated
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Figure 4: (a) Violin plot showing the gene expression differences betweenmodules in the infected and control groups. (b) Violin plot showing
the gene coexpression connectivity differences between modules in the infected and control groups. .i represents the module in the infected
group, and .c represents the module in the control group.

the key modules and genes resulting in the differences.
The GSCA analysis identified ten significantly differentially
coexpressed modules (DCMs), which are in accordance
with the module preservation results that are significant in
coexpression differences with little evidence for preservation.
Regulatory relationships among genes can be parsed as the
pairwise correlations between gene expression levels, so the
changes in coexpression patterns between two conditions
may indicate dysfunctional regulatory systems in disease [31].
Module lightgreen associated with the Jak-STAT signaling
pathway and lightcyan associated with membrane anchoring
functions were the two weakest preserved modules (Table 1
and Figure 5). Thus, these modules may be associated with S.
Pullorum infection in chickens.

Furthermore, we investigated the driven genes leading
to the coexpression difference. The differential coexpression
analysis (DCEA)methodwas applied, and 2,856 differentially
coexpressed genes (DCGs) were identified. Compared to the
differential expression analysis (DEA), it was found that the

overlapping of DCGs with the 234 DEGs (t-test 𝑝 value less
than 0.01) was significant (hypergeometric test 𝑝 = 1.07𝑒 −07), indicating that differential expression and differential
coexpression are somewhat related to each other, which is
consistent with a previous report [17]. However, there are
many Salmonella infection-related genes identified by the
DCEAmethod.The top one DCG identified isWASF1, which
is an important gene in the Salmonella infection pathway
and was not identified as a DEG (expression fold change:
1.08; t-test 𝑝 value of 0.34). The protein encoded by WASF1,
a member of the Wiskott-Aldrich syndrome protein family,
plays a critical role downstream of Rac, which is a Rho
family of small GTPases, in regulating the actin cytoskeleton
required for membrane ruffling. This gene associates with an
actin nucleation core Arp2/3 complex while enhancing actin
polymerization in vitro [32]. Another gene, CDC42 (fold
change = 1.02; 𝑝 = 0.6), a member of the Rho subfamily of
actin-organizing small GTP-binding proteins, interacts with
WASF1 and is essential for 𝑆. Typhimurium entry into host
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Figure 5: Violin plot of gene coexpression connectivity for significantly differentially coexpressed modules.

cells [33, 34]. CDC42 was not selected as DCG with a false
discovery rate (FDR) of 1.55𝐸 − 3, but it interacts with genes
PAK7 (fold change = 1.95; 𝑝 = 0.64) [35, 36], CDC42EP3
(fold change = 1.05; 𝑝 = 0.81) [37, 38], PAK1 (fold change =
0.97; 𝑝 = 0.67) [39], PARD6B (fold change = 0.76; 𝑝 = 0.05)
[40, 41], PARD6A (fold change = 1.75; 𝑝 = 0.90) [29, 40],
and IQGAP2 (fold change = 1.58; 𝑝 = 0.12) [42], which
are all identified as DCGs. Carow and Rottenberg reported
that gene SOCS3, which was also identified as a DCG (fold
change = 1.54; 𝑝 = 0.15), is a major regulator of infection
and inflammation and controls immune homeostasis in
physiological and pathological conditions such as infection
and autoimmunity [43]. SOCS3 is a hub gene in the module
lightgreen associated with the Jak-STAT signaling pathway,
an important pathway for Salmonella infection [44]. It is
well known that the Jak-STAT pathway can regulate cell
growth, apoptosis, immunity, and inflammatory responses
and because of its significance in the immune response, the
Jak-STAT pathway is often exploited by pathogens [45]. In
our study, we found that the Jak-STAT pathway genes were

significantly enriched in the module lightgreen which is not
detectable in controls. So we think that SOCS3 and the other
Jak-STAT pathway genes may together regulate the activity
of the organism in infection, which leads this module to be
differentially coexpressed.

The above results showed some specific subnetworks for
infection, in spite of a common network existing whether
in the control or infected group. We constructed two coex-
pression networks from the top ten hub genes’ expression
profiles for each module from the two different conditions.
As shown in Figures 6(a) and 6(b), common core networks,
including the most preserved modules between infected and
control groups, were present. However, some closely inter-
acted subnetworks seen during infection disappeared in the
control.These infection-specific subnetworks included genes
that aremembers of the Jak-STAT signaling pathway (module
lightgreen); others associated with membrane anchoring
(module lightcyan), neuroactive ligand-receptor interaction
(module salmon), and lysosomal processing (module tan),
which suggested that these subnetworks dysregulated the
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Figure 6: (a) Hub genes’ network in the infected group. The node colors represent the module colors: the nodes with shape of rectangle are
DCGs and the elliptical nodes are non-DCGs. (b) Hub genes’ network in the control group.The node colors represent the module colors: the
nodes with shape of rectangle are DCGs and the elliptical nodes are non-DCGs.

systems during infection. Although only one dataset was
used here, due to the lack of published related microarray
datasets, these present results advance our understanding of
the cell biology and immunoregulatory pathways involved in
Salmonella infection in the chicken host.
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