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Pest detection is important for crop cultivation. Crop leaf is the main place of pest invasion. Current 
technologies to detect crop pests have constraints, such as low efficiency, storage demands and limited 
precision. Image segmentation is a fast and efficient computer-aided detection technology. High 
resolution image capture solidly supports the crucial processes in discerning pests from images. Study 
of analytical methods help parse information in the images. In this paper, a regional convolutional 
neural network (R-CNN) architecture is designed in combination with the radial bisymmetric 
divergence (RBD) method for enhancing the efficiency of image segmentation. As a special application 
of RBD, the hierarchical mask (HM) is produced to endorse detection and classification of the leaf-
dwelling pests, offering enhanced efficiency and reduced storage requirements. Moreover, to deal with 
some mislabeled data, a threshold variable is introduced to adjust a fault-tolerant mechanism into 
HM, to generate a novel threshold-based hierarchical mask (TbHM). Consequently, the hierarchical 
mask R-CNN (HM-R-CNN) model and the threshold-based hierarchical mask R-CNN (TbHM-R-CNN) 
model are established to detect various types of healthy and pest-invasive crop leaves to select the 
regional image features that are rich in pest information. Then simple linear iterative clustering (SLIC) 
method is incorporation to finish the image segmentation for the classification of pest invasion. The 
models are tuned and optimized, then validated. The most optimized modeling results are from the 
TbHM-R-CNN model, with the classification accuracy of 96.2%, the recall of 97.5% and the F1 score 
of 0.982. Additionally, the HM-R-CNN model observed appreciable results second only to the best 
model. These results indicate that the proposed methodologies are well-suited for training and testing 
a dataset of plant diseases, offering heightened accuracy in pest classification. This study revealed 
that the proposed methods significantly outperform the existing techniques, marking a substantial 
improvement over current methods.
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Agriculture is a vital component of any country’s economy. The number of crops produced annually is quite 
important for productivity. Crops were susceptible to a variety of pests, leading to significant economic waste 
and loss of labor resources1. Over 300 different types of pests or worms can cause harm to crops, either directly 
or indirectly. Over the years, crops become more susceptible to pests due to weather changes and infrequent 
rainfall2. Pests have killed or destroyed more than half of all crops produced. Many farmers employ traditional 
pest management techniques, such as routine pesticide spraying based on set schedules, rather than the actual 
presence of pests in the paddy fields3. However, the widespread use of insecticides, pesticides, and nematicides 
can be detrimental to the environment and living organisms as they can contaminate crops and devastate 
entire farms. Once an infestation or infection has reached a certain level, traditional pest control methods like 
insecticides, water, and smoke treatments become ineffective. Therefore, regular monitoring is necessary to 
detect and correctly identify bugs or pests, enabling the implementation of preventive measures to halt their 
proliferation4. But manual monitoring is labor-intensive and time-consuming. Technology plays a significant role 
in advancing agriculture and aiding farmers. By utilizing the latest agricultural informationization technology, 
pests or bugs can be rapidly detected at an early stage.
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Agricultural informationization raises the key issues of enhancing productivity and improving food quality 
while minimizing costs and maximizing profits. in recent years, Nonchemical pest detection and disease control 
are on high demand in many departments. However, there are currently no intelligent methods or frameworks 
to guarantee a timely and efficient detection manner. Modern advancements and improvements in computer 
science have offered various forms of support to humanity, facilitating our daily tasks in multiple ways and 
enhancing efficiency5. Computer vision approaches have become increasingly significant. This allows us to 
minimize the time spent on various activities. Intelligent visual sensing computation method was studied to 
estimate the bacteria inoculation status in tropical maize, which involves assessing the color properties of field 
leaf images captured under varied lighting conditions6,7.

With the increasing development of intelligent visual sensors globally and recent advancements in deep 
learning within the computer vision field8,9, innovative mechanism emerged to identify pests and diseases on 
the leaves and trunks of trees, utilizing a smartphone as the image capturing device10. When assessed on a 
collection of images sourced from reliable web domains the model maintained a low accuracy score because the 
conditions for image capture distinct from those used for training11. Nevertheless, this research provoking that, 
the development of improved materials and methodologies for fully automated pest detection and extraction 
systems is necessary to yield superior outcomes. Data augmentation was employed to circumvent overfitting 
issues typically encountered when training deep learning models on limited datasets12. The findings indicate 
that the automated processing within the proposed method is more efficient compared to manual procedures. 
A fresh learning phase for the insect training set becomes necessary when new biotic stressors are presented13.

Deep learning technique is beneficial to be implemented for categorize the pests and diseases, feeding the 
dataset into the discrimination model and subsequently processing it with the feature learning framework14. 
This kind of technique is widely recognized that deep learning yields superior results with larger datasets; hence, 
it is feasible to train on the entire dataset based on the feedforward networks, encompassing both original and 
augmented images. An advanced technique that merges the deep convolution learning network with some 
metaheuristic algorithms to standardize plant photographs15. Metaheuristic method was previously validated 
for image segmentation, in application to distinguish wheat leaves from the intricate background16. However, 
particularly for extensive datasets, the insights derived from a single layer feedforward network are insufficient 
to accurately depict the input data.

An architecture grounded in deep learning was proposed using convolutional neural networks to categorize 
multiple pests within a plant disease dataset17. The system effectively anticipates by integrating the system 
into real-world business operations, a larger dataset will be accumulated, offering an improved opportunity 
to assess the system’s performance and potentially enhance its accuracy rate. Despite the numerous physical 
similarities shared among different insect species, pinpointing and categorizing them remains a challenge. This 
issue is further compounded when working with insects that have been previously captured in traps. To this 
end, some researchers have suggested to use the LeNet structure18. Nevertheless, their synthesized results from 
the analyses highlight several areas for improvement: (1) To enhance the overall precision of the methodologies 
and materials19; (2) SLFN alone is inadequate for accurately representing the input data of extensive datasets20; 
(3) The model’s capacity is limited to detecting a restricted array of plant diseases21; (4) The numerous shared 
physical attributes among various insect species complicate their localization and classification22. Consequently, 
it becomes essential to devise a novel convolutional system for pest detection and analysis, in capability of 
accurately identifying diseases while surmounting these existing limitations.

Regional convolutional neural network (R-CNN) is a special kind of deep learning structural framework 
based on the convolutional architecture23. Training the network weights on a large dataset and fine-tuning 
the pre-trained network weights on a smaller dataset facilitates efficient data analysis within the dataset24. 
Pertaining to image feature extraction, R-CNN is a pre-trained network constructed upon extensive datasets, 
adept at effectively deriving stratified features from images. R-CNN may be on the basis of ResNet or ImageNet 
structure25, to outline the features that facilitate the correlation of patterns and structures within plant disease 
diagnostic images, adepting at effectively deriving stratified features from images26. Thereby it is functional to 
differentiate the healthy and diseased plants. For color pictures, a series of layered images is also generated by 
dissecting the color, brightness, and saturation elements of various segments of the image within the RGB color 
domain27. The efficacy of the R-CNN framework can be evaluated on the plant disease dataset by retraining an 
existing model on the image dataset, to form a transfer learning network for image segmentation.

A state-of-art algorithm for image segmentation is called simple linear iterative clustering (SLIC). It is an 
adaptation of the k-means approach for generating superpixels, offers high regional accuracy with minimal inter-
region overlap28. In essence, SLIC performs clustering of pixels within a five-dimensional space that includes 
color and image plane dimensions, enabling the rapid creation of compact and nearly uniform hyperpixels. It 
works effectively with characterization of low demand of computational exhaustion. The combination of R-CNN 
and SLIC is prospective in efficient to optimize the cluster selection for good image segmentation. However, the 
SLIC-based methodologies need to associate the computational load with distance calculations is diminished 
by confining the search space to a predefined region equivalent in size to the superpixel29. Also, in parallel 
process with deep estimation, SLIC yields its application within the realm of hyperpixel generation remains 
under-researched30. Therefore, mask strategy is introduced in this paper to enhance the segmentation effects 
incorporating the network extracted feature sets. Thus, the mask R-CNN algorithm is proposed for regional 
identification in image segmentation operation.

Radial bisymmetric divergence (RBD) method generates a regional mask to select partial data from the full-
range raw image. RBD is a brand-new method used for pest segmentation, and it is validated easy-to-cooperate 
with network models31. The RBD-based mask R-CNN model can perform in multiple tactics. Hierarchical mask 
(HM) is a popular option for detecting pests within a specific area. with a focus on rapid processing. By HM 
concept, the image data initially undergoes pre-processing to eradicate superfluous distortions. It is in advance 
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on compiling a high-quality dataset encompassing various healthy and diseased leaf categories, alongside diverse 
pest conditions, and its applicability has been proved32. HM plays an important role to save memory usage, and 
to raise the model prediction accuracy33.

Hierarchical mask R-CNN (HM-R-CNN) gives a simple way to mask the image data, but image segmentation 
depends on an indirect computation of the image matrics for pest detection though it is of multiple merits. 
Challenges exist in the fact that it is hard to track the variation of pests in crop leaves throughout the crop 
production process, because pests’ activity is diverse34. Occasion also occurs that some inaccurately labeled data 
can result in flawed learning and diminish the efficacy of pest identification methods35. What is more essential to 
address these issues is to raise a threshold-endorsed analytical method. Confirming that network architecture is 
fast and effective for image segmentation, the method can be improved with a fault-tolerated technique to create 
a threshold-based hierarchical mask (TbHM), so as to refine the architecture as for suiting the various complex 
situations of pest variations. In this concept, the threshold-based hierarchical mask R-CNN (TbHM-R-CNN) 
architecture is introduced. The TbHM-R-CNN is proposed by modification of the hierarchical HM-R-CNN, 
threshold adjustment can be set in accompanied with parameter tuning and for result estimations.

In this work, SLIC-based segmentation techniques can achieve superior identification results with the 
support of feature selection by R-CNN architecture. By optimizing the effects of image segmentation, the main 
contribution is as follows,

• For the precise detection of insect pests, the HM-R-CNN has been proposed to enhance image data by min-
imizing unwanted distortions during image preprocessing and to achieve high accuracy in a short duration.

• To obtain various types of healthy and diseased leaves, the TbHM-R-CNN is introduced. It integrates mask 
R-CNN with a transfer learning mechanism, enabling it to accurately recognize pests and differentiate them 
into distinct categories.

The rest of the paper is organized with the Methodology section, the Application case section and the Conclusion 
section. The Methodology section includes the contexts of subsection 1: to describe the image preprocessing 
procedures. Subsection 2: to introduce the mask segmentation method of HM-R-CNN method. Subsection 3: 
to introduce the TbHM-R-CNN method for transfer learning. Subsection 4: to present the model evaluation 
indicators. The section of Application case is to apply the proposed methods to the dataset, including the parts 
of sample collection, model configuration, performance metrics of the proposed methods and the comparative 
effect evaluations to some existing methods. Finally, the conclusions are drawn in the conclusion section.

Methodologies
Essential to pest management is the consistent monitoring of pest populations throughout the crop production 
process. The majority of current pest control techniques necessitate labor-intensive and time-consuming 
manual examinations. The proposed methods are based on the R-CNN architecture as well as the RBD 
technique. Initially, the image data undergoes pre-processing to eradicate superfluous distortions. The HM-R-
CNN approach incorporates one of the RBD mask mode with the conventional R-CNN structure, to find the 
informative features. Then SLIC method is utilized to finish the image segmentation work based on the selected 
feature variables. Moreover, compiling a high-quality dataset encompassing various healthy and diseased leaf 
categories, alongside diverse pest conditions, can prove challenging. To effectively categorize various types of 
healthy and diseased leaves, the TbHM-R-CNN architecture is introduced with the consideration of a threshold 
control on the tunable parameters and the prediction results.

Figure 1 illustrates the general application of the proposed methods based on R-CNN architecture. Prior to 
the application of the filter layer to the input image, the present input set and its corresponding weight values, 
alongside the anticipated output values and weights for the subsequent layer, are stored as data. The dataset will 
subsequently undergo filtering and feature extraction by R-CNN. Once the data is filtered, the image is segmented. 
This framework represents a derivative of the mask R-CNN instance segmentation model, commencing with 
a convolutional layer and culminating in one or more convolution layers. The feature extraction process is 
executed to discern pests utilizing the HM technique, so that the HM-R-CNN model is established for selecting 
informative features from the raw input images, in which the stacked convolution is designed. Moreover, by 
introducing a threshold variable, the TbHM-R-CNN model is built up to activate the fault-tolerant mechanism, 
so that the model can be modified as more suitable for a wide-range applicant stability and robustness. Following 
feature selection, SLIC method is applied for segmentation, to pinpoint the pests by tuning the model parameters 
on the characteristics of leaf images, attaining high regional precision and efficiency in detecting the affected 
areas of diseased leaves. Successively, the resultant segmented regional images are further delivered for transfer 
learning and detection application.

The whole modeling workflow is suitable for a data application of training and validation. The training 
dataset is employed to train the segmentation model and fine-tune it for improved performance. The subsequent 
stage involves transfer learning for classification, where a pre-trained CNN model (can be in LeNet, ResNet, 
VGG or any other possible structure36) is chosen for validation classification, with dropping out the abnormal 
predictions. With minimal modifications, the model would be capable of classifying pests based on image data. 
Upon this classification, pest identification is prospectively executed. The aim of mask R-CNN modeling and its 
calculation is to showcase the capacity of neural networks to identify the shape and orientation of plant maladies, 
to discern the intrinsic characteristics of disease propagators within leaves.

Image preprocessing and the RBD operation
Image preprocessing involves the enhancement of image data by diminishing superfluous distortions for 
subsequent analysis. This process does not alter the quantity of image data37. Certain attributes of an image 
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include regional features, grayscale covariance matrix, mean, standard deviation, entropy, contrast, and energy. 
These attributes are essential for generating the dataset necessary during the leaf detection process. Employing 
image preprocessing lessens computational complexity and boosts algorithmic efficiency38.

Prior to extracting valuable insights into leaf status, it is imperative to pre-process the leaf images first. These 
images are captured and preserved in RGB coloring format. The data obtained is refined through a three-stage 
pre-processing protocol designed to enhance image quality. The main task of pre-processing is to eliminate the 
Gaussian noise or white noise from the leaf image, allowing for a more accurate disease detection using the 
filtered image39. The image pre-processing course is performed in mathematic procedures.

A function f (x, y) is set to represent the RGB value at a point (x, y) in an x- y coordinate system. The 
change in their pixel values from a relative is represented as the Eqs. (1)-(2)

 
∂ f

∂ x
= f (x + 1, y)− f (x, y) (1)

 
∂ f

∂ y
= f (x, y + 1)− f (x, y) (2)

where ∂ f
∂ x  and ∂ f

∂ y  represent the 1st -order partial derivatives of f (x, y) on x and on y, respectively. Moreover, 
the rate of increment takes place in the x or y direction is indicated by the 2nd -order derivatives, which are 
formulated in Eq. (3) to (4), so that the differential form of f (x, y) can be shown in Eqs. (5),

 

∂ 2f
∂ x2

= (f (x + 1, y)− f (x, y))− (f (x, y)− f (x− 1, y))

= f (x + 1, y) + f (x− 1, y)− 2f (x, y) .
 (3)

 

∂ 2f
∂ y2

= (f (x, y + 1)− f (x, y))− (f (x, y)− f (x, y − 1))

= f (x, y + 1) + f (x, y − 1)− 2f (x, y) .
 (4)

 

D2f = ∂ 2f
∂ x2

+ ∂ 2f
∂ y2

= f (x + 1, y) + f (x− 1, y) + f (x, y + 1)

+f (x, y − 1)− 4f (x, y) .

 (5)

where ∂ 2f
∂ x2

 and ∂ 2f
∂ y2

 represent the 2nd-order partial derivative values of f (x, y) on x and on y, respectively. 
D2f  represents the whole differential value of f (x, y).

Radial bisymmetric divergence (RBD) is to define a radial bisymmetric differencing operation to modify 
the rate of increment takes place in axis directions. The differential calculations are expressed as the same as in 
Eqs. (1)-(2). The RBD modification requires to verify convergence and determine the edge points instead of using 

Fig. 1. The flowchart for image segmentation by proposed methods based on R-CNN architecture.
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axial differencing. The adjustment ensures that the sequence of values converges towards a stable equilibrium 
point, maintaining the desired balance in the system. then the 2nd -order derivatives are re-defined as,

 

∂ 2f

∂ x2
=

{
a · ∆ x + k · (f (x + 1, y)− f (x, y)) , for x ≥ 0,

a · ∆ x + k · (f (x, y)− f (x− 1, y)) , for x < 0,
 (6)

 

∂ 2f

∂ y2
=

{
b · ∆ y + k · (f (x, y + 1)− f (x, y)) , for y ≥ 0,

b · ∆ y + k · (f (x, y)− f (x, y − 1)) , for y < 0,
 (7)

where ∆ x and ∆ y represent the minimal variation in x and y axes, respectively, k is an adjusting parameter to 
be linked in network training; it is called the divergence rate. This divergence rate indicates that the branching 
point will be ascertained by the unique characteristics and fluctuations of the flow across the contour regional 
parts.

The quantity of filters employed within the network architecture is contingent upon the divergence rate (k). 
The convergence velocity at the edge points is relatively low; exponential function is employed to enhance the 
speed, which is designed as,

 
∆ v

v
= −kxe

vx
x + kye

vy
y  (8)

where vx and vy are the velocity of convergence along the x and y axes, respectively; kx and ky are the 
corresponding adjusting parameter; ∆ v

v  is the gradient in whole differential, and it is measured and moved 
forward according to the direction of the slope. In calculation, the change of ∆ v

v  is quantified by the intensity of 
dataflow in a particular direction.

Table 1 lists the slope metric of ∆ v
v , the convergence of v, as well as the paramters of k, kx and ky due to 

the application of Eqs. (6), (7) and (8), originating from the raw image pixel points. The feasibility of RBD mask 
strategy applied to R-CNN was examined to adopt the challenges for classification of pest detection.

The mask-endorsed HM-R-CNN
HM-R-CNN is a proposed network architecture that represents a derivative of mask R-CNN instance 
segmentation model in combined use of RBD technique. Typically, the architecture comprises a series of stacked 
convolution layers, supplemented by fully connected layers40.

The input layer receives a matrix composed of image elements, shown as x ∈ Rn× d in size of n, and in 
dimension d. The convolution layer uses different convolution to check the input matrix for convolutional 
operation, and extracts the local features of the input matrix, namely,

 CON = f (wx + b), (9)

where x is the convolution kernel window word vector matrix, w is the weight matrix, b is the bias, and f (· ) 
is the activation function to output the feature of CON . There initialize two pooling layers positioned after two 
convolution layers, for extracting the feature vector graphs, and sending the information to the full connection 
layer for classification.

Suppose that the HM-R-CNN receives an input matrix of dimensions d1 × d2 × d3, encompassing RGB 
color channels. According to the hierarchical principle, a given image x = {x1, x2 . . . , xi . . . , xj . . . , xn} 
was divided into several regions, and different characters in different divided regions were distinguished. 
For example, in image x = {x1, x2 . . . , xi . . . , xj . . . , xn}, there are two target elements of xi and xj
. This image will take two different targets as the center and divide the image into two independent regions 
r1 = {wi . . . , t1 . . . , wh+i−1} and r2 = {wj . . . , t2 . . . , wh+j−1} with size h. Thus the convolutional 
computation is streaming into two channels, and Eq. (10) is reconstructed as

 CONr = f (r1x + b1)⊗ f (r2x + b2), (10)

where CONr is the marked feature extracted by the combined convolution of the two hierarchical channels, b1 
and b2 are the constant intercept in network regressions.

By dividing regions, the convolution layer yields outputs in three types of class, location, and regional 
features, with softmax constituting an additional layer. Conversely, the randomized mask R-CNN architecture 
comprises c layers and possesses a significantly reduced parameter count, in comparison to the randomized 

Masking size k kx ky v
∆ v
v

32× 32 4 0.9 0.75 122 0.172

64× 64 8 0.9 0.75 135 0.267

128× 64 12 1.2 1.00 135 0.400

256× 128 24 1.2 1.00 144 0.542

256× 256 36 1.5 1.25 144 0.667

Table 1. Convergence velocity of RBD masking in slope metrics.
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mask R-CNN configuration. The inception module concurrently gathers a suite of features through parallel 
p× p convolutions (usually applied by 3× 3, 5× 5, and 7× 7), along with a parallel maximum pooling layer. 
To ensure practicality of the implementation, a p× p convolution is employed with the intent of diminishing 
the dimensionality. There the function was computed by mapping from a d1 × d2 × d3 data to a p× p result 
at each layer. Next, the final fully connected layer encompasses the feature outputs, which correspond to the total 
training effect of all different regions, in dimension agreement with the number of categories in the dataset, and 
compiled with a rejection by a dropout ratio of 0.2, thus to convey the feature information to the softmax layer. 
Technically, the hierarchical mask R-CNN has been presented and its code released in GitHub website41.

With specific designs in our adapted version of the HM-R-CNN, the image is divided into regions with 
specific objects as the center. The network is composed of two convolution layers measuring 256× 256× 3 
and 256× 128× 3, two pooling layers in dimensions of 128× 64× 3 and 64× 64× 3, one fully connected 
layer, and incorporate a softmax unit as linear or nonlinear activation for feature output.

According to the principle of computational complexity estimation, when the mask architecture is 
constructed by a total of c layers for convolution, pooling flattening and in the fully connected perception, the 
computational load would be estimated up to O(d1 × d2 × d3 × c× l/(p× p )) confronting a convolution 
filter length of l. For example, when confronting the input image with the dimension of 256× 256× 3, it is 
valued as d1 = 256, d2 = 256 and d3 = 3. The convolutional network is designed with 14 layers for convolution 
and pooling calculation, i.e. c = 14. And the filter length is set as l = 20, aiming to output a feature in dimension 
of 3× 3 ( p = 3). In this case, the computation load is of 6 million digit-level operations. On the contrary, if 
using conventional methods for extracting the features without mask, the computational load will go stead at 
O(d1 × d2 × d3 × c× l). The example computation load is up to 55 million. When confronting the dynamic 
big data situation, the input dimension is changing, the convolutional network structure is diverse, thus leading 
to a large amount of computational work load for HM-R-CNN.

The mask-enhanced TbHM-R-CNN
The TbHM-R-CNN architecture is designed on the basic structure of R-CNN (see Fig.  2). The input image 
undergoes dynamic training for classification. The initial two convolution channels of the 256-pixel embedding 
space form the input image. This is followed by two successive pooling layers measuring 128× 64 and 64× 64
. The pooling features are available for mask selection by HM technique. Notably, the formatted three-variable 
RGB color consistency is maintained across the provided examples (shown as the “ × 3” in each step through 
the procedure). The special design of TbHM is to introduce a threshold value to debug the training in the 
convolution layers and the pooling layers. The crux of the threshold learning process lies in fault-tolerant for 
screening the regional masks. Then the selected regional structured data is characterized for flattening to finish 
the R-CNN procedure, and the selected feature data is further delivered for modeling to reach the goal of 
classification or prediction.

In the procedure, the segmented regional pixels represent a smaller energy value, which correlates with a 
reduced gradient value change (i.e. the abovementioned ∆ v

v  in Eq. (8)) in the convolutional processes. Prior 
to the application of a filter layer to the input image, the present input set al.ongside its weight values, as well 
as the projected output values and the ensuing layer’s weights, are preserved as a fuzzy determinant data for 
the impending filtration operation42. Then the gradient values can be recovered during the latter stages of the 
pooling layer’s threshold debugging. Subsequent regional mask layer will exhibit the diagonal or horizontal 
coding patterns due to the threshold factor.

The TbHM-R-CNN model is originated from HM-R-CNN, and a threshold parameter is introduced to 
make a refinement. As abovementioned, Eq. (10) is the characterized calculus of HM-R-CNN; to this end, the 

Fig. 2. Image classifier by regional segmentation based on specific design of TbHM-R-CNN model.
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convolutional calculation of TbHM-R-CNN uses Eq. (11) instead of Eq. (10), while the other steps are the same 
as those of HM-R-CNN,

 CON (θ )
r = f (( r1 + θ 1)x + b1)⊗ f (( r2 + θ 2)x + b2), (11)

where θ 1 = (θ c1, θ p1) and θ 2 = (θ c2, θ p2) represent the thresholds applied in the two convolution layers 
and the two pooling layers, CON (θ )

r  is the renewal output features from the combined convolution of two 
hierarchical channels, with the adjustment of the threshold-based factor.

Indicators for model evaluation
Classification problems need to be quantitatively evaluated using the following typical indicators: Accuracy 
( ACC), Precision ( PRE), Recall ( REC) and F1 score43. They are calculated on the basis of a confusion matrix. 
For a binary classification problem, the confusion matrix provides the counts for True Positive (TP), False 
Positive (FP), True Negative (TN) and False Negative (FN). Then the mentioned indicators are formulated as 
follows,

 
ACC =

TP + TN

TP + TN + FP + FN
, (12)

 
PRE =

TP

TP + FP
, (13)

 
REC =

TP

TP + FN
, (14)

 
F1 =

2× PRE × REC
PRE + REC

. (15)

When facing a multi-classification problem, weighted-average method is prevalent44. By considering the 
category imbalance, different weights are given to different categories (the weights are determined based on the 
true distribution ratio of the category), and each category is multiplied by the weights and then summed.

Application case
The dataset
As it is well known that pests and diseases are serious in crops in early March, around the time of Insects Awaken 
(One of the 24 solar terms in Chinese traditional sayings). Samples were collected in five consecutive sunny days 
at the Insects Awaken duration. Images were taken in the afternoon of each day between the hours of 15:00 and 
17:00. A total of 3015 images of pest invasive plant leaf samples were collected from the 10 different kinds of 
agricultural plants. Each kind occupies a certain percentage of the total number (See Table 2). According to plant 
subjects, they were assigned for a total of 28 class labels. Each class label indicates a crop-disease pair and a test 
was performed to predict the crop-disease pair using only the plant leaf image. For the experiment, all the leaves 
were laid under a microscope to show the insect images. Technically, the images have been reduced to 432 × 288 
pixels in all of the approaches described in this research (see examples in Fig. 3). Both model optimization and 
predictions were performed on these downscaled images.

In our experiments, various segmentation techniques, including SLIC, Mask R-CNN, HM-R-CNN, and 
TbHM-R-CNN, were employed on a specific collection of diseased leaves. The dataset was in RGB color format, 
with the test data comprising multiple fresh images. All experiments were transitioned to a version of the plant 
disease dataset where the leaves were segmented, and all superfluous background information was eliminated. 

Common name Scientific name / Latin name

No. of samples 
(percentage 
occupation)

No. 
of
class 
labels

Cassava Manihot esculenta Crantz 181 (6%) 2

Cunninghamia Cunninghamia lanceolata (Lamb.) 
Hook. 241 (8%) 3

Ficus Ficus microcarpa L. f. 452 (15%) 3

Litchi Litchi chinensis Sonn. 362 (12%) 4

Orange Citrus reticulata Blanco 452 (15%) 4

Rice plant Oryza sativa L. 302 (10%) 3

Shrubs Shrubs 241 (8%) 2

Sugar cane Saccharum officinarum L 362 (12%) 3

Sweet potato Ipomoea batatas (L.) Lam. 302 (10%) 3

Yam Bean Pachyrhizus erosus (Linn.) Urb. 120 (4%) 1

Table 2. Names, class labels and the collecting numbers of the crop plant leaf samples.
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Architecture Feature extractor Bounding box

R-CNN ResNet-50

Endorse the temporary parameter valuing of [W s, hN ]
Mask R-CNN Radial bisymmetric divergence

HM-R-CNN Hierarchical mask

TbHM-R-CNN Hierarchical mask + Threshold

Table 3. Details for deep learning by different R-CNN-based architectures.

 

Fig. 4. The HM-R-CNN classifier for pest detection.

 

Fig. 3. The example of the plant leaf samples under the microscope view.
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This step was crucial because the standardized data collection procedure could potentially introduce undesirable 
variability into the dataset.

The computing code was programed in MATLAB R2022a to execute the automated segmentation of the 
dataset, and performed it on a 64-bit operating system using an Intel(R) Pentium(R) G3220 CPU with 3 GHz 
and 8 GB of RAM. Our method involves generating an overlay of images by dissecting the brightness, and 
saturation elements across various sections of the image within the microscope domain. An additional phase 
in the process enables us to swiftly correct any dormant images that are especially conspicuous within certain 
subsets of the dataset, thereby eradicating another source of systematic error. In data analysis and machine 
learning, the concealed or imper latent features or patterns pertain to the concealed or imperceptible dimensions 
within the data. Latent images encapsulate intricate details about focal points of interest, potential zones of 
heightened pest or disease incidence, or other pertinent characteristics that are imperative for subsequent stages 
in the workflow. To enhance the data’s integrity and precision, rectifying the latent images involves identifying 
and mitigating issues associated with these occult patterns or systematic flaws present in subsets of the dataset.

Model configuration for data analysis
To train the neural network, a comprehensive dataset depicting the 3015 images of diseased leaves was amassed. 
The images served for model training and evaluation. 65% of the samples were for modle training and 35% for 
evaluation. The evaluation samples were not included in the model training process. The noise was expunged 
using preprocessing methods. Thereafter, feature extraction methodologies and machine learning protocols 
were implemented to facilitate the recognition of pests.

Several R-CNN-derived object recognition methodologies have been utilized; each customized to fulfill the 
prerequisites of regional localization and enhance the efficacy of instance-oriented segmentation. Extending on 
this concept, the forthcoming discourse will present an innovative technique for partitioning segmentation areas 
specifically for regions of leaves affected by disease. The mask R-CNN handles a mask yielding independently 
from classification and bounding box forecasting. With the assist of cutting-edge techniques, HM-R-CNN stands 
out as a streamlined hierarchical bisectional segmentation approach. The TbHM-R-CNN offers distinct outputs 
for each candidate object, which is more suitable in practical for class designations, boundary box adjustments, 
class characteristics and softmax distributions.

Figure 4 illustrates the proposed pest detection classifier using the HM-R-CNN architecture. In the basic 
R-CNN model, the image data was pre-treated by ROI to extract a region in dimension of 256× 256× 3. The 
convolutional network was designed with 14 layers for convolution, pooling, flattening and for fully connected 
structure calculations. And the convolution filter was set as in length of 20. In application, different dimensions 
of mask (such as using the 3× 3, 5× 5, and 7× 7 size convolutions) were applied to the data to form the 
HM-R-CNN models. Consulting to Fig. 4, it is easy to switch to the TbHM-R-CNN mode by suiting a threshold 
valuable in the HM protocol (the red cylinder in the figure).

In details, the basic R-CNN architecture is constructed with 2 convolution layers paired with 2 pooling layers. 
The convolution filters were randomly initialized as a 0–1 vector in the length of 20. The filter slid over the 
input vectors with a stride of 2. For every sliding pace, the local sum of 20 variables were calculated with the 
filter weights, to produce the convolved feature data. The filters are tunable during the computing process. The 
functions are used to calculate the output results of the model to obtain the image segmentation results of the 
targeted images, as shown in the following,

 y = softmax(W shN + b) (16)

where W s is the weight matrix, b is the bias, hN  is the last neurons of hidden layer and output in for R-CNN. 
In training process, the back propagation training mode was employed to optimize the model, and through the 
whole connection layer of each output is refined by minimizing the model with regularization. The formula is 
given as follows,

 loss = −
∑

i∈D

∑
j∈ Cŷ

j
i logyji + λ∥θ∥2 (17)

where D is the data set of training set, C is the category of dataset, y is the prediction category of the targeted 
images, ŷ is the actual category, and λ∥θ∥2 is a regularization term.

After the classification by HM-R-CNN, relevant pixels in the direction of each region were dispersedly 
identified, to make the output images formed in nuanced bi-symmetry. The method demonstrates that a 
4-neighborhood cluster can effectively cluster equivalent sets of pixels, even along arbitrary directions. Then 
segmentation was easy to operate by SLIC, and SLIC computes the distance from each cluster center to the pixels 
within a 2S × 2S  region exclusively. This process surpasses previous techniques in terms of rapidity, diminishes 
memory consumption, attains elevated regional precision, and enhances the efficiency of the segmentation 
algorithm.

To raise the model’s applicable capabilities, transfer learning was integrated to the mask R-CNN architecture, 
and substitute the modulation layer within the convolutional architecture with a collection of features exhibiting 
varying processing speeds. The TbHM-R-CNN model was also built up by fitting a threshold for parameter 
tuning. Referring to Eq.  (11), θ 1 and θ 2 are loaded in adaptive mode, aiming to tune the resultant output 
features adjust for the tolerance of 5% bias in classification accuracy.

The detail settings of structural parameters are shown in Table 3. The R-CNN model was constructed as 
in an ResNet-50 structure. Radial bisymmetric gradients were utilized for the mask R-CNN framework, and 
also for the HM and TbHM models. All the CNN architectures used the same setting of bounding box for 
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the endorsement of temporary valuing of the parameters W s and hN . The comparative results of tuning 
parameters were temporary stored in the box, and a common softmax unit is typically applied as the terminal 
activation function to normalize the output of the neural network.

Performance metrics of proposed system
Different algorithms were applied to infected plant leaves, and a comparative analysis of the regional accuracy of 
each strategy was conducted. For R-CNN and mask R-CNN, the subsequent experimental configurations were 
executed employing the R-CNN paradigm. The instance segmentation technique was validated utilizing the 
proposed HM-R-CNN and TbHM-R-CNN methodologies depicted in Fig. 5. It can be seen from Fig. 5 that the 
R-CNN-based deep learning models are able to get stronger intensity than SLIC to recognize the pixel data. This 
would help enhance the ability to recognize the pixel’s information. The experiments were conducted with a deep 
learning framework that incorporates a progressive bilateral gradient feature set.

The method known as TbHM is a threshold-based hierarchical mask R-CNN technique. TbHM-RCNN 
constitutes a more expeditious object detection algorithm. The TbHM-RCNN approach yields the image 
displayed in Fig. 6. This illustration showcases the solitary detection capability of the mask R-CNN technique, 
which is more specifically to pinpoint the feature information of pest infested regions. Based on these features, 
it is easy to further calculate the pest insect area of the leaf, in aid to estimate the severe extend of pest detection.

A variety of leaf-based pests and diseases have been discerned and quantified for classification purposes. To 
tackle analogous issues, models or memory networks that have been trained on a substantial dataset are referred 
to as pre-trained models. Characteristics from mask R-CNN and HM-R-CNN are amalgamated to construct a 
novel pre-trained model. With rooted in the mask, the transfer learning features substitute the modulation layer 
substitute the modulation layer within the convolutional stack with a velocity difference feature set, as elucidated 
in the following section. Table 4 illustrates that mask R-CNN surpasses HM-R-CNN and TbHM-R-CNN in 
precision when detecting the leaves under the microscopic view, requiring merely a single lens to photograph 
the foliage. Table 4 tells that, in general, the mask R-CNN technique is deemed satisfactory with all classification 
accuracy over 0.6. In comparison, the common mask R-CNN with radial bisymmetric divergence observed a 
basic line for classification, the HM-R-CNN model had got an enhanced effect, and the TbHM-R-CNN obtained 
the highest accuracy of over 0.7 for all the three views. Herein, it can be concluded that the single-shot technique 
of mask R-CNN is synergized with the training dataset of transfer learning.

Fig. 5. Image segmentation intensity for different methods.
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With the mask, the R-CNN method applied to different regional areas of the image by rational segmentation. 
For the mask R-CNN, HM-R-CNN and TbHM-R-CNN algorithms, regional efficacy is assessed based on the 
number of successful points that correspond to actual regions. Pinpointing specific areas within an image 
segmentation where objects may occur and extracting the characteristics of these zones through CNN facilitates 
the prediction of their classes and bounding boxes, which will subsequently aid in further feature extraction. 
Figure 7 depicts the regional accuracy curves for segmentations based on different counts of pixels. The figure 
show that the regional search went in the top accuracy-to-pixel ratio when the count of pixels fall in around 0.1, 
which indicated that using about 10% of the pixels of the whole image can deduce a relatively high classification 
accuracy. When concerning on the comparison of methods, the TbHM-R-CNN model obviously performed 
prior than the other two models. These results validated that the regional mask which is screen out by radial 
bisymmetric divergence method is able to improve the signal-to-noise ratio for information selection, and that 
the TbHM is the comparatively best approach to aid the R-CNN architecture for feature selection in the deep 
learning progress for pest detection in crop leaves.

Comparison of the proposed model
The efficacy of the proposed method is validated by benchmarking it against the outcomes of conventional 
techniques such as ANN, SVM, KNN and Naïve Bayes45. Also, some prevalent deep learning methods are taken 
into the comparison, including conventional CNN and DNN-SAR46, the ResNet-50, GoogleNet, and AlexNet 
structures47. Their respective performances were evaluated according to diverse evaluation metrics. Figure  8 
exhibits the comparison of accuracy rates among various classification methodologies. The classification 
accuracies of conventional techniques such as ANN, SVM, KNN, Naive Bayes, and conventional CNN are 
recorded at 80.8%, 82.1%, 75.3%, 72.6%, and 88.3% respectively. In contrast, the proposed models achieve 
significantly higher classification accuracies, up to 91.5%, 94.1% and 96.2% for mask R-CNN, HM-R-CNN, 
TbHM-R-CNN, respectively, which surpass those of the existing methods. Table  5 presents a comparative 

Mask R-CNN HM-R-CNN TbHM-R-CNN

Bacterial canker 0.6126 0.6807 0.7109

Gray mold 0.6875 0.7429 0.8205

Whitefly 0.6432 0.7135 0.7408

Table 4. Classification accuracy by different R-CNN-based techniques through three microscopic views.

 

Fig. 6. Example images for feature converted by TbHM-RCNN technique.
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analysis of precision, recall, and F1 score of the proposed models against existing models. Established models 
such as DNN-SAR, ResNet-50, GoogleNet, and AlexNet report precision values of 80.4%, 78.3%, 82.6%, and 
79.9% respectively, whereas the proposed model achieves an enhanced precision value to 96.3%, 95.6% and 
98.9% for Mask R-CNN, HM-R-CNN and TbHM-R-CNN, respectively. Additionally, the proposed models 
boast superior recall values compared to its counterparts, along with the F1 scores of over 95%.

In summary, a novel image segmentation method for leaf pest detection system was introduced, utilizing 
a segmentation approach founded on radial bisymmetric divergence R-CNN. This system demonstrates adept 
capabilities in detecting and classifying pests and diseases effectively. The outcomes reveal that the system 
achieves an impressively high accuracy of 96.2% in identifying and categorizing the infected areas of leaves, 
which is pivotal for safeguarding crops swiftly. The proposed model exhibits an outstanding recall value of 97.5 
and an F1 score of 0.982, outperforming existing models. These metrics corroborate that the suggested system 
surpasses other current techniques in performance.

Conclusions
The early detection of pests and diseases in plants is crucial for preventing crop losses. In this study, prevalent 
leaf pests were successfully detected and classified using a bisymmetric hierarchical segmentation R-CNN based 
on deep learning techniques. Key feature sets included both the age and coloration of the leaves. Investigations 
have substantiated that the segmentation method employed is efficacious in discerning the infected areas of 
the blade, particularly at low velocity gradient values. The mask R-CNN based approach has proven to be more 
dependable and precise overall. While the SLIC-based segmentation method offers a robust localization effect, 
the outcomes indicate that it yields comparable efficiency results to the cluster-based method, provided there is 
an appropriate selection of clustering and training parameters.

The suggested technique employs radial bisymmetric gradients and transfer learning to achieve competitive 
results. Successful identification of infected areas on crop leaves was achieved by the HM-R-CNN and TbHM-R-

Fig. 7. Regional accuracy for different segmentation by different mask-R-CNN models and its corresponding 
applied variants/pixels.
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CNN methods. In comparison with current methods, the proposed method boasts a highest accuracy of 96.2%, 
precision of 98.9%, recall of 97.5%, and an F1 score of 0.982. When purchasing the high accuracy, the established 
model is at the cost of model transfer stability. However, the pinpointing and identifying various regions or 
sites on the leaves that are compromised or afflicted by a disease is much related to the stability and robustness 
of the established model. To address this issue, feature-based hybrid detection methods can potentially be 
further ameliorated through the application of ensemble techniques (such as bagging, boosting, or stacking) 
and subsequently consolidating predictions from multiple models. The results derived from the ensemble 
approach prospectively surpass those yielded by an individual model. Such an approach can significantly aid in 
the development of automated pest control systems within the context of digital agriculture. This constitutes a 
critical following study in the management and detection of plant diseases.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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