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Hydrogels are biocompatible matrices for local delivery of nucleic acids; however,
functional dopants are required to provide efficient delivery into cells. In particular,
dendrimers, known as robust nucleic acid carriers, can be used as dopants. Herein,
we report the first example of impregnating neutral hydrogels with siRNA–dendrimer
complexes. The surface chemistry of dendrimers allows adjusting the release rate of
siRNA-containing complexes. This methodology can bring new materials for biomedical
applications.
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INTRODUCTION

Local delivery of therapeutic nucleic acids, alone (Sarett et al., 2015) or in combination with other
drugs (Larsson et al., 2017), is an emerging topic in nanomedicine. To date, various approaches have
been developed to deliver nucleic acid constructions locally, either into the skin (Rogers et al., 2013;
Vij et al., 2017) or internal organs (Kwekkeboom et al., 2015; Xie et al., 2020). Depending on the
application, a long-term treatment may be required. Therefore, materials are needed to provide a
sustained drug release into tissues in contact. For instance, hydrogels are convenient matrices for
local drug delivery, in particular for the delivery of therapeutic nucleic acids (Fliervoet et al., 2018).
They are also frequently combined with hard or soft nanoparticles complexing nucleic acids and
acting as carriers at the cellular or tissue level (Fattal et al., 2004;Wang and Burdick, 2017; Saleh et al.,
2019). The choice of a carrier system is crucial as it can define the therapeutic performance of a
material as well as modulate its physicochemical properties. Dendritic molecules, that is, dendrimers
and dendrons, can be well suited for this purpose (Caminade, 2016; Caminade, 2017; Apartsin and
Caminade, 2021).

Dendritic molecules are hyperbranched macromolecules of precisely defined molecular structure
exposing numerous functional groups on the periphery. Due to the richness of the surface chemistry,
dendrimers and dendrons can be functionalized with biomimetic moieties and therefore used as
biocompatible carriers for both low-molecular drugs (such as anticancer chemodrugs) and
macromolecular therapeutic substances (DNA, mRNA, proteins) (Hsu et al., 2017; Knauer et al.,
2019; Mignani et al., 2020). Decorating the surface with cationic moieties promotes the interaction of
dendrimer-based complexes (dendriplexes) or supramolecular assemblies with the cell surface
inducing endocytosis. Inherent dendrimer multivalency, together with precise structure, is their
advantage over other classes of macromolecular carriers. Having been applied to the nucleic acid
delivery, dendrimers have shown considerable binding capacity and high efficiency for the
internalization into target cells, inducing programmed therapeutic effects in vitro and in vivo
(Palmerston Mendes et al., 2017; Dzmitruk et al., 2018). In particular, topical delivery of therapeutic
nucleic acids into skin tissue can be achieved. Recent findings show that dendrimer-assisted topical
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delivery can be accomplished even for thousand-base-long self-
amplifying RNA (Saviano et al., 2020), opening new
opportunities for dendrimers in nanomedicine.

Due to the presence of multiple functional groups on the surface,
dendrimers can be used as cross-linking moieties to develop dense
hydrogel networks (Nummelin et al., 2015; Hodgson et al., 2017;
Wang et al., 2017). Dendrimer-containing hydrogels can be loaded
with bioactive compounds and show good therapeutic activity upon
topical application (Conde et al., 2016; Wang et al., 2016; Xu et al.,
2017). These hydrogels have been shown to possess functional
performance similar to commercially available hydrogel species
(Villa-Camacho et al., 2015).

The synergistic combination of two methodologies, namely,
dendrimer-mediated nucleic acid delivery and hydrogel-based
local drug delivery, can yield highly biocompatible materials for
the long-term local delivery of therapeutic nucleic acids into target
tissues. Conceptually, the hydrogel scaffold is to bring
biocompatibility or bioresorption and to regulate the rate of drug
release, whereas the dendrimer is to provide highly efficient and
specific delivery of nucleic acid therapeutics into cells that are in
contact with a biomaterial. However, no such system has been
reported yet.

Herein, we report a proof-of-concept study in preparing
neutral hydrogel scaffolds impregnated with nanoscale
polyelectrolyte complexes of therapeutic nucleic acids and
polycationic dendrimers. We hypothesized that the
entrapment of complexes into a hydrogel network will result
in their long-term release. That would be highly useful for the
design of biomaterials for local drug delivery.

MATERIALS AND METHODS

Polycationic phosphorus dendrimers were synthesized according
to previously published procedures (Ihnatsyeu-Kachan et al.,
2017; Apartsin et al., 2018). Mcl-1 siRNA (sense strand: 5′-
GGACUUUUAUACCUGUUAUtt-3′-FAM; antisense strand:
5′-AUAACAGGUAUAAAAGUCCtg; lowercase letters denote
deoxyribonucleotides) was synthesized and annealed as
described in Krasheninina et al. (2019).

Dendriplexes Formation
Dendriplexes were formed by siRNA and dendrimers in an
RNase-free PBS buffer (10 mM phosphate buffer, pH 7.4,
137 mM NaCl, 2.7 mM KCl), followed by incubation for
10 min at 25°C. The dendrimer-to-siRNA charge ratio
(i.e., the excess of cations over anions) was calculated as
follows:

CR � N+CD

N−CsiRNA
,

where CR is the charge ratio; N+ � 48 is the number of cations
per dendrimer molecule; N− � 40 is the number of anions per
siRNA molecule; CD is the dendrimer concentration; and CsiRNA

is the siRNA concentration in a sample.

Gel Retardation Assay
The ability of the cationic dendrimers to form complexes with
siRNAs was studied by gel electrophoresis in 1% agarose gel.
Dendriplexes were prepared by mixing siRNA (40 pmol per
sample), ethidium bromide (EB) (0.4 µM, ∼1 EB molecule per
2 bp of siRNA), and dendrimers (at increasing concentrations
depending on the charge ratios) and dissolved in PBS. After 15-
min incubation at 25°C, electrophoresis was carried out in 1%
agarose gel at 80 V (Mini-Sub® Cell GT, Bio-Rad, United States)
in TBE buffer (89 mM Tris–borate, pH 8.4, 10 mM Na2EDTA),
and the bands were visualized under a UV using gel
documentation system (Helicon, Russia).

Fluorescence Polarization
Mcl-1 siRNA (1 µM) in PBS (30 µL) was placed in wells of a black
Costar 96 half-area microplate (Costar, United States). A solution
of dendrimer AG3, TG3, or PG3 was added gradually to achieve
the desired charge ratio from 0.25 to 5. In a control experiment,
water was added, instead of dendrimer solution. After each
addition, solutions were mixed by pipetting and incubated for
5 min; then fluorescence polarization values were read using a
microplate reader (BMG Labtech, Germany). The experiments
were performed in triplicate, and results were presented as
mean ± S.D.

Atomic Force Microscopy
An aliquot of dendriplex solution was dropped on a mica slide for
1–2 min. The slide was then washed 3 times with deionized water
and air-dried. Scanning was performed in the tapping mode using
a Multimode 8 atomic force microscope (Bruker) with
NSG10_DLC cantilevers with a tip curvature radius of 1–3 nm
(NT-MDT, Russia) at a scanning rate of 3 Hz. Images were
processed using Gwyddion 2.36 software.

Hydrogel Impregnation and Dendriplex
Release
Dendriplexes were formed by mixing Mcl-1 siRNA (100 µM) and
dendrimers (AG3, TG3, PG3 or mixtures AG3/TG3, AG3/PG3)
at dendrimer-to-siRNA charge ratio of 5 in 15 µL PBS, followed
by incubation for 15 min at 25°C. Then, 10 µL of a dendriplex
solution was added to 40 µL of hot 2% agarose solution in PBS.
When the solution cooled down to room temperature and
hydrogel was formed, 100 µL of PBS was added, and the gel
was gently shaken at 25°C. 5 µL aliquots were taken at 0, 10, 20,
30 min, 1, 2, 3, 16, and 24 h of incubation; diluted in 30 µL of PBS;
and transferred into wells of a black Costar 96 half-area
microplate (Costar, United States); fluorescence intensity and
fluorescence polarization values were read using a microplate
reader (BMG Labtech, Germany). The remaining 5 µL dendriplex
solution was treated in the same way and used as a control. The
experiments were performed in triplicate, and the results were
represented as mean ± S.D. To fit release values in kinetic profiles,
the exponential model was used. Fitting was considered
satisfactory if r2 > 0.95.
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RESULTS AND DISCUSSION

Choosing a matrix for a hydrogel network, we were looking for a
neutral compound, either biomimetic or of biological origin, able
to form hydrogels with pores of 100–200 nm diameter
(comparable to sizes of polyelectrolyte complexes). For
instance, agarose is a good candidate, for it is a cheap mass
produced biocompatible polymer forming soft bioresorbable
physical hydrogels (Zarrintaj et al., 2018). The mean pore
diameter in agarose hydrogels can be simply controlled by the
agarose percentage (Pluen et al., 1999; Narayanan et al., 2006).

As a bioactive cargo, we have chosen small interfering RNA
(siRNA) Mcl-1 possessing anticancer activity. This siRNA
activates programmed cell death by suppressing the expression
of one of the antiapoptotic proteins of the Bcl-2 family regulating
themitochondrial apoptosis pathway (Chetoui et al., 2008; Guoan
et al., 2010; Krasheninina et al., 2019).

As carriers, we have chosen phosphorus dendrimers bearing
cationic groups on the periphery. Phosphorus dendrimers are
widely used as nanodrugs per se (Hayder et al., 2011; Caminade
et al., 2015) and as carriers for low-molecular and macromolecular
bioactive compounds. For instance, polycationic phosphorus
dendrimers of high generations are versatile carriers for
intracellular delivery of nucleic acid constructions such as siRNA
(Ferenc et al., 2013; Ionov et al., 2015; Dzmitruk et al., 2015; Bohr
et al., 2017; Deriu et al., 2018; Ihnatsyeu-Kachan et al., 2017) or
plasmid DNA (Loup et al., 1999; Padié et al., 2009). Herein, we have
used three types of dendrimers of generation 3 bearing 48 surface
groups each: piperidinium chloride (AG3), trimethylammonium
chloride acetohydrazone (Girard reagent T; TG3), and pyridinium
chloride acetohydrazone (Girard reagent P; PG3). The structures of
dendrimers are given in Figure 1. Dendrimers TG3 and PG3 can
form hydrogels through multiple hydrogen bonds between
branches, with biomimetic additives facilitating the gelation
(Marmillon et al., 2001; Apartsin et al., 2018). Such dendrimer
hydrogels were able to bind oligonucleotides reversibly. Dendrimer
AG3, though unable to form hydrogels, has been shown to provide
highly efficient delivery of anticancer siRNAs into tumor cells
inducing apoptosis (Ihnatsyeu-Kachan et al., 2017).

As dendrimers bind siRNAs by means of electrostatic
interactions, the dendrimer-to-siRNA charge ratio strongly

matters. To find a ratio, where siRNA is mostly bound, we
mixed it with three cationic dendrimers at different ratios and
analyzed the complexes formed by means of agarose gel
electrophoresis upon visualization with ethidium bromide
(Supplementary Figure S1).We observed no band of free
siRNA at the cation excess >3 for AG3, and at the cation excess
>2 for PG3 and TG3. This difference can be explained by the
presence of hydrophilic hydrazone moieties on the surface of PG3
and TG3 dendrimers, which makes peripheral cations more
available to the complexation with oligonucleotides. To evaluate
how strongly dendrimers bind siRNA, we measured the
fluorescence polarization of 3′-fluorescein–labeled siRNA upon
complexing with AG3, PG3, and TG3. Fluorescence polarization
assay is sensitive to hindering of the fluorophore rotation in an
oligonucleotide upon complexation and thus gives information
about the strength of the siRNA complexation. The fluorescence
polarization values grew upon the cation excess reaching a plateau
at the ratio > 3 (Supplementary Figure S2) as it is supposed to
(Szewczyk et al., 2012; Conti et al., 2014). However, in the case of
AG3- and TG3-containing complexes, the siRNA binding leads to
the ∼2.8-fold increase in polarization, whereas in PG3-containing
complexes, >6-fold increase was observed. The most likely reason
for such a difference is the difference in the geometry of peripheral
cations and their availability for the interaction with the
sugar–phosphate backbone (Deriu et al., 2018). Furthermore,
hydrophobic interactions between siRNA and dendrimers
should be taken into account, for they are known to contribute
to the complexation along with electrostatic interactions (Slita
et al., 2007; Filippov et al., 2010). To work with dendriplexes,
where siRNA is fully saturated with dendrimers, we have used the
5-fold cation excess for further experiments.

To estimate the size of dendriplexes, we did AFM of samples
just after adsorption on a mica slide. This allowed us to visualize
dendriplexes, though not in their native form as in solution, but
not dehydrated either. Observed particles were round, and their
mean size was 100 nm (Figure 2). The composition of
dendriplexes did not significantly change their size, even when
mixtures of dendrimers at different proportions were used to
form dendriplexes (see below). Size values obtained by DLS
measurements (Supplementary Figure S3) were in good
agreement with the AFM data.

FIGURE 1 | Structures of polycationic phosphorus dendrimers used for preparing dendriplexes.
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To impregnate dendriplexes into a hydrogel network, we added
them to hot 2% agarose solution prior to gelation. Cooling down,
agarose forms a physical gel entrapping dendriplexes in its pores.
We then incubated dendriplex-containing hydrogels in a buffer
following the release of siRNA by measuring the fluorescence

acquisition in eluates. We considered the size of dendriplexes to
be smaller than the pore diameter in 1% agarose hydrogel network
[100–350 nm (Viovy, 2000; Stellwagen, 2009)], so dendriplexes
cannot be physically retained in a hydrogel. We therefore expected
that the release rate would be defined mostly by the diffusion of

FIGURE 2 | Representative AFM images of dendriplexes. Charge ratio 5. Scale bar is 100 nm.

FIGURE 3 | Kinetic profiles of dendriplexes release from the agarose gel. Dendriplexes contain either AG3 and TG3 (A) or AG3 and PG3 (B) in different ratios.
Charge ratio 5.

FIGURE4 | Evolution of fluorescence polarization of siRNA upon release of dendriplexes from the agarose gel. Dendriplexes contain either AG3 and TG3 (A) or AG3
and PG3 (B). The ratio P/P0 represents the ratio of fluorescence polarization values in a sample (P) and that of free siRNA (P0). Charge ratio 5.
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complexes from the hydrogel. Dendriplexes containing AG3
behaved exactly as we predicted: burst release was observed
with >90% release being achieved in 3 h. However, surprisingly,
dendriplexes containing TG3 and PG3 were released quite poorly;
the 50% release was not achieved even after 24-h incubation
(Figure 3). We hypothesized that such effects arise from the
differences in the chemical structure of dendrimer periphery as
apart from that, the dendriplexes were identical. Indeed,
dendrimers TG3 and PG3 expose multiple hydrazone moieties
on the periphery that can form hydrogen bonds with the hydrogel
scaffold. This is a likely reason why these dendriplexes are retained
in a hydrogel. With this in mind, we have impregnated hydrogels
with dendriplexes containing mixtures AG3:TG3 and AG3:PG3
and studied the siRNA release (Figure 3). We have found that the
ratio AG3/TG3 or AG3/PG3 in a dendriplex strongly affects both
the rate and completeness of release. The increase in the
hydrazone-terminated dendrimer content up to 1/3 does not
affect the release rate within the first hour of incubation;
however, the increase in the content up to 50% slows the
release within the whole 24-h observation span. Interestingly,
the profile of release of the PG3-containing dendriplex has a
considerable delay in the first hour of incubation. Given that
the TG3 dendriplex does not exhibit this delay, we suppose that
this phenomenon originates rather from differences in the
character of siRNA complexation between TG3 and PG3, as
observed in the fluorescence polarization profiles (see
above).Whereas fluorescence intensity in samples (Figure 3)
represents the overall release of siRNA from the hydrogel,
fluorescence polarization (Figure 4) shows the degree of siRNA
complexation: the higher the polarization value, the stronger is the
siRNA bound to dendriplexes. Basing on the evolution of the
fluorescence polarization in samples over time, we suggest that
siRNA is released from the hydrogel in the form of dendriplexes.
The effects of PG3-containing dendriplexes are more pronounced
in comparison with TG3 ones, which agrees with the strength of
siRNA complexation by these dendrimers (Supplementary Figure
S2). This finding is important as complexation with dendrimers is
known to stimulate the cellular uptake of oligonucleotides. Given
that endocytosis is quite a quick process, with multiple endocytosis
events occurring in a cell in a few-minutes span (Liang et al., 2017),
we can assume that released dendriplexes could be endocytosed
shortly after release from a hydrogel, before they could decompose.

Thus, varying the content of dendrimers in complexes, we can
modulate the speed of their elution from hydrogels. This feature
can be used for the precise design of a material for a given
biomedical task. For instance, agarose gels are considered
prospective biomaterials for the regeneration of cartilage and
brain implants (Lecomte et al., 2018; Choi et al., 2020; Salati
et al., 2020). Being in contact with tissues, agarose hydrogels
undergo bioresorption (Rousselle et al., 2019). This would lead
to the degradation of the hydrogel network, driving the release of
dendriplexes still retained in a gel network, as it has been shown for
cationic silica nanoparticles (Wang et al., 2015). This option can be
useful for the sustained release of small quantities of regulatory
nucleic acids (siRNA or microRNA). For instance, this technique
can be used to achieve long-term local tumor treatment (Han et al.,
2011), to improve wound healing (Saleh et al., 2019; Berger et al.,

2021), or to suppress local inflammatory reaction (Zhou et al.,
2018), which can occur in the proximity of an implant.

CONCLUSION

In summary, we have reported the first example of a neutral
biocompatible agarose hydrogel impregnated with polyelectrolyte
complexes of siRNA with polycationic phosphorus dendrimers.
The anchoring of complexes in a gel is due to the formation of
numerous hydrogen bonds between cationic moieties on the
periphery of dendrimers and the hydrogel scaffold. Changing
the content of different dendrimer species in complexes, we have
found an easy way to control the rate of release of complexes from
a hydrogel. We believe this methodology can be useful for the
development of functional hydrogels as local drug delivery
systems and tissue engineering tools.
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