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Synopsis
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP.
Mitochondrial fatty acid β -oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which
are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and
liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality
of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well
understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS
defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and
that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of
the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to
mitochondrial disease pathogenesis.
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MITOCHONDRIAL METABOLISM

Mitochondria occupy almost all human cell types and are in-
volved in essential metabolic and cellular processes, includ-
ing calcium and iron homoeostasis, apoptosis, innate immunity
and haeme biosynthesis [1]. However, the primary function
of mitochondria is the production of energy in the form of
ATP [2–4]. ATP is the body’s energy currency, playing vital
roles in cell differentiation, growth and reproduction, thermo-
genesis and powering the contraction of muscles for move-
ment [1]. In humans, ATP is produced by two different pro-
cesses; through the breakdown of glucose or other sugars in
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the absence of oxygen in the cytoplasm (glycolysis), or by
the metabolism of fats, sugars and proteins in the mitochon-
dria in the presence of oxygen. Although both processes pro-
duce ATP, oxidative metabolism accounts for 95 % of ATP pro-
duced and yields 20 times the amount of ATP as its anaerobic
counterpart.

Mitochondria utilize three main enzymatic pathways to gen-
erate ATP; the tricarboxylic acid (TCA) cycle, oxidative phos-
phorylation (OXPHOS) and fatty acid β-oxidation (FAO). The
TCA cycle oxidizes acetyl-CoA, derived from sugars, fats and
amino acids, to generate NADH and flavin adenine dinucleotide
(FADH2), which can be used by the OXPHOS system to generate
ATP (Figure 1).
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Figure 1 Mitochondrial metabolism
Glucose breakdown through glycolysis and the TCA cycle (dark blue) generates reduced NADH and FADH2. Fatty acid
β -oxidation (FAO, light blue) of fatty acyl-CoA esters is performed in four enzymatic reactions that also generates NADH
and FADH2, as well as acetyl-CoA. Electrons derived from NADH and FADH2 are utilized by the five OXPHOS complexes
(green) to generate ATP. Complex I (CI, NADH: ubiquinone oxidoreductase), complex III (CIII, ubiquinol: ferricytochrome c
oxidoreductase) and complex IV (CIV, cytochrome c oxidase) pump electrons out of the mitochondrial matrix to generate
a membrane potential (�ψm) that drives the synthesis of ATP by complex V (CV, FoF1-ATP synthetase). CII, complex II
(succinate: ubiquinone oxidoreductase).

OXIDATIVE PHOSPHORYLATION
(OXPHOS)

OXPHOS involves a series of oxidation–reduction reactions
which results in the phosphorylation of ADP to produce ATP.
This process is performed by five protein complexes which reside
in the inner mitochondrial membrane: complex I (CI), NADH:
ubiquinone oxidoreductase, EC 1.6.5.3; complex II (CII), succin-
ate: ubiquinone oxidoreductase, EC 1.3.5.1; complex III (CIII)
ubiquinol: ferricytochrome c oxidoreductase, EC 1.10.2.2; com-
plex IV (CIV) cytochrome c oxidase, EC 1.9.3.1 and complex V
(CV), FoF1-ATP synthetase, EC; 3.6.3.14.

Complex I (CI) accepts electrons from NADH, whereas CII
accepts electrons from FADH2, both of which are derived from
the TCA cycle and FAO. CI and CII then reduce ubiquinone,
the substrate of CIII. CIII then transfers electrons from reduced
ubiquinone to cytochrome c. Next, CIV passes the electrons from
cytochrome c to O2, reducing it to form H2O. As the electrons

are transferred between the OXPHOS complexes, protons are
pumped across the inner mitochondrial membrane by CI, CIII
and CIV to create an electrochemical potential (�ψm). �ψm is
used by CV to drive the phosphorylation of ADP to produce ATP
(Figure 1).

OXPHOS SUPERCOMPLEXES

Since the identification of the five OXPHOS complexes, their
orientation in situ has been debated. Two main theories have
been postulated; the fluid model and the solid-state model [5].
The fluid model suggests that the OXPHOS complexes local-
ize individually and diffuse laterally in the mitochondrial inner
membrane. In this model, electron transfer is dependent on ran-
dom collisions between CI, CII, CIII and CIV [6]. Conversely,
the solid-state theory proposes that the constituents of OXPHOS
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combine to form stable structures, termed ‘supercomplexes’, that
contain two or more of the OXPHOS complexes.

Initial findings identified possible physical interactions
between CI and CIII [7,8], as well as CII and CIII [9]. Further
research resulted in the isolation of a supercomplex containing
CIII/CIV2 in several strains of bacteria [10–12] and CI/CIII2,
CIII2, CI2/CIV and CI/CIII2/CIV with varying stoichiometry in
potato mitochondria [13,14]. In yeast, a CV dimer (CV2) [15]
and CIII2/CIV1–2 supercomplex have also been detected [16].

In mammalian mitochondria, CI/CIII2 and CI/CIII2/CIV1-3

supercomplexes have been identified. In particular, the
CI/CIII2/CIV1–3 supercomplex has been described as the ‘res-
pirasome’, representing a single, functional respiratory unit [16].
Although the existence of OXPHOS supercomplexes within the
inner mitochondrial membrane is now widely accepted, the func-
tion of these structures is still debated. A large body of research
has revealed that the supercomplexes are integral for OXPHOS
complex stability. Experimental evidence showed that a mutation
in MT-CYB, which encodes the cytochrome b subunit of CIII, res-
ults in the disruption of CIII assembly in both mice and humans.
In addition, destabilization of CI was also observed. This sug-
gests that the presence of CIII is essential for CI assembly and/or
stability via their interaction in a supercomplex [17].

Similarly, knockout of one of the CIV assembly factor genes,
COX10, results in the loss of CIV activity and steady-state levels,
with an associated reduction in mitochondrial respiratory ca-
pacity. Perturbed assembly of CI was also observed in COX10
knockout mouse mitochondria, suggesting that stable CIV is re-
quired to maintain CI stability [18]. Overall, these findings high-
light the interdependence of the OXPHOS complexes for their
stability, via their association in the OXPHOS supercomplex.

In addition, the phospholipid cardiolipin is required for OX-
PHOS supercomplex assembly and stability [19]. The majority of
cardiolipin is found in the inner mitochondrial membrane where
it is essential for mitochondrial function. Nuclear magnetic reson-
ance imaging of bovine heart mitochondria has identified cardi-
olipin attached to CV [20]. It has also been shown that cardiolipin
is required to maintain CI, CIII and CIV structure and function
[21].

In humans, mutations to TAZ, which encodes the cardiolipin
acyltransferase Tafazzin, result in Barth syndrome, a disease char-
acterized by dilated cardiomyopathy, skeletal myopathy and neut-
ropenia [22]. Barth syndrome patients exhibit increased accu-
mulation of monolysocardiolipin precursors and reduced mature
tetralinoleoylcardiolipin production, with associated CIII and
CIV deficiencies [23]. It has also been shown that Tafazzin de-
fects result in destabilized OXPHOS supercomplexes, which in
turn results in reduced steady-state levels of CI. These findings
suggest that cardiolipin is essential for OXPHOS supercomplex
stability, and that loss of supercomplex stability contributes to
Barth syndrome pathogenesis [19].

Apart from stabilizing the OXPHOS complexes, the super-
complex structure may also play a role in substrate channelling.
Flux experiments have shown that the formation of the respira-
some allows for substrate channelling by decreasing the distance
in which electrons travel between mobile electron carriers and

the OXPHOS complexes. This finding is supported by in-gel en-
zymatic assays that demonstrate respirasome catalytic activity in
a range of eukaryotes [16,24,25]. In addition, the formation of the
respirasome has also been proposed to limit oxidative stress [26].
By forcing closer interactions between CI and CIII, the leakage
of electrons to form superoxide is less likely. Indeed, oxidat-
ive stress is a common attribute in diseases where supercomplex
assembly is disturbed (reviewed in [27,28]).

However, recent findings suggest that the main function of su-
percomplexes is not to channel substrates and stabilize the OX-
PHOS complexes, but may instead be a protein packaging and
space saving phenomenon. Recent flux control analyses have
discounted electron channelling in supercomplexes [29], while
electron microscopy of the supercomplex structure has revealed
that the distances between CIII and CIV may be too large for effi-
cient substrate channelling [30]. In addition, it has been proposed
that the interdependence of complex stability is most likely due
to downstream effects of increased oxidative stress and not due
to their presence in the same supercomplex [29].

In summary, although the existence of OXPHOS supercom-
plexes is now largely established, there is still debate regarding
their functional significance. Irrespective of their purpose, the
OXPHOS supercomplexes play an important role in mitochon-
drial respiration and their disruption contributes to mitochon-
drial disease pathogenesis, possibly in ways we are yet to fully
understand.

MITOCHONDRIAL FATTY ACID
β-OXIDATION (FAO)

Fatty acids are vital constituents of enzymes, hormones and cell
membranes. In addition, they are a major source of energy. Fatty
acids are metabolized in mitochondria by FAO, a critical pathway
of energy production in a variety of cell types, including the
heart [31,32]. In fact, under normal physiological conditions,
FAO provides the majority of ATP (60–70 %) required for proper
heart contraction [33]. FAO yields a high amount of energy for
the cell. For example, the complete oxidation of a 16-carbon
palmitic acid will yield a total of 112 molecules of ATP.

FAO is crucial for homoeostatic regulation, specifically in
times of fasting or endurance exercise that requires high en-
ergy resources. During this high energy demand, fat stores are
broken down for metabolism by tissues in need [34]. In particu-
lar, the liver metabolizes fatty acids to produce ketone bodies for
consumption by the brain when glucose is unavailable [35,36].

At least 20 separate transport proteins and enzymes are re-
quired for activation and breakdown of fatty acids via FAO
(Table 2) [37]. Fatty acids are transported through the blood
as non-esterified fatty acids bound to lipoproteins or serum albu-
min. Upon reaching their target cell, short and medium chain
fatty acids (C4–C12) traverse the cell membrane by passive
diffusion. However, saturated and unsaturated long chain fatty
acids cross the cell membrane by sodium dependent fatty acid
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Figure 2 Mitochondrial fatty acid β-oxidation (FAO) spiral
Fatty acyl-CoA esters are converted to fatty acylcarnitines by CPT1 for transport into the mitochondria by CACT. Acylcarnitines
are subsequently converted back to fatty acyl-CoA esters once inside the mitochondria by CPT2 for metabolism by the
fatty acid β -oxidation (FAO) spiral. FAO consists of four reactions (numbered 1–4 in black) which are performed by enzymes
that are fatty acid chain length specific (chain lengths shown in dark blue). (1) Dehydrogenation of the fatty acyl-CoA by
very long chain (VLCAD), medium chain (MCAD) or short chain (SCAD) acyl-CoA dehydrogenases to create enoyl-CoA, (2)
hydration by the enoyl-CoA hydratase activity of the MTP or ECHS1 to add water to enoyl-CoA to form 3-hydroxyacyl-CoA,
(3) a second dehydrogenation by MTP or HADH to generate 3-ketoacyl-CoA and (4) thiolysis by the thiolase activity of the
MTP or KAT to produce a shortened fatty acyl-CoA and acetyl-CoA. Oxidation of unsaturated fatty acids requires the action
of ECI1.

transporters [38]. These include fatty acid transport proteins
(FATPs), plasma membrane fatty acid binding proteins and the
fatty acid translocase protein CD36.

Once inside the cell, acyl-CoA synthetases activate the fatty
acid by converting it from its non-esterified form to a fatty acyl-
CoA ester. These esters can form the preliminary substrates for
cholesterol, phospholipid and triacylglycerol synthesis, or enter
the mitochondria via the carnitine shuttle system for FAO (Fig-
ure 2). The carnitine transport of fatty acyl-CoAs involves three
steps. Firstly, the fatty acyl-CoA is bound to carnitine by car-
nitine O-palmitoyltransferase 1 (CPT1) to form a fatty acylcar-
nitine. Fatty acylcarnitines are then transported across the mito-
chondrial inner membrane by the carnitine acylcarnitine trans-
locase (CACT). Once inside the mitochondrial matrix, carnitine
O-palmitoyltransferase 2 (CPT2) converts the fatty acylcarnitine
back to a fatty acyl-CoA ester [4].

Metabolism of fatty acyl-CoAs by FAO requires four en-
zymatic reactions; dehydrogenation, hydration, a second dehyd-
rogenation and thiolysis. The end products of these reactions are

one acetyl-CoA molecule, two electrons (which enter OXPHOS)
and a fatty acyl-CoA ester that has been shortened by two carbon
atoms. As such, the FAO pathway is often referred to as a spiral
pathway, as the resulting shortened fatty acyl-CoA ester returns
to the beginning of the pathway and is re-oxidized until only two
acetyl-CoA molecules remain (Figure 2).

In the first step of FAO, fatty acyl-CoAs undergo dehydro-
genation, removing two hydrogen atoms to create enoyl-CoA.
Dehydrogenation is performed by a family of acyl-CoA dehydro-
genases with particular fatty acid chain length specificity, ranging
from 4 to 24 carbons. This family of enzymes includes: very long
chain acyl-CoA dehydrogenase (VLCAD, C12–C24), long chain
acyl-CoA dehydrogenase (LCAD, C14–C18) (low expression in
humans), medium chain acyl-CoA dehydrogenase (MCAD, C6–
C12) and short chain acyl-CoA dehydrogenase (SCAD, C4–C6).
Dehydrogenation is flavin adenine dinucleotide (FAD) depend-
ent, with FAD reduced to FADH2. The liberated electrons are
passed from FADH2 to the electron transfer flavoprotein (ETF),
a heterodimer consisting of an alpha (ETFA) and beta (ETFB)



4 c© 2016 Authors. This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.

http://creativecommons.org/licenses/by/3.0/


Physical interactions between OXPHOS and FAO

subunit. The electrons are then transferred to ubiquinone by the
ETF: ubiquinone oxidoreductase (ETF-QO). Finally, ubiquinone
enters the OXPHOS pathway by being oxidized by CIII.

For long chain fatty acids (C14–C18), the remaining three steps
are catalysed by the mitochondrial trifunctional protein (MTP).
Encoded by two genes, MTP is a hetero-octamer consisting of
four α-subunits (encoded by HADHA) and four β-subunits (en-
coded by HADHB). The α-subunit comprises long chain enoyl-
CoA hydratase (LCEH) and the NAD-dependent enzyme long
chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), whereas
long chain 3-ketoacyl-CoA thiolase (LKAT) is found in the β-
subunit.

For medium (C6–C12) and short chain fatty acyl-CoAs (C4–
C6), the last three steps of FAO are performed by different en-
zymes that are located in the mitochondrial matrix. These include:
step 2, hydration by short chain enoyl-CoA hydratase 1 (ECHS1
or crotonase), step 3, dehydrogenation by hydroxyacyl-CoA de-
hydrogenase (HADH) and step 4, thiolysis by 3-ketoacyl-CoA
thiolase (KAT) (Figure 2).

Fatty acids that have an uneven number of carbon atoms result
in a three-carbon propanoyl-CoA at the last spiral, which is sub-
sequently converted to succinyl-CoA in three steps. Propanoyl-
CoA is carboxylated to (S)-methylmalonyl-CoA by propionyl-
CoA carboxylase (PCC), a dodecameric enzyme comprised of six
alpha (PCCA) and six beta (PCCB) subunits. (S)-Methylmalonyl-
CoA is then isomerized by methylmalonyl-CoA epimerase
(MCEE) to form (R)-methylmalonyl-CoA. The final step is per-
formed by methylmalonyl-CoA mutase (MCM) and requires co-
factor Vitamin B12 to produce succinyl-CoA, which then enters
the TCA cycle.

MITOCHONDRIAL DISEASE

Mitochondrial disease comprises a heterogeneous group of dis-
orders, owing to the structural and functional complexity of the
mitochondrion itself. Mitochondrial biogenesis and function re-
quires the coordinated effort of over 1100 proteins that are en-
coded by both the nuclear DNA (nDNA) and the maternally
inherited mtDNA. Mitochondrial disorders can be caused by
pathogenic mutations in mtDNA or nDNA, resulting in a variety
of inheritance patterns, including maternal, autosomal dominant,
autosomal recessive and X-linked [39].

Mitochondrial disease symptoms are wide ranging, from mild
to severe, early onset to late onset, and can affect one organ or
multiple systems. In this regard, mitochondrial disorders do not
always show a genotype–phenotype correlation. Two patients
may possess the same pathogenic mutation but present differ-
ently, or have different mutations that result in the same clinical
phenotype. For example, mutations in MT-ND1 and MT-ND4
can cause Leber hereditary optic neuropathy (LHON), a disease
characterized by bilateral, painless central vision loss in early
to late adulthood resulting from the specific degeneration of ret-
inal ganglion cells in the optic nerve [40]. However, these same

mutations can also be associated with more severe symptoms,
including dystonia and short stature [41–43].

The most common mitochondrial disorders are attributed to
dysfunction of the OXPHOS system and occur at an estimated
frequency of 1 in 5000 live births. OXPHOS disorders are char-
acterized by deficiencies in OXPHOS complex activity and/or
reductions to the steady-state levels of the OXPHOS complexes,
with subsequent diminished ATP production. These may be isol-
ated complex disorders or a combination thereof. Defects can be
caused by mutations in genes that encode protein subunits of the
OXPHOS complexes, proteins required for OXPHOS complex
biogenesis, as well as proteins that are vital for the replication,
transcription and translation of mtDNA (Table 1) [39].

OXPHOS complex I
Isolated CI deficiencies (OMIM #252010) are the most common
causes of OXPHOS disorders, accounting for approximately 30 %
of affected patients. CI diseases comprise a range of clinically
heterogeneous conditions. Complex I consists of 44 different
structural subunits, one of which is found twice, for a total of
45 subunits. Pathogenic mutations have been identified in 21
CI subunit genes, including all seven of the mtDNA-encoded
subunits [44,45] (Table 1).

In recent years, significant advances have also been made
in our understanding of the machinery involved in CI biogen-
esis. This process requires additional proteins, termed ‘assembly
factors’, which aid complex I assembly [46]. The first pathogenic
human mutation in a CI assembly factor was found in NDUFAF2
[47]. Since this initial discovery, several other pathogenic muta-
tions have been identified in CI assembly factor genes, including
NDUFAF1 [48], NDUFAF3 [49], NDUFAF4 [50], NDUFAF5
[51], NDUFAF6 [52], FOXRED1 [53], ACAD9 [54] and NUBPL
[53] (Table 1). The identification of these mutations, and the ex-
amination of how they disrupt CI assembly, have greatly aided
our understanding of CI biogenesis.

The clinical presentation of CI disorders can range from the
neonatal period to adult onset, with symptoms including cardi-
omyopathy, liver disease and neurological disorders [55–58]. The
most common clinical presentations include Leigh Syndrome, a
multiple organ disorder with degeneration of the muscular, peri-
pheral and central nervous systems [55,59–61], fatal infantile
lactic acidosis and other infancy/early childhood onset neuro-
pathological disorders [44].

In addition, CI defects have been linked to Parkinson’s dis-
ease (PD), a neurodegenerative condition which results from the
progressive loss of dopaminergic neurons in the substantia nigra.
Isolated CI respiratory deficiencies are a common feature, spe-
cifically in the substantia nigra of PD patients [62,63]. The under-
lying pathogenic mechanisms are not well understood, although a
growing body of research suggests mitochondrial respiratory dys-
function and oxidative stress contribute to disease pathogenesis
[62–65]. In some Parkinson’s disease patients, mtDNA mutations
have also been detected, specifically in the D-loop region and the
MT-ND5 gene [65].
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Table 1 Genes with pathogenic mutations resulting in OXPHOS disorders

Complex subunits

Proteins for
import/processing or
assembly

mtDNA
expression or
replication

Nucleotide
transport or
synthesis

Membrane
composition

Complex I MT-ND1, MT-ND2,
MT-ND3, MT-ND4,
MT-ND4L, MT-ND5,
MT-ND6, NDUFA1,
NDUFA2, NDUFA4,
NDUFA8, NDUFA9,
NDUFA10, NDUFA11,
NDUFA12, NDUFB3,
NDUFB8, NDUFB9,
NDUFS1, NDUFS2,
NDUFS3, NDUFS4,
NDUFS6, NDUFS7,
NDUFS8, NDUFV1,
NDUFV2, NDUFV3

ACAD9, FOXRED1,
NDUFAF1, NDUFAF2,
NDUFAF3, NDUFAF4,
NDUFAF5, NDUFAF6,
NUBPL

AARS2, AGK,
C10orf2,
C12orf65,
DARS2, EARS2,
FARS2, GFM1,
GFM2, LRPPRC,
MPV17,
MRPL3,
MRPS16,
MRPS22,
MT01, MTFMT,
MTPAP, MTTL1,
MTTW, POLG,
POLG2, RARS2,
RMND1,
SARS2, TACO1,
TRMU, TSFM,
TUFM, YARS2

DGUOK, POS1,
RRM2B, SLC25A4,
SLC25A3,
SUCLA2, SUCLG1,
TK2, TYMP

CABC1, COQ2,
COQ6, COQ9,
CYCS, DNM1L,
MPC1 MFN2,
NMT, OPA1,
PDSS1, PDSS2,
SERAC1, TAZ

Complex II SDHA, SDHB, SDHC,
SDHD

SDHAF1, SDHAF2

Complex III CYC1,MT-CYB, UQCRB,
UQCRQ, UQCRC2

BCS1L, HCCS, LYRM7,
TTC19, UQCC2,
UQCC3

Complex IV COX4I2, COX6B1,
COX7B, MT-CO1,
MT-CO2, MT-CO3

APOPT1, COA5, COA6,
COX10, COX14,
COX15, COX20,
ETHE1, FASTKD2,
PET100, SCO1, SCO2,
SURF1

Complex V ATP5E, MT-ATP6,
MT-ATP8

ATPAF2, TMEM70

Multiple complexes ABCB7, AFG3L2, BOLA3,
DNAJC19, FXN, GFER,
GLRX5, HSPD1, ISCU,
LYRM4, NFU1, SPG7,
TIMM8A

OXPHOS complex II
Complex II (CII) is composed of four highly conserved nuclear
encoded subunits and participates in both OXPHOS and the TCA
cycle. In OXPHOS, CII transfers electrons to reduce ubiquinone,
whereas in the TCA cycle it metabolizes fumarate to succinate.

Although CII deficiencies (OMIM # 252011) are rare, they still
demonstrate the typical clinical heterogeneity associated with mi-
tochondrial diseases. Many CII disorders present in childhood as
retinopathies [66] or as encephalopathies [67,68], namely Leigh
Syndrome [69], with accompanying cardiomyopathy [70]. Con-
versely, adult onset CII disorders have also been reported [71].
Mutations in the CII subunit genes SDHA [72], SDHB [73], SDHC
[74] and SDHD [75] have also been associated with paraganglio-
mas and pheochromocytoma (Table 1).

Pathogenic mutations in CII assembly factors have also been
identified, including SDHAF1 [67,76], which can result in in-
fantile leukoencephalopathy [76], and SDHAF2 [77] (Table 1).

SDHAF2 mutations may present similarly to mutations in SDHA
[72], SDHB [73], SDHC [74] and SDHD [75] as paraganglioma
and pheochromocytoma [77,78].

OXPHOS complex III
Complex III (CIII) subunits are largely encoded by the nDNA
with only one being mtDNA encoded, cytochrome b [79]. Con-
ditions attributed to CIII deficiency (OMIM #124000) are un-
common, with wide ranging clinical variability. Clinical present-
ations can include lactic acidosis, sensorineural loss, liver failure,
LHON, developmental delay, cardiomyopathies and encephalo-
pathy [80–83]. In addition, mutations in genes encoding CIII
assembly factors have also been identified [84,85]. For example,
mutations in BCS1L, which encodes the mitochondrial chaper-
one BCS1, disrupt CIII assembly with increased reactive oxygen
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species production, resulting in a severe multiple systems condi-
tion [84] (Table 1).

OXPHOS complex IV
Complex IV (CIV) is the terminal enzyme of the respiratory
chain and possesses 13 subunits, three of which are encoded by
mtDNA. These three mtDNA-encoded subunits form the catalytic
site of CIV [60]. Interestingly, mutations to these three subunits
are rare. First identified in 1977 [86], CIV deficiencies (OMIM #
220110) can present as myopathies, facial dimorphism and lactic
acidosis [86,87]. The majority of known pathogenic mutations are
in nDNA genes that encode CIV structural subunits or assembly
factors [60], including COX6B1 [88], and PET100 [89] (Table 1).

OXPHOS complex V
Complex V (CV) is made up of two functional units that span
the inner mitochondrial membrane (Fo) and the mitochondrial
matrix (F1). Complex V phosphorylates ADP to produce ATP by
utilizing the electrochemical gradient produced during CI to CIV
electron transfer [90].

Human pathologies arising from isolated CV deficiencies are
the rarest of the OXPHOS disorders [91]. Pathogenic mutations
to MTATP6 [92] can result in maternally inherited Leigh syn-
drome (MILS) [93] and neuropathy, ataxia, retinal pigmentosa
(NARP) [90,92]. Additionally, mutations to CV assembly factors,
TMEM70 [94] and ATPAF2 [95] have been identified and present
with cardiomyopathy, hypotonia, intrauterine growth restriction
and oligohydramnios [94,95] (Table 1).

FAO DISEASE

FAO disorders present as a variety of clinical phenotypes and
almost always demonstrate an autosomal recessive inheritance
pattern. Of note, there is one reported case of a patient with
an autosomal dominant CPT-2 mutation [96] (Table 2). The in-
cidence of FAO disease is believed to be approximately 1:10000,
with clinical phenotypes attributed to energy deficiency in tissues
that rely heavily on the FAO pathway, such as the heart, liver and
skeletal muscle. In infants, where stored glycogen levels are low
and metabolic rates are high, FAO is the primary pathway for
generating ATP [97,98]. As such, disruption to FAO can result
in severe disease during the early stages of life, and can present
as intrauterine growth restriction, prematurity, cardiomyopathies,
neuropathies, liver failure, rhabdomyolysis, lactacidemia, Reye-
like Syndrome (a condition that mimics the metabolic disease
Reye Syndrome with hypoglycaemia and hypoketonemia) and
neonatal death. In late-onset FAO disease, symptoms can in-
clude myopathy and exercise intolerance, cardiac arrhythmias
and neuropathy [4]. Of note, women who are heterozygous for
an FAO gene mutation in HADHA may experience pregnancy

induced disease which commonly manifests as preeclampsia and
acute liver failure [99,100].

In addition to the primary FAO enzyme deficiency, disruption
of FAO can result in excess metabolic intermediates in affected
tissues, including the heart, liver, brain and eyes. This is con-
sidered to contribute to organ dysfunction due to the toxicity of
these intermediates. Excess intermediates are often found in the
blood, and can also be expelled in the urine of affected individuals
(and as such are used as biomarkers of FAO disease [4,101]).

The first recognized case of human FAO disease was described
in 1973 as a CPT2 deficiency in muscle cells [102]. Since then,
mutations in at least 19 transport proteins and enzymes involved
in FAO have been identified (Table 2). FAO disease presentation
is not always persistent and can appear in bouts. These bouts are
triggered by stimuli that require fatty acid breakdown, including
fasting, endurance exercise, cold exposure and increased dietary
fat consumption. Disorders of FAO have also been attributed to
sudden infant death syndrome (SIDS) fatalities [103], resulting
in the employment of newborn screening for many FAO defi-
ciencies. Since its implementation, many asymptomatic newborn
babies have been diagnosed with an inborn error in FAO metabol-
ism, with an increase in MCAD deficiency diagnoses [104]. Since
many patients die during their first metabolic stress induced epis-
ode, quick diagnosis, allowing for immediate treatment, has been
praised for reductions in FAO mortalities in recent years [104].
Still, proper management of many FAO disorders is hindered
by the inability to recognize clear biochemical abnormalities in
asymptomatic patients.

At present, no cures exist for FAO disease, with treatment
strategies focusing primarily on reducing fat intake. Fasting
is also avoided, particularly by increasing carbohydrate con-
sumption at night before sleep or during illness [4]. For car-
nitine transport disorders, carnitine supplementation has been
tested, although there is some disagreement as to its effective-
ness [105,106]. Supplementation with medium chain fatty acids
may also be a way to bypass deficiencies in long chain fatty acid
metabolism, such as VLCAD deficiencies, but this is yet to be
verified [4].

DISORDERS OF FAO ENZYMES

MCAD deficiency (OMIM #201450) is the most well studied
FAO disease [107], with the majority of symptomatic MCAD
deficiencies thought to result from a common point mutation
(985A>G) in ACADM [108]. Clinical presentations include hy-
potonia, Reye-like Syndrome, seizures, apnoea, hepatomegaly,
fever, vomiting, diarrhoea and coma [109]. In the Caucasian
population of several western countries, the number of ACADM
mutation carriers is estimated to be less than 1:110; specific-
ally, England (1:68), Australia (1:71), Denmark (1:100) and the
United States (1:107) [110].

VLCAD deficiency (OMIM #201475) can affect multiple tis-
sues, including heart and muscle, as well as the liver, and as such
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Table 2 Proteins involved in mitochondrial fatty acid β-oxidation (FAO)

Protein Gene
Pathogenic
mutation Clinical presentations

Carnitine transport cycle and transport

Carnitine O-palmitoyltransferase 1A
(CPT1A)

CPT1A Yes Reye-like syndrome, hypoketosis, coma, hyperammonaemia,
hypertriglyceridemia, renal tubular acidosis, hypoglycaemia,
hepatomegaly, lethargy, hypotonia, hyperemesis, diarrhoea,
hyperbilirubinemia, acute fatty liver of pregnancy,
hyperemesis

Carnitine O-palmitoyltransferase 1B
(CPT1B)

CPT1B No

Carnitine O-palmitoyltransferase 1C
(CPT1C)

CPT1C Yes Spastic paraplegia

Carnitine O-palmitoyltransferase 2 (CPT2) CPT2 Yes Hypothermia, lethargy, seizures, hypotonia, cardiomegaly,
hyperreflexia, cardiac arrhythmias, lipid accumulation in liver,
heart and kidney, polymicrogyria in brain, microcephaly

Carnitine acylcarnitine translocase (CACT) SLC25A20 Yes Cardiomyopathy, liver dysfunction, apnoea, seizures,
tachycardia, hypotension, coma, hypoglycaemia, dicarboxylic
aciduria, hypocarnitinemia, hepatomegaly, sudden infant
death

Organic cation/carnitine transporter 2 SLC22A5 Yes Systemic carnitine deficiency, hypoketotic hypoglycaemia,
skeletal myopathy, cardiomyopathy

Fatty acid β -oxidation cycle

Very-long chain acyl-CoA dehydrogenase
(VLCAD)

ACADVL Yes Rhabdomyolysis, hypoglycaemia, myopathy, myoglobinuria,
hepatomegaly, cardiomegaly, cardiac arrest, hypotonia, lipid
accumulation in various tissues

Long-chain acyl-CoA dehydrogenase (LCAD) ACADL No

Medium-chain acyl-CoA dehydrogenase
(MCAD)

ACADM Yes Sudden Infant Death, hypoglycaemia, lethargy, coma, fatty
deposits in liver, Reye-like syndrome, hyperammonaemia,
cardiomyopathy

Short chain acyl-CoA dehydrogenase
(SCAD)

ACADS Yes Acidosis, neurological impairment, myopathy, muscle weakness,
emesis, failure to thrive, developmental delay, hypertonia,
hyperactivity, reduced consciousness

Short/branched chain specific acyl-CoA
dehydrogenase, mitochondrial (SBCAD)

ACADSB Yes 2-Methylbutyryl glycinuria

Mitochondrial trifunctional protein (MTP)

Long chain enoyl-CoA hydratase (LCEH) HADHA Yes Cardiomyopathy, Reye-like Syndrome, liver dysfunction,
myopathy, rhabdomyolysis, metabolic acidosis, neuropathy,
maternal HELLP syndrome, preeclampsia, acute liver failure
of pregnancy, developmental delay, myoglobinuria,
hypoparathyroidism

Long-chain 3-hydroxyacyl-CoA
dehydrogenase (LCHAD)

HADHA Yes

Long-chain 3-ketoacyl-CoA thiolase (LCKAT) HADHB Yes

3-Ketoacyl-CoA thiolase (KAT) ACAA2 No

Hydroxyacyl-CoA dehydrogenase (HADH) HADH Yes Familial hyperinsulinaemic hypoglycaemia

Others

Acyl-CoA dehydrogenase 9 (ACAD9) ACAD9 Yes Leigh Syndrome, complex I deficiency, cardiomyopathy, muscle
weakness, metabolic acidosis

Acyl-CoA dehydrogenase 10 (ACAD10) ACAD10 No

Acyl-CoA dehydrogenase 11 (ACAD11) ACAD11 No

Electron transfer flavoprotein (ETF) ETFA, ETFB Yes Glutaric aciduria 2A and 2B, multiple Acyl-CoA dehydrogenase
deficiency, isolated myopathy

Electron transfer flavoprotein: ubiquinone
oxidoreductase (ETF-QO)

ETFDH Yes Glutaric aciduria 2C, multiple acyl-CoA dehydrogenase deficiency

Enoyl-CoA hydratase, short chain 1
(ECHS1)

ECHS1 Yes Development delay, cardiomyopathy, apnoea, Leigh syndrome

Enoyl-CoA delta isomerase, 1 (ECI1) ECI1 No

Enoyl-CoA delta isomerase, 2 (ECI2) ECI2 No
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Table 2 Continued

Protein Gene
Pathogenic
mutation Clinical presentations

2,4-Dienoyl-CoA reductase (DECR1) DECR1 No

Delta(3,5)-delta(2,4)-dienoyl-CoA
isomerase, mitochondrial

ECH1 No

propionyl-CoA carboxylase (PCC) PCCA,
PCCB

Yes Propionic academia type I and II, episodic vomiting, lethargy,
ketosis, neutropenia, thrombocytopenia, hyperglycinuria,
hyperglycinaemia, hypogammaglobulinemia, developmental
delay, protein intolerance

Methylmalonyl-CoA epimerase (MCEE) MCCE Yes Methylmalonic aciduria, retarded motor development, spasticity,
dystonia, failure to thrive, gastroesophageal reflux, metabolic
acidosis, dehydration, tachypnea, ketonuria, hydrocephalus
and macrocephaly

Methylmalonyl-CoA mutase (MCM) MUT Yes Methylmalonic aciduria type mut, poor feeding, dehydration,
metabolic acidosis, valine intolerance, lethargy, ketoacidosis,
multi-organ failure, developmental delay, interstitial nephritis,
seizures, basal ganglia infarct

can result in a severe clinical phenotype. VLCAD deficiency can
be classified into three main subgroups based on age of onset,
each of which correlates closely with clinical severity and pro-
gnosis. The first subgroup, with neonatal presentation, is charac-
terized by cardiomyopathy and is frequently fatal in early life. The
second subgroup presents in infancy, with hypoketosis and hy-
poglycaemia, and frequently mimics Reye-Syndrome [111,112].
The third subgroup has a milder phenotype with adolescent to
adult onset, with clinical phenotypes including exercise intoler-
ance and myopathies [111].

Deficiencies in the octameric MTP (OMIM #609015) result
in mitochondrial disease which is primarily neuropathological.
The build-up of FAO intermediates, which result in tissue tox-
icity, has been proposed as a primary pathogenic factor in these
diseases. MTP deficiencies are generally characterized by reduc-
tions in the enzymatic activities of all three of its constituent
enzymes. However, isolated deficiencies have been identified in
LCHAD that are caused by HADHA mutations [113,114]. In ad-
dition, women who are heterozygous for mutations in HADHA
commonly present with acute fatty liver failure and haemolysis,
elevated liver enzymes and low platelet counts (HELLP) during
pregnancy [113]. Similar to VLCAD deficiency, MTP deficien-
cies also follow a correlation between age and severity. Age of
onset varies substantially and reported cases range from mild to
severe, affecting newborns to adults [115].

SCAD deficiency (OMIM #20170) displays phenotypic vari-
ability, although neurological impairment appears to be a com-
mon theme. This suggests that there may be other factors,
such as environmental or epigenetic, which can trigger the dis-
ease symptoms, resulting in the wide range of clinical vari-
ability associated with SCAD deficiency [116,117]. Similar to
other FAO diseases, SCAD disease can be divided into sub-
groups based on age of presentation, which can either be in
infancy/early childhood or in late adulthood. In infants, devel-

opmental delay, hypotonia and myopathy are common [118]. In
addition, ethylmalonic aciduria is a common feature of SCAD
deficiency, and as such is a commonly used biomarker of the
disease [116].

Pathogenic mutations in ACADS have been identified in pa-
tients with SCAD deficiency, whereas others carry two ACADS
polymorphisms (G625A and C511T) that are considered sus-
ceptibility variants [116,117]. Newborn screening of SCAD has
identified these variants in patients with ethylmalonic aciduria,
however, they have also been detected in many asymptomatic
individuals. As such, the clinical relevance of SCAD deficiencies
has now come into question [119].

ECHS1 encodes a mitochondrial hydratase which catalyses
the second step of FAO. In addition, ECHS1 is also involved
in the isoleucine and valine pathways, converting methacrylyl-
CoA to (S)-3-hydroxyisobutyryl-CoA and acryloyl-CoA to 3-
hydroxypropionyl-CoA [120].

ECHS1 deficiency (OMIM #616277) is phenotypically vari-
able, with relatively early onset, ranging from neonatal present-
ation to early childhood. Almost all of the patients identified
to date exhibit bilateral lesions to the brain consistent with the
primary OXPHOS disorder, Leigh Syndrome. In addition, car-
diomyopathy, developmental delay and metabolic acidosis are
common, with death mostly under the age of 1 year [120–124]
(Table 3). Given the involvement of ECHS1 in both the amino
acid and FAO pathways, build-up of intermediates from both
pathways are a common feature [120–125]. Interestingly, ECHS1
has been demonstrated to be most active in the valine pathway
and may be expendable in FAO [122].

Aside from enzymes directly involved in FAO catalysis, patho-
genic mutations have also been identified in other FAO genes in-
cluding ACAD9, ACADSB, ETFA, ETFB, ETFDH, PCCA, PCCB,
MCEE, MUT, SLC25A20, HADH, CPT1A, CPT1C and CPT2 [4]
(Table 2).
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Table 3 Pathogenic ECHS1 mutations and their associated clinical and biochemical features
Biochemical and clinical characteristics of ECHS1 patients identified to date. A. B. – at birth, R. C. – respiratory chain, n. d. – not determined, CS, centrum semiovale; Pu, putamen; GP, globus
pallidus; NC, nuclear caudatus; BG, basal ganglia; SN, substantia nigra and PV, periventricular; do, days old; mo, months old; yo, years old.

Patient information Clinical Biochemistry

Author ID M/F
Age of
onset Age now Symptoms

Neuroimaging (MRI
and MRS)

ECHS1
protein
levels

Respiratory
chain activity
and metabolic
enzyme analysis BN-PAGE

Haack et al.,
2015

#MRB166 c.(161G>A);
(394G>A) p.(Arg54His);
(Ala132Thr)

F 1 yo Alive 8 yo Hearing loss, development delay,
increased lactate, hypotonia,
ataxia

n. d. n. d. n. d. n. d.

#346 c.(176A>G); (476A>G)
p.(Asn59Ser); (Gln159Arg)

F A. B. Died 4 mo Hearing loss, epilepsy,
cardiomyopathy, increased
lactate

Brain atrophy and
white matter
abnormalities

Reduced Reduced CI n. d.

#376 c.(98T<C); (176A>G)
p.(Phe33Ser); (Asn59Ser)

F A. B. Alive 3 yo Hearing loss, developmental
delay, epilepsy,
cardiomyopathy, increased
lactate

Symmetrical bilateral
abnormalities BG

Reduced Reduced CIV n. d.

#42031 c.(197T<C);
(449A>G) p.(Ile66Thr);
(Asp150Gly)

M A. B. Died 11 mo Hearing loss, optic atrophy,
developmental delay, epilepsy,
dystonia, cardiomyopathy,
excessive
2-methyl-1,3,dihydroxybutyrate

Symmetrical
punctiform
hyper-sensitivities
in CS

Reduced R. C. normal,
reduced
pyruvate

n. d.

#52236 c.(229G>C);
(476A>G) p.(Glu77Gln);
(Gln159Arg)

F 11 mo Alive 31 yo Hearing loss, optic atrophy,
wheelchair bound by 9yo,
spastic tetra paresis,
developmental delay, epilepsy,
dystonia, increased lactate

Signal
hyper-sensitivities
in NC and Pu

Reduced R. C. normal n. d.

#57277 C(161G>A);
(431dup) p.(Arg54His);
(Leu145Alafs*6)

F A. B. Alive 16 yo Hearing loss, optic atrophy,
communicates through voice
computer, developmental
delay, dystonia, increased
lactate

Increased T2-signal
in Pu and GP until
2yo

Reduced R. C. normal n. d.

#68552 c.(476A>G);
(476A>G) p.(Gln159Arg);
(Gln159Arg)

F A. B. Died 2.3 yo Developmental delay, epilepsy,
dystonia, increased lactate

Symmetrical white
matter
abnormalities

n. d. Reduced CI n. d.

#68761 c.(161G>A);
(817A>G) p.(Arg54His);
(Lys273Glu)

M A. B. Died 7.5 yo Developmental delay, epilepsy,
dystonia

Brain atrophy n. d. Decreased ATP
production

n. d.

#73663 c.(673T>C);
(673T>C) p.(Cys225Arg);
(Cys225Arg)

F A. B. Alive 2 yo Developmental delay, epilepsy,
cardiomyopathy, increased
lactate, increased
2-methyl-1,3,dihydroxybutyrate

Delayed myelination,
white matter
lesions

Reduced R. C. normal n. d.

#76656 c.(268G<A);
(583G>A) p.(Gly90Arg);
(Gly195Ser)

F 2 yo Alive 5 yo Hearing loss, developmental
delay, dystonia, increased
2-methyl-1,3,dihydroxybutyrate

Signal
hyper-sensitivities
in Pu, GP, NC and
PV white matter

n. d. R. C. normal n. d.

..........................................................................................................................................................................................................................................................................................................................................................................
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Table 3 Continued

Patient information Clinical Biochemistry

Author ID M/F
Age of
onset Age now Symptoms

Neuroimaging (MRI
and MRS)

ECHS1
protein
levels

Respiratory
chain activity
and metabolic
enzyme analysis BN-PAGE

Yamada et
al., 2015

III-2 c.(176A>G); (413C>T)
p.(Asn59Ser); (Ala138Val)

F 10 mo Alive 7 yo Developmental delay, dystonia,
intellectual disability,
increased lactate and
N-acetyl-S-(2-carboxypropyl)
cysteine

Bilateral
hyper-sensitivities
to Pu, GP, NC and
SN

Reduced R. C. normal n. d.

III-3 c.(176A>G); (413C>T)
p.(Asn59Ser); (Ala138Val)

M 7 mo Died 5 yo Developmental delay, dystonia,
intellectual disability,
increased lactate,
N-acetyl-S-(2-carboxypropyl)
cysteine and 2-methyl-1,3,
dihydroxybutyrate

Bilateral
hypersensitivities
to Pu, GP, NC and
SN

Reduced R. C. normal n. d.

Tetrault et
al., 2015

P1 c.(583A>G); (583G>A)
p.(Thr180Ala); (Gly195Ser)

F 2.5 mo Died 10 mo Failure to thrive, developmental
delay, nystagmus, reduced
pyruvate dehydrogenase
activity

Bilateral T2 hyper
intensity of BG

n. d. Pyruvate
dehydrogenase
reduced. R. C.
normal in
fibroblasts

Reductions to
Complexes I
and III in
muscle

P2 c.(583A>G); (713C>T)
p.(Thr180Ala); (Ala238Val)

M 2.9 yo Alive 18 yo Failure to thrive, developmental
delay, dystonia, nystagmus,
hearing loss, truncal ataxia,
microcephaly, increased
lactate

Bilateral hyper
sensitivity of BG

n. d. R. C. normal in
fibroblasts

n. d.

P3 c.(583A>G); (713C>T)
p.(Thr180Ala); (Ala238Val)

M 10 mo Alive 13 yo Failure to thrive, developmental
delay, optic atrophy, hearing
loss, nystagmus, truncal
ataxia, increased lactate

T2 hyperintensities
of the BG

n. d. R. C. normal in
muscle

n. d.

P4 c.(583A>G); (476A>G)
p.(Thr180Ala); (Gln159Arg)

F 6 mo Alive 12 yo Failure to thrive, hypotonia,
dystonia, optic atrophy,
nystagmus, hearing loss,
microcephaly, hyperketosis
and encephalopathy

Hypersensitivity of
BG

n. d. R. C. normal in
muscle

Reductions to
Complex III
and IV

Ferdinandusse
et al.,
2015

Patient 1 c.(817A > G);
(817A > G) p.(Lys273Glu);
(Lys273Glu)

F A. B. Died 1 do Depressed respiration, increased
lactate, hyperammonaemia,
cardiomyopathy,
hepatomegaly, degeneration of
white matter in brain, spongy
myelinopathy, Alzheimer’s
type II metabolic gliosis,
muscularization in intralobular
arterioles (lungs)

Multiple cystic
lesions

n. d. n. d. n. d.
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Table 3 Continued

Patient information Clinical Biochemistry

Author ID M/F
Age of
onset Age now Symptoms

Neuroimaging (MRI
and MRS)

ECHS1
protein
levels

Respiratory chain
activity and
metabolic enzyme
analysis BN-PAGE

Patient 2 c.(817A > G);
(817A > G)
p.(Lys273Glu);
(Lys273Glu)

F A. B. Died 2 do Apnoea, increased lactate,
encephalopathy, increased short
medium and long chain
acylcarnitine, increased
triacylglycerols, hypoxic
respiratory failure, increased
alanine and proline, liver
steatosis

Multiple cystic
lesions

Reduced n. d. n. d.

Patient 3 c.(433C > T);
(476A > G)
p.(Leu145Phe);
(Gln159Arg)

F 4 mo Alive 7 yo Hypotonia, developmental delay,
microcephaly, hearing loss,
dysphagia, apnoea,
cardiomyopathy, oedema,
increased lactate, 2-methyl-2,3,
dihydroxybutyrate and cysteine
and reduced E3 lipoamide
dehydrogenase

Symmetrical atrophy
of cerebellum and
atrophy of grey
matter

Reduced R. C. normal in
muscle

n. d.

Patient 4 c.(673 T > C);
(674G > C)
p.(Cys225Arg);
(Cys225Ser)

M A. B. Alive 3 yo Bilateral glaucoma, psychomotor,
failure to thrive, retardation, lower
limb hypotonia, upper limb
dystonia, Kussmaul breathing,
increased lactate, metabolic
acidosis, hyperketosis, increased
acylcarnitines, increased
2-methyl-2,3, dihydroxybutyrate,
increased cysteine

T2 hyperintensities
detected in GP, Pu
and bilateral
symmetrical
lesions in CP.
Atrophy of the
midbrain nuclei

Reduced Normal pyruvate
dehydrogenase
and R. C. complex
activity in muscle

n. d.

Sakai et al.,
2014

Patient 1 c.(2T>G);
(5C>T) p.(Met1Arg);
(Ala2Val)

M 2 mo Alive
(assumed)

Hearing loss, developmental delay,
hypotonia, nystagmus, spasticity,
increased lactate

Bilateral T2 hyper
intensity of the Pu

Reduced Patient cells –
reduced CI, III and
IV. Immortalized
myoblasts,
reduced CI, IV and
V

No differences

Peters et al.,
2014

Patient 1 c.(473C>A);
(414 + 3G>C)
p.(Ala158Asp)

F A. B. Died 4 mo Apnoea, cardiomyopathy, increased
lactate, increased cysteine

Atrophy of the brain
and symmetrical
T2 hypersensitivity
in Pu. Large
lactate peak

Reduced Reduced pyruvate
dehydrogenase in
patient
fibroblasts. R. C.
was normal

n. d.

Patient 2 c.(473C>A);
(414 + 3G>C)
p.(Ala158Asp)

M A. B. Died 8 mo Apnoea, hypotonia, developmental
delay, nystagmus,
cardiomyopathy, increased
cysteine

Reduced bilateral
myelination of GP
and Pu

Reduced Reduced pyruvate
dehydrogenase

n. d.
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Physical interactions between OXPHOS and FAO

FAO–OXPHOS PROTEIN
INTERACTIONS

Reduced NAD and FADH2 produced during FAO pass their
electrons to the OXPHOS complexes. Therefore, these path-
ways share substrates and are linked biochemically. Interestingly,
primary disorders of one of these pathways have been shown to
inhibit or disturb the other.

These secondary defects are thought to arise from the build-up
of toxic intermediates [54,121,123,126–131]. However, there is
growing evidence that physical links between FAO and OXPHOS
proteins exist, raising the possibility that loss of these interactions
may cause the secondary defects observed and therefore contrib-
ute to disease pathology [113,128–130,132,133]

The first descriptions of FAO–OXPHOS protein interactions
were the identification of the FAO proteins, MTP and thiolase,
bound to OXPHOS CI [132]. It was hypothesized that these phys-
ical associations were necessary for NADH oxidation/reduction
coupling and provided an efficient mechanism of substrate chan-
nelling [132].

Other findings also suggest that physical interactions exist
between OXPHOS and FAO proteins that are crucial for their
combined function and stability [54,133,134]. ETF was found
in purified complexes from porcine liver mitochondria contain-
ing CIII [135]. In rat liver mitochondria, the fatty acid proteins
VLCAD, ETF, TFP, LCHAD and MCAD were shown to co-
migrate with monomeric CI and the CI/III2/IV1–3 OXPHOS su-
percomplex by blue native polyacrylamide gel electrophoresis
(BN-PAGE) and by sucrose density gradients [134]. Conversely,
isovaleryl-CoA dehydrogenase (IVD), a dehydrogenase involved
in amino acid metabolism and not FAO, did not co-migrate with
OXPHOS complexes or supercomplexes [134]. High levels of
ACAD activity were detected in purified OXPHOS supercom-
plexes by the addition of straight chain acyl-CoA substrates
for VLCAD, LCAD, MCAD and SCAD. Furthermore, when
palmitoyl-CoA was added to the sucrose gradient fractions that
contained OXPHOS supercomplexes (in conjunction with ETF,
NAD and ATP), palmitoyl-CoA was completely metabolized
without the accumulation of any FAO intermediates [134]. These
findings suggest that FAO–OXPHOS supercomplexes are present
in mitochondria and that they are metabolically active structures
which can oxidize fatty acids.

COMBINED LCHAD AND OXPHOS
DEFECTS

Given the direct physical interactions between FAO and OX-
PHOS proteins, it is possible that FAO protein defects will affect
OXPHOS CI and/or OXPHOS supercomplex respiratory activity.
Indeed, patients with LCHAD deficiency frequently exhibit sec-
ondary OXPHOS CI deficiencies [127,136]. This is associated
with enlarged mitochondria and increased mitochondrial prolif-

eration, which may occur as part of a compensatory mechanism
[126,136,137]. LCHAD deficient patients usually present with
elevated FAO intermediates and excretion of organic acids in the
urine [126], with a combination of FAO/CI clinical phenotypes,
including severe hypotonia, developmental delay, seizures and
hepatic dysfunction.

As LCHAD interacts with OXPHOS CI and the OXPHOS su-
percomplex directly [134], it is possible that a primary LCHAD
deficiency will disrupt the stability and/or function of CI, res-
ulting in secondary CI defect. Another possible mechanism by
which LCHAD deficiency may alter OXPHOS CI stability is via
the interaction with cardiolipin.

Cardiolipin has been shown to be vital for OXPHOS com-
plex and supercomplex formation and stability [19–21]. As de-
scribed previously, mutations in TAZ, which encodes the mito-
chondrial cardiolipin acyl-transferase, Tafazzin, result in reduced
levels of mature tetralinoleoylcardiolipin in the inner mitochon-
drial membrane, with the subsequent destabilization of OXPHOS
CI/CIII2/CIV1–3 supercomplex and monomeric CI [19].

LCHAD also exhibits acyl-CoA acyltransferase activity, and
can generate mature tetralinoleoylcardiolipin from its precursor,
monolysocardiolipin, in the presence of lineolyl-CoA, oleoyl-
CoA and palmitoyl-CoA. Interestingly, the overexpression of
LCHAD in Barth Syndrome patient lymphoblasts increases ma-
ture cardiolipin production, with an associated increase in the
steady-state level of OXPHOS complex subunits [133]. Con-
versely, knockdown of LCHAD in Barth Syndrome patient
lymphoblasts results in the accumulation of monolysocardiol-
ipin [133]. Therefore, LCHAD may be essential for OXPHOS
CI/CIII2/CIV1–3 supercomplex and CI monomer stability and as-
sembly via its ability to generate mature cardiolipin [19,133].

COMBINED ECHS1 DEFICIENCY AND
OXPHOS COMPLEX DEFECTS

Of the 23 patients described thus far with reported ECHS1 de-
ficiency, 19 have undergone OXPHOS respiratory analysis, with
six patients exhibiting detectable OXPHOS enzyme defects. Not-
ably, these OXPHOS deficiencies are not consistent, and vary
from isolated CI or CIV deficiencies to combined CI, CIII, CIV
or CI, CIV, CV deficiencies (Table 3).

BN-PAGE analysis has been performed using cells from three
different ECHS1 patients, again with varied results. Reduced
steady-state levels were observed in CI and CIII [123], in CIII
and CIV [123], or not at all [121]. Of note, the patients with
reduced OXPHOS complex steady-state levels did not exhibit
OXPHOS enzymatic defects [123]. However, patients with de-
tectable OXPHOS enzymatic defects typically have a more severe
form of Leigh Syndrome than patients with no OXPHOS deficits
(Table 3).

In addition to the OXPHOS defects, pyruvate dehydrogenase
activity was reduced in all but one of the ECHS1 deficiencies
that was fatal [120–125] (Table 3). Interestingly, the pyruvate
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dehydrogenase complex has been shown to bind to CI in vitro.
It has been suggested that this binding may act to couple NADH
oxidation/reduction and increase respiratory efficiency [132]. As
such, defects in ECHS1 may disrupt pyruvate dehydrogenase
activity and/or stability, resulting in a secondary disruption of
OXPHOS CI activity/stability. This may explain in part the CI
defects observed in some ECHS1 patients. Alternatively, the
accumulation of the toxic intermediates methacylyl-CoA and
acryloyl-CoA in ECHS1 deficient patients may be responsible
for the pathology observed. These molecules can spontaneously
react with sulfhydryl groups, potentially disrupting OXPHOS
enzyme complex and pyruvate dehydrogenase activities [120].

FAO PROTEINS AND OXPHOS
COMPLEX I ASSEMBLY

OXPHOS CI is the largest of the respiratory chain complexes. It is
a multimeric complex that is arranged into an L-shape structure.
This L-shaped structure is composed of a hydrophilic arm and a
hydrophobic arm and is highly conserved from bacteria to euk-
aryotes [138–140]. The proper assembly of mature CI involves
the coordinated assembly of 45 structural subunits, the major-
ity of which are encoded by the nDNA and must be transpor-
ted into the mitochondria via membrane bound transport systems
[55,141,142]. Furthermore, a group of proteins termed ‘assembly
factors’ are required to form the final, mature holocomplex [143].

One FAO protein that has been identified as a bona fide CI as-
sembly factor is acyl-CoA dehydrogenase 9 (ACAD9) [54,128].
ACAD9 was initially identified as a homologue of the FAO pro-
tein VLCAD, and can compensate in the absence of VLCAD
by producing C12 and C14:1 carnitines [128]. However, Nouws
et al. [54] showed that ACAD9 also interacts with two CI as-
sembly factors, NDUFAF1 and Ecsit, and that knockdown of
ACAD9 results in altered CI biogenesis and isolated CI deficien-
cies. Complementation with catalytically inactive ACAD9 was
able to rescue CI biogenesis and CI activity in two patients with
ACAD9 deficiency (although it was less effective than its wild
type counterpart in one patient) [54,128], suggesting that ACAD9
activity is not required for complex I assembly [128]. However,
studies have shown that mutations in ACAD9 affect both FAO
and OXPHOS activities simultaneously, suggesting that ACAD9
plays two important roles as both a fatty acid dehydrogenase and
a complex I assembly factor.

In addition to ACAD9, the FAO proteins 3-hydroxyacyl-
CoA dehydrogenase (HADH) and enoyl-CoA delta isomerase
1 (ECI1) are predicted by phylogenetic profiling to be involved
in CI biogenesis [144]. A list of genes that have co-evolved
with genes encoding CI subunits (complex I phylogenetic profile
(COPP) gene list) contains both HADH and ECI1, suggesting
putative roles for their FAO protein products in CI biogenesis.
Interestingly, immunoprecipitation experiments have shown that
HADH interacts with the CI subunits NDUFV2 and NDUFS2,
further suggesting a role for HADH in CI biogenesis [145].

The COPP gene list also contains genes that have been con-
firmed experimentally as bona fide CI assembly factors, includ-
ing FOXRED1 [53], NDUFAF6 [52] and NDUFAF5 [51,144],
substantiating the validity of the COPP list in predicting the in-
volvement of HADH and ECI1 in CI biogenesis.

PRIMARY OXPHOS DEFICIENCIES
ASSOCIATED WITH SECONDARY FAO
DEFECTS

Primary OXPHOS CII deficiencies can result in metabolic dis-
orders associated with secondary defects in FAO, presenting with
cardiomyopathy, short stature, lactic acidosis, craniofacial dys-
morphic features, hypertrichosis and myopathy [129,130]. Defi-
ciencies in CII have been shown to inhibit FAO, resulting in toxic
levels of butyrylcarnitine [129]. It has been suggested that this
may be due to disruption of the FAD pool; defects in CII activity
will result in FADH2 remaining reduced, resulting in a lack of
oxidized FAD to accept electrons from the fatty acyl-CoA de-
hydrogenases involved in the first step of FAO. However, as FAD
does not frequently shuttle between the ACADs and CII, this
mechanism may only partially explain the combined OXPHOS
CII and FAO defects observed in some patients [129]. Alternat-
ively, physical interactions between CII and enzymes involved
in FAO may exist, however this is yet to be shown experiment-
ally. Whichever the case, treatment of patients with combined
OXPHOS CII/FAO defects has proved problematic, as supple-
mentation with essential fatty acids results in metabolic crises
[129].

CONCLUDING REMARKS

Secondary defects in OXPHOS function, due to primary
FAO deficiencies, were initially attributed to reduced co-factor
sharing and the build-up of toxic fatty acid intermediates,
resulting in the inhibition of OXPHOS complex activities
[113,121,123,127,136,146]. Although this may be the case in
some FAO disorders, the build-up of toxic intermediates does not
sufficiently explain the reduced steady-state levels of OXPHOS
complexes observed in patients with mutations in FAO genes
[54,123].

However, it has now been shown that FAO proteins interact
physically with the OXPHOS complexes [134], and that spe-
cific FAO protein defects can result in respiratory chain defects
[54,121,127,136,146]. Conversely, primary OXPHOS deficien-
cies can result in secondary FAO disease [129,130], highlighting
the importance of the interactions between the FAO and OXPHOS
pathways. Given the large range of metabolic diseases caused by
OXPHOS and FAO deficiencies, a detailed understanding of the
protein interactions between both pathways will be crucial for
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our comprehension of the pathogenesis involved and for the de-
velopment of new therapies for the treatment of mitochondrial
disease that will target both the FAO and OXPHOS pathways
simultaneously.
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