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Introduction
Type 2 diabetes (T2D) is a complex chronic dis-
ease that challenges public health globally due to 
its continued increased prevalence. The 
International Diabetes Federation estimated that 
the global prevalence of 463 million people with 
diabetes in 2019 will increase to 700 million by 
2045; ~90% of the total will comprise T2D cases.1 
The region of South Asia (consisting of people 

from India, Pakistan, Bangladesh, Nepal, Bhutan, 
and Sri Lanka) is the epicenter of the growing epi-
demic of T2D due to rapid urbanization, immense 
population growth, and aging.2,3 Studies per-
formed on immigrant Indians outside India have 
shown that T2D and coronary artery disease inci-
dence is three to six times higher in immigrant 
Asian Indians (AIs) than Euro-Caucasians. The 
onset of T2D is roughly a decade earlier [even at 
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Abstract
Background: Genome-wide polygenic risk scores (PRS) have shown high specificity and 
sensitivity in predicting type 2 diabetes (T2D) risk in Europeans. However, the PRS-driven 
information and its clinical significance in non-Europeans are underrepresented. We 
examined the predictive efficacy and transferability of PRS models using variant information 
derived from genome-wide studies of Asian Indians (AIs) (PRSAI) and Europeans (PRSEU) using 
13,974 AI individuals.
Methods: Weighted PRS models were constructed and analyzed on 4602 individuals from the 
Asian Indian Diabetes Heart Study/Sikh Diabetes Study (AIDHS/SDS) as discovery/training and 
test/validation datasets. The results were further replicated in 9372 South Asian individuals 
from UK Biobank (UKBB). We also assessed the performance of each PRS model by combining 
data of the clinical risk score (CRS).
Results: Both genetic models (PRSAI and PRSEU) successfully predicted the T2D risk. However, 
the PRSAI revealed 13.2% odds ratio (OR) 1.80 [95% confidence interval (CI) 1.63–1.97; 
p = 1.6 × 10−152] and 12.2% OR 1.38 (95% CI 1.30–1.46; p = 7.1 × 10−237) superior performance in 
AIDHS/SDS and UKBB validation sets, respectively. Comparing individuals of extreme PRS 
(ninth decile) with the average PRS (fifth decile), PRSAI showed about two-fold OR 20.73 (95% 
CI 10.27–41.83; p = 2.7 × 10−17) and 1.4-fold OR 3.19 (95% CI 2.51–4.06; p = 4.8 × 10−21) higher 
predictability to identify subgroups with higher genetic risk than the PRSEU. Combining PRS 
and CRS improved the area under the curve from 0.74 to 0.79 in PRSAI and 0.72 to 0.75 in 
PRSEU.
Conclusion: Our data suggest the need for extending genetic and clinical studies in varied 
ethnic groups to exploit the full clinical potential of PRS as a risk prediction tool in diverse 
study populations.
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a lower body mass index (BMI)] in AIs than in 
Europeans.4–7 While environmental factors play 
an essential role in T2D susceptibility, T2D has a 
strong genetic component, as has been established 
by many studies of different designs.8 The herita-
bility estimates of T2D range from 40% to 70%, 
out of which at least 10–20% is explained by com-
mon variants identified in extensive genome-wide 
association studies (GWAS).9–11 However, the 
genetics of T2D is poorly characterized in people 
of AI descent. Thus far, only a handful of T2D 
GWAS has been published on South AIs, who 
comprise more than a quarter of the world popu-
lation.12–14 Most of the genetic studies on South 
Asians have been performed on immigrants, such 
as Indians living in the UK or on Pakistani popu-
lations. These studies do not putatively reflect the 
underlying genetic architecture of phenotypic 
traits and their interactions with other clinical and 
lifestyle factors of native AIs.

There has been a growing interest in using a 
cumulative genetic score of T2D-associated vari-
ants combined into a polygenic risk score (PRS) 
to identify individuals with a high genetic risk for 
the clinical prediction of future occurrence, early 
prognosis, intervention, and prevention of 
T2D.15,16 The PRS is known to predict the risk 
for cancer,17 T2D,18–20 cardiovascular dis-
eases,21,22 and traits like height23 and obesity.24–26 
A recent study demonstrated that European-
derived PRS effectively predicted T2D incidence 
in an indigenous population from the 
Southwestern USA. Their adult cohort had an 
area under the curve (AUC) of 0.728, and the 
hazard ratio (HR) was 1.27 per SD.27 A similar 
study was performed on FinnGen biobank data to 
determine the role of PRS in predicting suscepti-
bility to five common diseases including T2D.28 
However, these studies have predominantly 
focused on populations of European origin, with 
little information on the transferability of genetic 
risk loci identified in Europeans onto populations 
of AI ancestries.29,30 Both genetic and environ-
mental factors contribute to causing T2D. The 
predictive value of multiple nongenetic factors in 
relation to PRS has not been thoroughly exam-
ined. Recent studies by He et al. have suggested a 
polyexposure score (PXS) that combines multiple 
correlated nongenetic exposures and lifestyle fac-
tors and compared against PRS to elucidate 
which score had better efficacy in predicting 
T2D. Their results highlighted the addition of 
PGS and PXS to clinical risk score (CRS) 

improved T2D classification accuracy.31,32 In this 
study, we constructed an ancestry-specific PRS 
(PRSAI) for T2D using candidate variants derived 
from our Asian Indian Diabetic Heart Study/Sikh 
Diabetes Study (AIDHS/SDS).13,33–36 We also 
built a PRS (PRSEU) using summary statistics 
from GWAS meta-analyses from seven European 
cohorts.37 We compared the predictive efficacy 
and transferability between PRS derived from 
AIDHS/SDS and Europeans using validation 
datasets-1 and 2, including data from South 
Asians from the UK Biobank (UKBB). We also 
evaluated the performance of genetic scores by 
integrating CRS in the risk assessment models.

Materials and methods

Study subjects
All study participants of AIDHS/SDS were from 
the Northern part of India and were recruited 
from 2003 to 2009.13,36,38,39 Study protocol and 
consent documents were reviewed and approved 
by the University of Oklahoma Health Sciences 
Center’s Institutional Review Board (IRB #: 
2911). Clinical characteristics and demographic 
details of the studied subjects are presented in 
Table 1. The Sikh population is a relatively 
homogenous endogamous community from India. 
Sikhs are mostly non-smokers with the current 
study population having only 1.4% of smokers, 
and ~50% of them are vegetarian. However, they 
have a high prevalence of T2D and cardiovascular 
diseases with familial aggregation.40 The diagnosis 
of T2D was confirmed by scrutinizing medical 
records for symptoms, use of medications, and 
measuring fasting glucose levels following the 
guidelines of the American Diabetes Association41 
as described previously.39 The selection of con-
trols was based on a fasting glucose <100.8 mg/dl 
or a 2-h glucose <141 mg/dl as described previ-
ously.13 Details of other demographic characteris-
tics, including anthropometric measurements, 
physical activity, smoking, alcohol consumption, 
and diet, are described elsewhere.38,42 Briefly, 
BMI was calculated as weight (kg)/height (meter)2, 
and waist-to-hip ratio (WHR) was calculated as 
the ratio of waist circumference to hip circumfer-
ence. Blood pressure (BP) was measured twice 
after a 5-min seated rest period with the partici-
pant’s feet flat on the floor. All blood samples 
were obtained at the baseline visit.38 Subjects with 
type 1 diabetes, or those with a family member 
with type 1 diabetes, or rare forms of T2D 
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subtypes (maturity-onset diabetes of the young43) 
or secondary diabetes (from, e.g. hemochromato-
sis or pancreatitis) were excluded from the study 
based on clinical reports, as previously described.13

Genotyping, imputation, and quality controls
Genomic DNA was extracted from buffy coats 
using QIAamp blood kits (Qiagen, Chatsworth, 
CA, USA) or by the salting-out procedure.44 
Samples were genotyped using the Illumina 660W 
Quad BeadChip (Illumina Inc., San Diego, CA, 
USA), Illumina Global Screening Arrays (GSA), 
and GSA with multi-disease content (GSA+) 
arrays as described previously.13,35,43 Also, sam-
ples with genotyping call rate <95%, cryptic relat-
edness, and population outliers were removed, 
and single nucleotide polymorphisms (SNPs) with 
genotyping call rate <90%, departures from 
Hardy–Weinberg equilibrium (HWE) (p < 10−7) 
or minor allele frequency (MAF) <5% were 
excluded before association testing. To increase 
genome coverage, data was imputed using 
Minimac445 with 1000G Phase3 v5 multiethnic 
reference panel in NCBI Build 37 (hg19) and 
coordinates as described.35,36 Quality control for 
the imputed SNPs included removing variants 
with an imputation certainty ‘info score’ R2 < 0.8, 
and SNPs significantly deviated from HWE 
(p < 1 × 10−6) before further analysis.

UKBB study participants (validation dataset-2)
To validate the results of PRSAI, we used data 
from UKBB for South Asian ancestry (n = 9372), 

including Indians, Pakistani, Bangladeshi, and 
any other Asian background from the UKBB fol-
lowing the approval of the current research project 
(application # 78635).46 T2D was characterized 
based on doctor-diagnosed disease phenotype and 
glycated hemoglobin levels (HbA1c). For genetic 
analysis, we used imputed data released by the 
UKBB specific for South Asian subjects. We 
excluded outliers for heterozygosity or genotype 
missing rates (0.2 > missing rate) as well as 
ambiguous SNPs (MAF > 0.44). Participants 
with inconsistent reports and genotypic inferred 
sex inconsistencies or withdrawn consent were 
removed, as explained previously.46

Statistical analysis
The genome-wide PRS analysis was performed 
by using discovery and validation datasets. The 
discovery/training set included 1616 individuals 
(843 cases/773 controls) genotyped using 
Illumina 660 Quad chip arrays. The validation 
dataset-1 was comprised of 2986 (1731 cases/1255 
controls) individuals who were genotyped using 
Illumina’s GSA+ and GSA arrays. Both discov-
ery and validation dataset-1 comprised individu-
als from AIDHS/SDS.13 The additional validation 
dataset-2 included 9372 South Asians (1943 
T2D cases and 7429 controls) from UKBB. To 
adjust for residual population stratification, age, 
sex, BMI, and five principal components (PCs) 
were included as covariates. As the existing 
HapMap2 or HapMap3 and 1000 Genomes data 
do not include Sikhs, the PCs used for this cor-
rection were estimated using our Sikh population 

Table 1. Clinical characteristics of the AIDHS/SDS and UKBB South Asians.

Trait Discovery (AIDHS/SDS) (N = 1616) Validation dataset-1 (AIDHS/SDS) (N = 2986) Validation dataset-2 (UKBB South Asians) (N = 9372)

Controls 
(N = 773)

Cases (N = 843) p Value Controls 
(N = 1255)

Cases (N = 1731) p Value Controls 
(N = 7429)

Cases (N = 1943) p Value

Males (%) 53 54 56 58 52 62  

Age (years) 52.21 ± 13.76 53.98 ± 10.59 4 × 10−3 46.36 ± 14.44 55.33 ± 11.72 3 × 10−73 52.43 ± 8.35 56.64 ± 7.97 3 × 10−4

BMI (kg/m2) 26.26 ± 4.89 27.32 ± 5.07 2 × 10−5 26.08 ± 4.63 27.25 ± 4.78 3.2 × 10−11 26.77 ± 4.20 28.68 ± 4.81 1.4 × 10−9

Waist (cm) 92.36 ± 12.00 94.90 ± 11.64 1 × 10−5 89.69 ± 12.40 94.10 ± 12.27 5.5 × 10−21 89.90 ± 11.48 97.41 ± 11.42 3.5 × 10−139

Waist-to-hip ratio 0.94 ± 0.08 0.96 ± 0.07 8 × 10−6 0.92 ± 0.09 0.96 ± 0.09 5.1 × 10−47 0.89 ± 0.08 0.95 ± 0.08 1.5 × 10−8

FBG (mg/dL) 95.99 ± 12.36 176.35 ± 71.05 3 × 10−159 96.90 ± 14.62 175.77 ± 72.40 3 × 10−235 76.93 ± 32.33* 113.72 ± 71.34* 1.3 × 10−259

Values are in mean ± SD.
*Random glucose levels in the UK Biobank population.
AIDHS/SDS, Asian Indian Diabetic Heart Study/Sikh Diabetes Study; BMI, body mass index; FBG, fasting blood glucose; UKBB, UK Biobank.
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sample and not the HapMap populations.13 The 
PC information for the UKBB dataset was 
obtained from the data provided by the UKBB. 
Associations of directly genotyped and imputed 
SNPs with T2D were tested using logistic regres-
sion and an additive genetic model.

The selection criteria of SNPs from 46,985,978 
(common and rare) for constructing Sikh-specific 
PRSAI were based on: (1) SNPs from South Asian 
T2D GWASs12,13,47,48; (2) SNPs with independ-
ent association signals with p < 10−2; (3) includ-
ing SNPs with MAF > 0.01 and MAF < 0.45, 
and excluding SNPs with info score R2 < 0.8, 
insertion/deletions, and multiallelic SNPs; (4) 
including SNPs with independent association sig-
nals with p < 10−4; and (5) linkage disequilibrium 
(LD) pruning using R2 (LD) = 0.80. After the 
screening, 2921 significant SNPs were selected 
for the construction of the PRSAI (Supplemental 
Table 1). The individual-level regression coeffi-
cients were multiplied by the number of risk 
alleles to compute the PRS in training and test 
sets as described previously.49 A fixed and ran-
dom-effect, inverse-variance meta-analysis 
(implemented in METAL)50 was used to com-
bine the results of the AIDHS/SDS and UKBB.

To construct European PRS (PRSEU), we used 
the summary statistics data from O’Connor 
et  al.,51 which comprised datasets from seven 
European cohorts (n = 312,646) containing 
33,122,978 variants, and available for both addi-
tive and recessive models. We used the additive 
model for our analysis. The selection criteria of 
SNPs for constructing European PRSEU were 
based on: (1) SNPs with independent association 
signals with p < 10−2; (2) including SNPs with 
MAF > 0.01 and MAF < 0.45 and selecting only 
biallelic SNPs; (3) SNPs with independent asso-
ciation signals with p < 10−4 after LD pruning 
using R2 = 0.80. A total of 1847 significant SNPs 
were selected for the construction of the PRSEU 
(Supplemental Table 1). Age, sex, BMI, and five 
PCs were used as covariates. To test the discrimi-
nation capability at the extreme tail of the PRS, 
we divided the PRS into deciles and calculated 
the odds ratio (OR) of these high-risk individuals 
in the ninth decile versus the fifth decile of the 
samples. Since the extreme deciles (e.g. decile 1st 
and 10th) had no individuals who were T2D and 
non-T2D, respectively, risk prediction of extreme 
polygenic score versus average score was 

computed comparing ninth and tenth deciles 
(Supplemental Table 2).

The CRS was calculated following the modified 
version of the Joint British Society (JBS) risk 
score in both AIDHS/SDS and UKBB.52 The 
modified JBS risk factors include age (<30 = 0, 
⩾30–50 = 1, ⩾51–70 = 2, >70 = 3); gender 
(female = 1, male = 2); BMI (⩽23 = 0, 23–
27.5 = 1, >27.5 = 2); smoking habits (yes = 1, 
no = 0); hypertension {hypertensive = 1 [systolic 
BP (SYSBP) ⩾ 110 mmHg and diastolic BP 
(DBP) ⩾ 90 mmHg], non-hypertensive = 0}; an 
independent assessment of SYSBP (<89  
mmHg = 0, 90–130 mmHg = 1, >130 mmHg = 2); 
family history of diabetes (yes = 1, no = 0); and 
any other metabolic disorders such as arthritis or 
kidney disease (yes = 1, no = 0). Note that we use 
a lower BMI cut-off for defining obesity in  
AIs based on the ethnicity-specific guidelines 
proposed by the World Health Organization 
(WHO).53

The prediction efficiency of PRS models was 
assessed by generating the receiver operative 
characteristic curve (ROC), which is a plot of the 
true positive rate (sensitivity) against the false 
positive rate (1-specificity). It calculates the cor-
responding AUC, which ranges from 0.5 as a 
total lack of discrimination to a maximum of 1.0 
(perfect discrimination).54 All analyses were per-
formed using PLINK 2.0,55 SVS version 8.9.1 
(Golden Helix, Bozeman, MT, USA), and SPSS 
software version 27 (IBM, Ney York City, USA).

Results
The clinical characteristics of the study partici-
pants are presented in Table 1. As expected, indi-
viduals with T2D had significantly higher BMI, 
waist circumference, WHR, and fasting blood 
glucose than controls in both the discovery and 
the validation datasets (Table 1).

In comparison to the European-derived PRS, the 
ancestry-derived PRSAI revealed a stronger asso-
ciation of T2D reflected by the higher ORs in 
validation dataset-1 OR 1.80 (95% CI 1.63–1.97; 
p = 1.6 × 10−152) compared to the PRSEU 1.59 
(95% CI 1.42–1.77; p = 2.4 × 10−27). A similar 
trend was observed in validation dataset-2, show-
ing slightly higher ORs of PRSAI 1.38 (95% CI 
1.30–1.46; p = 7.1 × 10−237) compared to the 
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PRSEU 1.23 (95% CI 1.15–1.31; p = 7.5 × 10−36). 
Interestingly, the risk for T2D associated with 
CRS alone showed the ORs of 1.77 (95% CI 
1.64–1.90; p = 1.9 × 10−254) in validation data-
set-1 and 1.55 (95% CI 1.47–1.63; 
p = 7.2 × 10−320) in validation dataset-2. 
Combining validation datasets 1 and 2, the CRS 
was the strongest predictor of T2D risk 1.56 
(95% CI 1.48–1.64; p = 6.7 × 10−29), followed by 
PRSAI 1.44 (95% CI 1.37–1.52; p = 3.2 × 10−23). 
The lowest predictive outcome was observed in 
the PRSEU 1.28 (1.21–1.35; p = 1.4 × 10−11; Table 
2, Figure 1).

We further assessed the joint effect of PRS mod-
els integrating with the CRS. There was a signifi-
cant improvement in the performance of PRS 
models showing an increase in ORs of 1.80 (95% 
CI 1.63–1.97; p = 1.6 × 10−152) to 1.90 (95% CI 
1.84–1.95; p = 7.0 × 10−285) in PRSAI and 1.59 
(95% CI 1.42–1.77; p = 2.4 × 10−27) to 1.89 (95% 
CI 1.82–1.96; p = 2.4 × 10−280) in PRSEU in vali-
dation dataset-1. A similar strong trend was 
observed in the increase in ORs from 1.38 (95% 
CI 1.30–1.46; p = 7.1 × 10−237) to 1.47 (95% CI 
1.45–1.50; p = 4.8 × 10−315) in PRSAI and 1.23 
(95% CI 1.15–1.31; p = 7.5 × 10−36) to 1.45 (95% 
CI 1.43–1.48; p = 3.0 × 10−303) in PRSEU for the 
joint effects of PRS + CRS models (Table 3, 
Figure 1).

Next, we compared individuals from the extreme 
PRS with the average PRS, and divided the PRS 
scores in deciles. Comparing participants at the 
ninth decile versus the middle fifth decile revealed 
an OR of 20.73 (95% CI 10.27–41.83; 
p = 2.7 × 10−17) for the PRSAI and 11.29 (95% CI 
6.00–21.24; p = 6.0 × 10−14) for the PRSEU. 
Similar results were observed for the UKBB, 
which showed a higher OR of 3.19 (95% CI 
2.51–4.06; p = 4.8 × 10−21) for the PRSAI while 
the OR was 2.31 (95% CI 2.07–2.56; 
p = 1.2 × 10−19) for PRSEU (Table 4). Comparing 
participants at the first decile versus the middle 
fifth decile revealed an OR of 162.76 (95% CI 
62.51–423.79; p = 1.8 × 10−35) for the PRSAI and 
17.38 (95% CI 10.75–28.09; p = 2.4 × 10−31) for 
the PRSEU. Similar results were observed for the 
UKBB, which showed a higher OR of 4.08 (95% 
CI 2.82–5.92; p = 1.2 × 10−13) for the PRSAI while 
the OR was 2.78 (95% CI 2.08–3.72; 
p = 6.7 × 10−12) for PRSEU (Table 5). Next, by 
analyzing the individuals in the lower three deciles 
versus the upper three deciles, we identified 446 Ta
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and 195 genes and several SNPs in the unnamed 
gene regions uniquely present in PRSAI and 
PRSEU, respectively, and their MAF differed sig-
nificantly between the decile extremes 
(Supplemental Table 5).

Lastly, we performed a sensitivity analysis to test 
the discriminative accuracy of the PRS models 
using ROC curve analysis. For the validation 
dataset-1, the AUC was 0.74 (95% CI 0.69–0.80; 
p = 2.1 × 10−11) for the PRSAI compared to an 
AUC of 0.72 (95% CI 0.67–0.78; p = 9.2 × 10−10) 
for the PRSEU. For the validation dataset-2, the 
AUC was 0.71 (95% CI 0.69–0.73; p = 2.6 × 10−70) 
for the PRSAI compared to an AUC of 0.69 (95% 
CI 0.68–0.72; p = 1.7 × 10−62) for the PRSEU 
(Figure 2). Combining PRS and CRS improved 
the AUC from 0.74 (95% CI 0.69–0.80; 
p = 2.1 × 10−11) to 0.79 (95% CI 0.75–0.83; 
p = 5.4 × 10−15) in PRSAI, and 0.72 (95% CI 
0.67–0.78; p = 9.2 × 10−10) to 0.75 (95% CI 
0.70–0.80; p = 1.3 × 10−11) in PRSEU in validation 
dataset-1. In validation dataset-2 combining PRS 
and CRS improved the AUC from 0.71 (95% CI 
0.69–0.73; p = 2.6 × 10−70) to 0.73 (95% CI 

0.71–0.75; p = 6.5 × 10−85) in PRSAI and 0.69 
(95% CI 0.68–0.72; p = 1.7 × 10−62) to 0.71 (95% 
CI 0.69–0.74; p = 2.3 × 10−74) in PRSEU. The 
AUC was 0.83 (95% CI 0.82–0.85; 
p = 6.4 × 10−206) and 0.80 (95% CI 0.79–0.81; 
p = 2.8 × 10−235) for CRS in validation dataset-1 
and -2, respectively (Figure 2).

Discussion
Recent genome-wide studies of complex traits 
have an overwhelming abundance of European-
focused information. The underrepresentation of 
data on other ethnic groups challenges the gener-
alizability of genetic findings across population 
groups. Even the PRS derived from well-powered 
European GWAS have shown poor-risk predic-
tion in non-Europeans, suggesting the need for 
expanding the genetic evaluations globally to 
improve the clinical utility of PRS.56 In this study, 
we compared the predictive efficacy and transfer-
ability of the PRS models derived from South 
Asian GWAS meta-analysis studies and using 
GWAS results of European T2D consortia 
studies.

Figure 1. Forest plot showing effect sizes and confidence interval for type 2 diabetes risk using Asian Indian 
(PRSAI), European (PRSEU), and combined with CRS trained on Discovery set and tested on validation dataset-1 
(AIDHS/SDS) and validation dataset-2 (South Asians from UKBB).
AIDHS/SDS, Asian Indian Diabetic Heart Study/Sikh Diabetes Study; CRS, clinical risk score; PRSAI, Asian Indian ancestry-
derived PRS; PRSEU, European-derived PRS; UKBB, UK Biobank.
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Both ancestry-specific and European derived PRS 
predicted T2D risk in AIDHS/SDS and South 
AIs from UKBB. However, the PRSAI was a bet-
ter predictor of T2D risk than the European-
derived PRS (Table 2 and Figure 1). The overall 
performance of our PRSAI model was 13.2% and 
12.2% superior in validation dataset-1 and 2, 
respectively. Interestingly, our CRS model 
showed a strong and independent association 
with T2D, revealing ORs of 1.77 (95% CI 1.64–
1.90) and 1.55 (95% CI 1.47–1.63) in both vali-
dation dataset-1 (AIDHS/SDS) and dataset-2 
(UKBB). The integration of CRS in the PRS 
improved the performance of both genetic mod-
els. The predictive power of PRSAI after including 
CRS was improved 5.6% in validation dataset-1 
and 6.5% in validation dataset-2. At the same 
time, the performance of the PRSEU was increased 
by 18.9% and 17.9% in validation dataset-1 and 
-2, respectively. Notably, both AI and European 
models performed equally well, showing the simi-
lar ORs of 1.90 (95% CI 1.84–1.95) in PRSAI and 
1.89 (95% CI 1.82–1.96) in PRSEU for the valida-
tion dataset-1 and ORs of 1.47 (95% CI 1.45–
1.50) in PRSAI and 1.45 (95% CI 1.43–1.48) in 
PRSEU for the validation dataset-2 after integrat-
ing CRS in the models. In the combined meta-
analysis of validation sets 1 and 2, the PRSAI was 
3.3% more efficient than the PRSEU, showing 
respective ORs of 1.55 versus 1.50 (Figure 1). 
Similarly, combining PRS and CRS improved the 
AUC from 0.74 to 0.79 in PRSAI and 0.72 to 0.75 
in PRSEU in validation dataset-1 and 0.71 to 0.73 
in PRSAI and 0.69 to 0.71 in PRSEU in validation 
dataset-2. Combining clinical risk factors in the 
PRS has been shown to enhance the prediction of 
incident T2D in British South Asians.57 It is also 
possible that using the lower BMI cut-offs (based 
on the WHO guidelines) might have improved 
the sensitivity of our CRS model, and conse-
quently, its integration into genetic risk assess-
ment enhanced the performance of both PRS 
models.

Upon comparing individuals in the top PRS dis-
tribution, the individuals with the ninth decile 
had more than 20-fold higher T2D risk predicta-
bility than those in the middle (fifth decile). At 
the same time, the difference was 11-fold higher 
in PRSEU in the validation dataset-1, showing 
nearly two times higher predictability to identify 
individuals who would be genetically predisposed 
to having a higher risk for T2D over the European-
derived PRS. Similarly, in the UKBB, the PRSAI 
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showed a 1.4 times higher likelihood of detecting 
high-risk individuals in the ninth decile over the 
PRSEU. Comparing extreme scores between the 
first decile versus fifth deciles, our models cap-
tured high-risk individuals with 7.85-fold in the 
validation dataset-1 and 1.28-fold in UKBB com-
pared to fifth versus ninth decile, using PRSAI 
model. While these differences were 1.54- and 
1.22-fold higher using validation dataset 1 and 
UKBB, respectively, using the PRSEU model 
(Tables 4 and 5). These results further suggest 
the sensitivity and effectiveness of the PRS mod-
els even at the lower extremes. These analyses 
further helped us identify 446 genes uniquely 
found in PRSAI, which could be involved in the 
T2D development in South Asians (Supplemental 
Table 5).

Our study has several advantages and limitations. 
First, our robust genetic analyses include high-
quality data from a single sub-population origi-
nating from North India with well-characterized 
clinical phenotypes is a significant strength.13,49 
Second, the PRSAI provided a better prediction 
over the PRSEU derived from European GWAS. 
This was further confirmed by comparing the 
individuals with the extremes of genetic scores 
versus the median scores. Our PRSAI model will 

have 2 times and 1.4 times higher likelihood of 
capturing high-risk individuals in validation 
cohorts 1 and 2, respectively, than the European-
derived model. However, both models performed 
equally well after integrating CRS in the genetic 
scores. Third, this is the first study using the PRS 
approach in a Punjabi population from North 
India. Limitations include a relatively smaller size 
of the discovery/training dataset of AIDHS/SDS. 
The size of validation set-1 is nearly two times, 
and validation set-2 is six times the size of the dis-
covery set.

The discovery set comprises a homogeneous 
Punjabi Sikh population, the majority being the 
Khatri ethnic group recruited in only a small geo-
graphical region of Punjab. The validation set-1 
(n = 2986) was relatively heterogeneous and con-
tained mixed Punjabi communities from north 
India. The second validation set (n = 9372) com-
prised highly heterogeneous samples of South 
Asian communities, including Indian, Pakistani, 
Bangladeshi, and any other Asian background. 
The number of T2D cases in the discovery and 
validation dataset-1 were 52% and 58%, respec-
tively, whereas validation set-2 had only 21% 
T2D cases. These differences must have resulted 
in a wide gap in the PRS range in the discovery 

Table 4. Effect sizes and CIs for type 2 diabetes risk comparing PRS (fifth versus ninth) deciles in validation datasets 1 and 2.

Cohort PRSAI PRSEU

OR (95% CI) p Value OR (95% CI) p Value

Validation dataset-1 (AIDHS/SDS) 20.73 (10.27–41.83) 2.7 × 10−17 11.29 (6.00–21.24) 6.0 × 10−14

Validation dataset-2 (UKBB South Asians) 3.19 (2.51–4.06) 4.8 × 10−21 2.31 (2.07–2.56) 1.2 × 10−19

The individuals with extreme PRS in the ninth decile were compared with those in the fifth (middle) decile to determine the risk for PRSAI and PRSEU.
AIDHS/SDS, Asian Indian Diabetic Heart Study/Sikh Diabetes Study; CI, confidence interval; PRSAI, Asian Indian ancestry-derived PRS; PRSEU, 
European-derived PRS; UKBB, UK Biobank.

Table 5. Effect sizes and CIs for type 2 diabetes risk comparing PRS (first versus fifth) deciles in validation datasets 1 and 2.

Cohort PRSAI PRSEU

OR (95% CI) p Value OR (95% CI) p Value

Validation dataset-1 (AIDHS/SDS) 162.76 (62.51–423.79) 1.8 × 10−35 17.38 (10.75–28.09) 2.4 × 10−31

Validation dataset-2 (UKBB South Asians) 4.08 (2.82–5.92) 1.2 × 10−13 2.78 (2.08–3.72) 6.7 × 10−12

The individuals with extreme PRS in the first decile were compared with those in the fifth (middle) decile to determine the risk for PRSAI and PRSEU.
AIDHS/SDS, Asian Indian Diabetic Heart Study/Sikh Diabetes Study; CI, confidence interval; OR, odds ratio; PRS, polygenic risk scores; PRSAI, Asian 
Indian ancestry-derived PRS; PRSEU, European-derived PRS; UKBB, UK Biobank.
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versus the validation datasets. Because of these dif-
ferences, the ORs were wider when we analyzed 
the T2D risk by extreme deciles (Tables 4 and 5). 
Despite these differences, our PRS models cap-
tured individuals at increased risk for T2D in both 
ancestry-specific and European-derived PRS and 
suggest the strength of our models. Additionally, 
the ancestry-derived PRS has relatively higher 
transportability than the European-derived PRS 
even in the heterogenous population from UKBB.

Conclusion
The PRSAI has provided a relatively better T2D 
risk prediction outcome and higher transporta-
bility than the PRSEU. However, both models 
performed equally well after integrating ethnic-
ity-defined CRS in the genetic scores. The 

clinical application of genetic and clinical risk 
prediction models is still underdeveloped 
because there is a lack of diversity in the clinical 
trials and genome-wide studies that remain pre-
dominantly an over-representation of European-
ancestry study populations. Our results support 
the implications of diversity in genomic studies 
to improve the knowledge and utility of clinical 
and genomics tools for identifying and treating 
individuals at higher risk for developing T2D.
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