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Abstract

Models of consumer effects on a shared resource environment have helped clarify how the

interplay of consumer traits and resource supply impact stable coexistence. Recent models

generalize this picture to include the exchange of resources alongside resource competition.

These models exemplify the fact that although consumers shape the resource environment,

the outcome of consumer interactions is context-dependent: such models can have either

stable or unstable equilibria, depending on the resource supply. However, these recent

models focus on a simplified version of microbial metabolism where the depletion of

resources always leads to consumer growth. Here, we model an arbitrarily large system of

consumers governed by Liebig’s law, where species require and deplete multiple resources,

but each consumer’s growth rate is only limited by a single one of these resources.

Resources that are taken up but not incorporated into new biomass are leaked back into the

environment, possibly transformed by intracellular reactions, thereby tying the mismatch

between depletion and growth to cross-feeding. For this set of dynamics, we show that fea-

sible equilibria can be either stable or unstable, again depending on the resource environ-

ment. We identify special consumption and production networks which protect the

community from instability when resources are scarce. Using simulations, we demonstrate

that the qualitative stability patterns derived analytically apply to a broader class of network

structures and resource inflow profiles, including cases where multiple species coexist on

only one externally supplied resource. Our stability criteria bear some resemblance to clas-

sic stability results for pairwise interactions, but also demonstrate how environmental con-

text can shape coexistence patterns when resource limitation and exchange are modeled

directly.

Author summary

One longstanding challenge in community ecology is to understand how diverse ecosys-

tems assemble and stably persist. Microbial communities pose a particularly acute exam-

ple of this open problem, because thousands of different bacterial species can coexist in

the same environment. Interactions between bacteria are of central importance across a
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wide variety of systems, from the dynamics of the human gut microbiome to the function-

ing of industrial bioreactors. As a result, a predictive understanding of which microbes

can coexist together, and how they do it, will have far-reaching applications. Here, we

incorporate a more realistic understanding of microbial metabolism into a classic mathe-

matical model of consumer-resource dynamics. In our model, bacteria deplete multiple

abiotic nutrients but their growth rates are only sensitive to one of these resources at a

time. In addition, they recycle some of the nutrients they consume back into the environ-

ment as new (transformed) resources. We analytically derive criteria which guarantee that

any number of microbes will coexist. We find that there are special types of interaction

networks which remain stable even when resources are scarce. Our theory can be used in

conjunction with experimentally determined interaction networks to predict which spe-

cies assemblages are likely to stably coexist in a specified resource environment.

Introduction

Pairwise interaction models have informed our understanding of when competitive interac-

tions will lead to stable equilibria. For example, these classic models imply the coexistence of

two competing species when the strength of interspecific competition is less than the strength

of intraspecific competition, as well as more general stability criteria for large, multi-species

systems with randomly distributed interaction strengths [1–4]. On the other hand, models of

pairwise interactions do not explicitly include the effect of environmental context, and this

context has the potential to refine or modify our understanding of when a group of interacting

species will coexist. For example, one species may exclude another if both compete for and rely

on a given resource, but the same two species may coexist if that resource is replaced by two

alternative resources, each of which is consumed by only one of the two species.

Recent consumer-resource models incorporating the exchange of resources alongside

resource competition have shed light on stable coexistence in systems where interactions are

mediated by abiotic resources [5–11]. In these open systems, the environmental context is

specified by resource inflow from outside, and stability turns out to depend both on the struc-

ture of which species consume and produce specific resources, and on the resource inflow

rates. However, this recent theory has focused on a simplified version of microbial metabolism

where the depletion of resources always leads to consumer growth. Specifically, the models

studied in [5] assumed either that the impact of consumers on resources was proportional to

the growth rate resulting from consumption of these substitutable resources (ie. the impact of

resources on consumers), or else a generalization of this type of assumption [6, 12, 13] for mul-

tiplicative colimitation by essential resources.

In general, the rates at which a consumer depletes resources are not always proportional to

the benefits that it derives from their consumption. This kind of mismatch between impact

and growth can arise for many reasons. One example is ‘waste’ by consumers with large uptake

rates [14], where otherwise usable resources are degraded and made unavailable for other con-

sumers. An even more basic origin for this mismatch arises when internal metabolism requires

multiple resources, but is only limited by the availability of a single resource—known as Lie-

big’s law [15–19]. In this case, a consumer will deplete and make use of multiple resources, but

its growth rate will only be sensitive to one of those resources at a time. Thus, a given con-

sumer can strongly affect the growth rate of others that are limited by one of its own non-limit-

ing resources.
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The consumption of non-limiting resources does not result in biomass production or cell

division. These non-limiting resources could instead be used for cellular maintenance, or

transformed via cellular metabolism into byproducts and then leaked back into the environ-

ment [20–22]. The depletion of non-limiting resources is one way to generate a mismatch

between consumption and microbial growth. Because of the conservation of resource biomass,

this mismatch gives rise to the production of resource byproducts, and hence the potential for

cross-feeding. For example, a recent reconstruction of the metabolic evolution of the marine

cyanobacteria Prochlorococcus suggests that Prochlorococcus is nitrogen limited and leaks

organic carbon, forming a mutualism with the heterotrophic bacterium SAR11 [14]. Both the

mismatch between depletion and growth as well as the cross-feeding of nutrients may have

important ecological consequences because they shape the resource environment for compet-

ing species. Yet, we do not know whether this more realistic picture of microbial metabolism

changes our theoretical understanding of coexistence in diverse microbial communities.

In this paper, we model an arbitrarily large system of consumers undergoing growth gov-

erned by Liebig’s law. We consider dynamics near a positive equilibrium where each consumer

is limited by a single, distinct resource, but can potentially deplete additional resources. Each

consumer leaks the resources it does not use for growth back into the environment in other

forms, thereby tying the mismatch between growth and depletion directly to cross-feeding.

Although we are primarily modeling microbial communities, the mismatch between growth

and depletion is a general ecological phenomenon, and our results apply equally well to non-

microbial systems. We find that with certain additional assumptions it is possible to analyti-

cally derive sufficient stability criteria in terms of resource inflow rates and ecological network

structure which guarantee that a feasible equilibrium is stable. These criteria mirror those

found earlier for a different form of positive interactions [5], and show that the structure of

consumption and production networks, as well as the environmental context, affect the stabil-

ity of this equilibrium. Our theory generalizes well-known results for low diversity consumer-

resource dynamics [23], but also identifies stabilizing interaction network structures which do

not have a clear low-dimensional analog. Using simulations, we show that our stability criteria

apply more broadly to network structures and parameter regimes which do not precisely sat-

isfy our mathematical assumptions, including situations where many microbial species coexist

on only one externally supplied resource [9, 10]. As a result, our theory could be used to select

species assemblages whose consumption preferences and nutrient production networks permit

coexistence in a specified resource environment.

Materials and methods

A model of the consumption and cross-feeding of resources

We consider a model with five basic biological processes—resource supply, consumption of

resources, consumer growth, consumer mortality and cross-feeding. In Fig 1A, we illustrate

how these processes shape the flow of resources into and out of a focal consumer, while in Fig

1B, we show the resulting flow of resources in the community. To develop a mathematical

description of these dynamics, let~R (respectively ~N ) be a vector of S resource (respectively

consumer) abundances. Resources are externally supplied and depleted through consumption.

Let ρi be the inflow rate of the i-th resource, and let Cij be the rate of consumption of resource i
by consumer j. We will denote the vector of ρi values by~r and the S × S matrix of consumption

rates by C. We also define �ij to be the efficiency at which consumer j converts resource i into

new biomass, and we collect these parameters into an S × S matrix � with values in the interval

[0, 1]. Intuitively, these parameters are inversely related to the stochiometric requirements of

each consumer on each resource. If a given consumer has a larger requirement for one
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resource relative to a second resource, it will have a smaller efficiency parameter for this first

resource, and therefore it must consume more of the first resource than the second to build

the same amount of biomass.

We assume that each consumer requires all the resources that it depletes for growth. In

other words, Cjk is non-zero for these essential resources, and zero otherwise. Under Liebig’s

law, each consumer’s growth rate is determined only by the resource which is least available

relative to the consumer’s growth requirements. A given consumer still builds biomass from

all of these resources, but they are used in fixed proportions, so one resource limits the rate at

which all others can be used to build biomass. Therefore, the growth rate of species k is propor-

tional to gk = minj 2 {1, . . ., S}{�jk Cjk Rj: Cjk 6¼ 0} where we have required that Cjk 6¼ 0 so that the

minimum is only over those resources that are necessary for consumer k. Throughout this

work, we consider cases where all or only a subset of resources are needed for the growth of

each consumer. However, this difference is not essential, and our main results apply equally

well to any growth rate function which selects a single resource. For example, if we replace the

minimum in the growth function by a maximum, we can interpret the resulting dynamics as a

Fig 1. Conceptual diagrams of internal metabolism, resource flow in the model community, and example

consumer-resource dynamics. (A) A schematic of the internal metabolism in our model for one consumer N1. This

consumer depletes two resources—R1 is limiting for consumer N1 while R2 is not. The consumption of resource R1

goes fully towards towards the consumer’s internal requirements. Some portion (θ) of this consumption is leaked out

into the environment (as resource R3 in the diagram), while the remaining consumed resource R1 goes towards

biomass. Because resource R2 is not limiting, it is consumed in excess of consumer N1’s requirements for growth. This

excess consumption is recycled back into the environment (as resource R4). The remaining resource then goes to

biomass producing processes, exactly as the entirety of the limiting resource intake. Therefore, some of the required

consumption of resource R2 is leaked and the rest goes to biomass. (B) A schematic of the consumer-resource model in

Eq (1). Consumers (Ni) deplete the resource (Rj) at rates Cij (all blue arrows), but only some of the consumption goes

to consumer growth. Instead, some consumed resource is leaked back into the environment as new resources at rates

Pji or ~Pji (green arrows). Resources are externally supplied at rates ρi (gray arrows) and consumers undergo density

independent mortality at rate ηk (red arrows). (C) The dynamics of the consumers and resources in Eq (1) when there

is a stable equilibrium and when there is not. Consumers grow according to Liebig’s law as described in the text. When

there is no stable equilibrium, the consumer abundances undergo large fluctuations, reaching low abundances.

https://doi.org/10.1371/journal.pcbi.1010521.g001
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simple model of preferential resource utilization, albeit in a different form than the classic

understanding of diauxic shifts [24–27]. In addition to growth, consumer k undergoes density

independent mortality at rate ηk. We primarily focus on the case where ηk = η and interpret

this parameter as a constant washout rate, as in a chemostat [28]. In our model, resources are

not washed out of the system, so we are implicitly assuming that all resources are quickly

depleted by consumers [7, 29].

Lastly, consumers recycle nutrients back into the environment by cross-feeding. We con-

sider two different types of cross-feeding in our model. First, each consumer depletes some

resources that are non-limiting for it, and the excess intake of these resources is cycled back

into the environment, possibly following some internal reactions that transform it. Mathemati-

cally, the amount of resource j used by consumer k for growth is given by
�k0k
�jk
Ck0kRk0 , where k0 is

the index of the limiting resource for consumer k. The additional efficiency factor
�k0k
�jk

converts

the consumption of the limiting resource into the units of resource j. In other words, we

assume that resources j and k0 are used in the fixed ratio
�k0k
�jk

to build new biomass. The excess

consumption of resource j is then given by CjkRj �
gk
�jk
¼ CjkRj �

�k0k
�jk
Ck0kRk0 . Before being

secreted, this internal excess may be converted to other forms through intracellular reactions

that do not create new biomass. These conversion processes are summarized by the matrix P,

with Pji giving the fraction of consumed resource j that is recycled back into the environment

as resource i. In our model, each resource is transformed independently to produce a set of

byproducts, although more complex internal reaction dynamics, where multiple consumed

resources react to form byproducts together, are certainly possible [12]. Consumers in our

model also leak some byproducts from the processes that convert resources to biomass. We

interpret this leakage as an inefficiency due to the permeability of cell membranes, but there

may also be evolutionary reasons why microbes secrete metabolites [30]. We assume that con-

stant fractions, θ, of the resources used to build biomass are transformed into byproducts, as

described by another matrix ~P, which can be different from P. To ensure conservation of bio-

mass, we require that
P

iPji ¼
P

i
~Pji ¼ 1. As a result, the system as a whole is always competi-

tive, because the overall production of resources is bounded by their total consumption, even

though there can be net flows of one resource to another. For tractability, we assume that the

chemical reactions underlying resource transformation are universal, so that resource conver-

sion rates are the same for every consumer.

All together, the dynamics of resources and consumers are given by

_Ri ¼ ri � Ri

P
jCijNj þ

P
jPji

P
k CjkRj �

gk
�jk

 !

Nk þ y
P

j
~Pji

P
k

gk
�jk

Nk

_Nk ¼ Nkðð1 � yÞgk � ZkÞ ¼ Nkðð1 � yÞ min
j2f1;:::;Sg

f�jkCjkRj : Cjk 6¼ 0g � ZkÞ

ð1Þ

when the consumers grow according to Liebig’s law. In Table 1, we define all the relevant vari-

ables in Eq (1) and those that we define later for ease of reference. We focus on the equilibria

of this model. Specifically, we determine when the equilibrium of Eq (1) is robust to small per-

turbations by finding sufficient conditions for the eigenvalues of its Jacobian to all have nega-

tive real parts. In Fig 1C, we illustrate two different examples of the dynamics that can result.

In one example, there is a stable equilibrium to which the consumer and resource abundances

converge, while in the other, both consumers and resources undergo large fluctuations to very

low abundances. In the following sections, we derive criteria for these equilibria to exist and be
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stable. Specifically, we show that the unstable dynamics in Fig 1C can be caused by a variety of

factors, including the structure of the ecological network and insufficient resource supply.

Equilibria of the consumer-resource model

At an equilibrium of the dynamics in Eq (1) where all of the microbial species coexist, each

resource is limiting for precisely one consumer. If instead two consumers were limited by the

same resource, whichever species could drive the limiting resource level to the lower level

would exclude the other, consistent with the competitive exclusion principle [31–33]. Thus,

close to equilibrium, the minimum of the growth rule gkð~RÞmust be realized by a unique

resource for each consumer, and there is a one-to-one correspondence between consumers

and resources. In models with different forms of resource competition, for example, those

where consumers can be co-limited by different resources [13], this type of one-to-one corre-

spondence may not occur. Nevertheless, there is a natural assignment of resources to consum-

ers because of the structure of the model we consider here. By re-ordering the columns of C so

that its diagonal corresponds to the limiting consumer-resource pairs, we can rewrite the

dynamical system in (1) as

_Ri ¼ ri � Ri

P
jCijNj þ

P
jPji

P
kðCjkRj � ~�jkCkkRkÞNk

þy
P

j
~Pji

P
k~�jkCkkRkNk

_Nk ¼ Nkðð1 � yÞ�kkCkkRk � ZkÞ

ð2Þ

because the limiting consumer-resource assignments no longer vary in time. Here we have

defined the matrix of ratios ~� jk ¼ �kk=�jk. In Fig A of the S1 Appendix, we plot the dynamics of

models in Eqs (1) and (2). After a transient period in which the dynamics of these two models

differ, both converge to the same equilibrium, demonstrating that the abundances need not be

infinitesimally close to equilibrium for the simplified model to apply. More generally, when-

ever we find an equilibrium of the more complex model in Eq (1), we can find a corresponding

model in the form of Eq 2 with the same equilibrium properties. Therefore, we restrict our

Table 1. Variables in Eq 1 and in our stability criteria with their meanings.

Glossary of mathematical variables

Ri Abundance of resource i
Nk Abundance of consumer k
ρi Inflow rate of resource i
Cij Consumption rate of resource i by consumer j
Pij Production rate of resource i from resource j via non-limiting resources

gk Growth rate of consumer k
�jk Growth efficiency of consumer k on resource j
~� jk Efficiency conversion ratio for consumer k on resource j ie. ~� jk ¼ �kk=�jk

θ Fraction of consumed and limiting resources that is leaked

~Pij Production rate of resource i from resource j via limiting resources

ηk Death (or washout) rate of consumer k
Bij Net effect of consumer j consumer i’s limiting resource

Cd Consumption of the limiting resource for all consumers

r Resource abundances when they are identical

n Consumer abundances when they are identical

https://doi.org/10.1371/journal.pcbi.1010521.t001
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attention to the stability properties of Eq (2) because this model captures the behavior of mod-

els with more biologically realistic growth rules in a neighborhood of equilibrium.

Before we derive stability criteria for the equilibria of the dynamics in Eq (1), we must

determine whether or not there are equilibria of the model in the first place. Specifically, we

want to characterize when there are equilibrium solutions where all species coexist at positive

abundance (called feasible equilibria [34]). Let’s first analyze the simplified system in Eq (2).

The resource abundances at equilibrium are immediately determined by the consumer

dynamics to be R?i ¼
Zi

ð1� yÞ�iiCii
. The equilibrium abundances of the consumers are given by

~N ? ¼ ½ðI � PTÞ~R?
dC þ ðP

T � y~PTÞ~�~Cd
~R?

d�
� 1
~r ð3Þ

where~R?
d denotes the diagonal matrix with entries given by R?i . When each of the consumer

abundances is greater than zero (Ni> 0), the equilibrium is feasible and it is possible for all

species to coexist at abundances that do not change over time. The feasibility of a given set of

equilibrium abundances ~N depends on both the consumption and production matrices, as

well as the resource inflows and washout rates. In general, it is a difficult problem to character-

ize the set of feasible abundances in terms of the other parameters of our model. Moreover,

depending on the growth rule of Eq (1), the feasibility of the resource abundances may intro-

duce additional constraints on the interaction patterns. For example, if consumers grow

according to the Liebig’s law growth rule described in the previous section, then there is an

upper limit on how large the diagonal coefficients of C can be before at least one consumer

becomes limited by a different resource at equilibrium. We use a combination of theory and

simulation to ensure that we are analyzing the stability of equilibria that are actually part of the

dynamics in Eq (1).

Sufficient stability criteria for constant abundances

For the sake of analytical tractability, we focus on a specific parameterization of the model in

Eq (1) in this section. We choose efficiency (�) and washout (~Z) parameters so that all resources

have equal abundance (~R? ¼ r~1). We assume that all consumers have equal abundance

(~N ? ¼ n~1) by choosing a corresponding resource inflow vector~r. Later, we relax these

assumptions in simulations and show that our qualitative stability results still apply. Through-

out this paper, we take the diagonal consumption coefficients to be the same for each con-

sumer (Cii = Cd), implying that all species are equally good consumers of their limiting

resource. Under these conditions, we state two criteria which, if satisfied, imply that the equi-

librium where all species coexist is stable. These criteria are sufficient, but not necessary, for

the stability of the entire community.

1. The matrices C, P and B ¼ � C þ PTðC � Cd~�Þ þ yCd
~PT~� are symmetric.

2. All of the eigenvalues of B are negative.

We derived these conditions through a mathematical analysis of the Jacobian of the equilib-

rium with constant abundances, which we detail in the Stability Criteria section of the S1

Appendix. Mathematically, the matrix B is the upper right-hand block of the Jacobian, which

measures how the resource abundances change as a function of the consumer abundances.

Interestingly, it also appears in Eq (3)—a connection we explore further in the Sufficient Sta-

bility Criteria Imply Feasibility section of the S1 Appendix.

The first criterion enforces the reciprocity of interactions between the consumers in the

ecosystem. The symmetry of the consumption matrix C requires each consumer to deplete the

limiting nutrients of the other consumers in the system in exactly the same way that other
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consumers deplete its limiting nutrient. The symmetry of the production matrix P has a similar

interpretation, but for resource production. When the production matrix is symmetric, cross-

feeding of resource i produces exactly the same amount of resource j as resource j produces of

resource i when it is cross-fed. The matrix B acts as an effective interaction matrix for the com-

munity. The matrix element Bij is the net effect that consumer j has on resource i, since it

incorporates both the consumption of resource i by consumer j and all of the ways that con-

sumer j produces resource i via cross-feeding. When the interaction matrix B is symmetric,

consumer j alters the dynamics of resource i in the same way that consumer i alters the dynam-

ics of resource j. Since each consumer’s growth is determined by only one resource, we can

interpret the symmetry of interactions in B as perfectly balanced pairwise competition for each

limiting resource. Consumer i is limited only by resource i, so consumer j’s effect on resource i
(and hence consumer i’s growth) is exactly matched by consumer i’s effect on resource j (and

hence consumer j’s growth). Although we don’t expect natural systems to be precisely symmet-

ric, these symmetric structures represent an interesting limiting case for our analysis. More-

over, previous work has found that interaction networks are stabilized by being near to an

exactly reciprocal structure [5, 6, 35]. In the Results, we demonstrate the same behavior—as

the interactions in the matrix B becomes close to a special network structure with these proper-

ties, it is more easily stabilized.

The second criterion shows that the stability of the matrix B informs the stability of the eco-

system as a whole. This finding reinforces our interpretation of B as an effective interaction

matrix for the community, which summarizes the dynamical contributions of all five biological

processes around equilibrium. There are many ways that our model parameters could change

to stabilize or destabilize the matrix B, but we focus on interrogating stability as we vary the

consumption coefficients of the limiting resources (Cii = Cd). The parameter Cd controls the

self-regulation in the system by determining the level of intraspecific competition for the con-

sumers. As Cd becomes large, each consumer regulates its own resource more strongly than

the other consumers affect it, and B is more likely to be stable. This mirrors classic results for

consumer-resource models with two resources [23], negative feedback in the theory of plant

communities [36, 37] and the central role of self-regulation in multi-species stability theory [2,

3]. The first criterion is not sensitive to the magnitude of the consumption or production coef-

ficients, as long as they are arranged in such a way to produce a symmetric B matrix. Because

the second criterion measures the relative strength of the interactions, it does depend on the

magnitude of the consumption and production coefficients.

We focus on two structures for consumption and production networks that give rise to

symmetric B. In our first parameterization, we consider a case where the consumption matrix

C is a symmetric matrix with row (and column) sums that are all equal (see Fig 2A). We term

this parameterization the tradeoff case, since all consumers share the same overall metabolic

capability, as in [29]. In this parameterization, we also assume that each resource is equally

recycled back into the environment as all the other resources (Fig 2B). In our second parame-

terization, we take the consumption matrix C and the production matrices P and ~P to both be

symmetric circulant matrices (see Fig 2C and 2D). In a circulant matrix, each row is composed

of the same values, but the values are shifted one element right as we descend the rows. In this

case, we effectively fix the distribution of consumption or production rates for all species, but

vary the identity of which resources are consumed or produced more or less strongly between

consumer species. In addition to these matrix parameterizations, which generate symmetric B
matrices and therefore satisfy our first criterion, we also consider a parameterization which

explicitly violates our first condition. For this parameterization, which we call the unstructured

case, we simply sample the coefficients of C, P and ~P identically and independently from
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probability distributions. Even though our first stability condition will not hold in this case,

our second stability condition could still be satisfied. Therefore, we can test whether or not the

first sufficient stability criterion is actually necessary to ensure stability, or if just the second

criterion will suffice. In the Matrix Parameterizations section of the S1 Appendix, we list addi-

tional matrices that were studied, as well as more detailed descriptions of how we generate

each case numerically.

Results

To evaluate how well our sufficient stability criteria predict the onset of stability in simulated

ecosystems, we generated large numbers of random matrices according to each of our parame-

terizations. We then numerically computed the smallest diagonal consumption Cd value at

which the coexistence equilibrium becomes stable. For this first set of results, we do not test

whether or not the equilibrium is feasible, so that we can directly evaluate our stability theory.

In the tradeoff and circulant cases, however, we show that feasibility is guaranteed when the

consumer (respectively resource) abundances are all equal, (see the Feasibility Analysis section

of the S1 Appendix for the proof). As a result, only the empirical Cd values for the unstructured

parameterization could be affected by feasibility constraints, and we describe the feasibility of

this unstructured parameterization in detail in the Feasibility Analysis section of the S1 Appen-

dix. In Fig 3A–3C, we plot our sufficient analytical stability bound against the numerically-

determined Cd values which first induce stability. For all three parameterizations, the empiri-

cally computed Cd values are closely predicted by our analytical Cd values. The fact that the

unstructured case can ever be stable demonstrates that our stability criteria are not necessary

for stability, since this case violates our first symmetry condition. In Fig 3D–3F, we plot the dif-

ferences between the predicted and empirically-observed stability bounds. For the cases which

satisfy our first symmetry condition, these differences are due to numerical error and therefore

effectively zero (Fig 3D and 3E), while in the unstructured case, the predictions remain quite

accurate but are no longer exact (Fig 3F).

In our mathematical theory, we have only proven that our stability criteria are sufficient

for, rather than exactly predictive of, stability. And yet, in Fig 3 and Fig C of the S1 Appendix,

our theory accurately predicts the precise value of Cd at which the system becomes stable.

These simulations suggest a more comprehensive result—if B is symmetric, then the equilib-

rium is stable if and only if B is stable. Intuitively, this result suggests that, if the effective eco-

logical interactions in the system obey a specific symmetric structure, then they are exactly

Fig 2. Example consumption and production structures. Each panel is a visualization of the different consumption

and production patterns which satisfy our analytical criteria. Darker colors indicate larger values. (A) The tradeoff

parameterization of the consumption matrix C. C is symmetric with identical row (or column) sums and diagonal

coefficients all set to Cd. (B) The constant parameterization of the production matrix P. Each entry off-diagonal entry is

set to 1

S� 1
, while the diagonal entries are set to 0. (C) The circulant parameterization of the consumption matrix. Each

row of the matrix is a permuted version of the previous row and the diagonal entries are all set to Cd. (D) The circulant

parameterization of the production matrix. Each row of the matrix is a permuted version of the previous row and the

diagonal entries are set to 0.

https://doi.org/10.1371/journal.pcbi.1010521.g002
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predictive of the stability of the community as a whole. While we cannot prove this statement

in its full generality, we present additional analytical arguments and numerical evidence in

support in the Stability Criteria section and Fig J of the S1 Appendix. In summary, our first

main result is that, when the first stability condition (symmetry) is satisfied, our second stabil-

ity condition is sufficient for, and apparently exactly predictive of, the stability of the entire

community. By contrast, in the unstructured parameterization, our analytical criteria do not

exactly predict stability (Fig 3F). At the same time, our analytical bound predicted the average
stability properties for the unstructured consumption and production matrices remarkably

well (Fig 3C), even though our theory is not mathematically justified in this case.

Motivated by this surprising relationship, we next simulate our model more exhaustively to

identify parameter combinations where our analytical criteria fail to predict the average behav-

ior of the empirical Cd values. We find that varying the consumer abundance n causes the

unstructured case to systematically violate our second stability criterion (see Fig D and E the

S1 Appendix for the effect of other parameters). Our theoretical criteria exhibit no dependence

on the value of n, and neither do the empirically computed Cd values for the tradeoff or circu-

lant cases (Fig 4A and 4B). Yet, we find that, as we decrease the consumer abundance n, it

becomes increasingly more difficult for the equilibrium to be stable with unstructured con-

sumption and production structures (Fig 4C). Our second main result is that the specific sym-

metric structure enforced by our first stability criterion protects the community from

instability when n is small, but, for non-symmetric consumption and production patterns, low

consumer abundances lead to instability. This result mirrors other recent studies, which have

Fig 3. Analytical stability criteria predict empirical values. (A-C) We plot the value of the theoretical bound for Cd
in the second stability criterion against the smallest Cd value at which the fixed point becomes stable numerically for

100 realizations of the random matrices comprising C, P and ~P while varying the standard deviation (colors) and mean

(shapes) of the off-diagonal elements of the consumption matrix. The different panels are for the three different

parameterizations of the consumption and production matrices ((A) is the tradeoff parameterization, (B) is the

circulant parameterization and (C) is the unstructured parameterization). Parameters: S = 15, n = r = 1, θ = 0.5, �ii =

0.05 and �ij = 1 for i 6¼ j in all panels. For each of the different matrix parameterizations, we first sample the

consumption coefficients from uniform distributions with mean given by the average consumption value (1, 3, or 5 in

these simulations) and the specified standard deviations so that the coefficients of variation in consumption

coefficients vary from 0:001=
ffiffiffi
3
p

to 1=
ffiffiffi
3
p

. Then, we impose the constraints for the tradeoff and circulant

parameterizations afterwards. (D-F) Histograms of the differences between the predicted and observed values in panels

A-C in each of the three parameterizations when the average consumption coefficient is 5 and the coefficient of

variation in consumption coefficients is 1=
ffiffiffi
3
p

.

https://doi.org/10.1371/journal.pcbi.1010521.g003
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also found that special network structures promote stability when consumer abundances are

small as a result of low of resource supply [6, 7].

We now consider a new parameterization of our model that mimics recent microbial com-

petition experiments [9, 10], where diverse communities coexist via cross-feeding. Above and

in our analytical theory, we assume that all consumers and resources have equal abundances at

equilibrium (ie. ~N ? ¼ n~1 and~R? ¼ r~1). We also treat these abundances as parameters that we

can modify. In experimental microbial communities, the consumer and resource abundances

(~N and~R) cannot be fixed to specific values, but they can be manipulated indirectly by chang-

ing the resource inflow and consumer dilution vectors respectively. Using simulations, we

now ask whether the qualitative stability patterns we have derived for the simpler case of con-

stant abundances also describe systems where we treat~r and~Z as independent variables and

let the dynamics determine the consumer and resource abundances. To make contact with

empirical scenarios, we set ηi = η for all consumers, as in a chemostat, let ρ1 = ρ, and set all

other resource supply rates to zero (ρi = 0 when i = 2, . . ., S).

In Fig 5A and 5B, we plot the fraction of ecosystems with a feasible and stable fixed point as

we vary the total resource inflow ρ and the diagonal consumption coefficient Cd for the trade-

off and unstructured matrix parameterizations. We consider two different aspects of feasibility

in these simulations. First, there must be a positive equilibrium which solves Eq (3). In other

words, there must be a fixed point where all consumers coexist. Second, we require that the

feasible fixed point found using Eq (3) is also realized in the dynamics of the Liebig’s law

growth rule. These two constraints impose lower and upper limits (minimum and maximum

Cd) on the coexistence regions in Fig 5. Both of these feasibility properties, however, are inde-

pendent of the total resource availability. Decreasing the resource inflow ρ decreases consumer

abundances, but it does not affect whether or not there is an equilibrium with all positive abun-

dances. When the consumption and production matrices are unstructured, these low con-

sumer abundances give rise to unstable, but feasible, fixed points (Fig 5B). By contrast, the

consumption and production networks which obey our first symmetric stability criteria are

protected from resource-inflow-mediated instability even in this more complex case (Fig 5A

and Fig G of the S1 Appendix)). Thus, our third main result is that the symmetric consump-

tion and production networks we identified analytically also promote stability when consumer

and resource abundances are not identical.

Fig 4. Unstructured networks violate theoretical stability criteria at low consumer abundances. We plot the value

of the theoretical stability bound for Cd averaged over 100 replicates (solid lines) as the consumer abundance n varies

over three orders of magnitude for the three different matrix parameterizations (panels and colors). We also plot the

average smallest Cd value for which the system first becomes stable numerically (shapes) along with error bars showing

one standard deviation above and below the mean. In panels (A-B), the theoretical bound accurately predicts the

dependence of Cd on n, while for the unstructured case (panel (C)), the theoretical predictions fail at low consumer

abundance. Parameters: S = 15, r = 1, θ = 0.5, �ii = 0.05 and �ij = 1 for i 6¼ j. The off-diagonal elements of the

consumption matrices are sampled from uniform distributions on [0, 2] before the parameterizations are imposed.

https://doi.org/10.1371/journal.pcbi.1010521.g004
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We examine this resource-inflow-mediated instability in a variety of other non-symmetric

consumption and production networks to better understand the network properties that pro-

tect against it. We hypothesize that the reciprocal interaction structure of the B matrix protects

ecosystems from instability because it ensures that the B matrix has purely real eigenvalues, as

has been observed in previous work [6, 35]. In Fig 5C, we consider a parameterization of the

consumption and production networks that generates an interaction matrix B which is no lon-

ger symmetric but does have real eigenvalues. There are many ways to generate such a B
matrix, but here we take a consumption matrix with non-zero values on the upper and lower

bands of the matrix, displaced from the diagonal by one index, along with constant production

matrices. Once again, the equilibrium where all consumers coexist remains stable at low con-

sumer abundances, indicating a more general result–namely, if B is stable and has purely real

eigenvalues, then the the entire community is stable. We present further mathematical analysis

and numerical evidence in support of this claim in the Stability Criteria section and Fig G of

the S1 Appendix.

We don’t expect natural systems to satisfy our restrictive symmetry condition or to neces-

sarily generate B matrices that have eigenvalues whose imaginary parts are exactly zero. At the

same time, it is possible that natural systems are better protected from instability if they are

near to one of the special interaction structures we have identified analytically. Using simula-

tions, we find that the transition between stability and instability at low consumer abundances

is a continuous one. As we increase the correlation between off-diagonal pairs (Cij, Cji) of an

otherwise random and unstructured C matrix, its eigenvalues lie closer and closer to the real

line, and we observe that the ecosystem can coexist at smaller and smaller resource inflows

(see Fig H of the S1 Appendix). Therefore, our results extend to cases in which the B matrix

does not have precisely real eigenvalues. Instead, as the magnitude of the imaginary parts of

the eigenvalues of B decreases so too does the minimum resource inflow level at which the

community can coexist. Our fourth and final result is therefore more speculative—we

Fig 5. Low consumer abundances induce instability for more general resource inflows and interaction networks. We plot the probability of

finding a feasible and stable fixed point in 25 replicates across a range of Cd values and resource inflows ρ with only one externally supplied nutrient

for three different matrix parameterizations. We also enforce that the fixed point is realized under a Liebig’s law growth rule, where each consumer

grows on the most limiting nutrient of the resources. (A) The tradeoff matrix parameterization does not show any dependence on the resource inflow

ρ, as in Fig 4. (B) The unstructured case does not have any feasible and stable fixed points at low resource inflow. (C) The banded matrix

parameterization has a consumption matrix with non-zero values on the upper and lower bands of the matrix, displaced from the diagonal by one

index. It also has a constant production matrix, as described previously. It does not show any dependence on the resource inflow. Parameters: S = 15,

ηi = 1, θ = 0.9, �ii = 0.05 and �ij = 1 for i 6¼ j. Consumption coefficients sampled from uniform distributions on [0.5, 1.5] before the constraints are

imposed.

https://doi.org/10.1371/journal.pcbi.1010521.g005
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conjecture that the matrix B serves as a measure of the relevant interactions in the ecosystem,

and, when B has all real and negative eigenvalues, the equilibrium is always stable. If B has

some eigenvalues with non-zero, but small, imaginary parts, the equilibrium will be stable

across a broad range of resource inflows, and the threshold resource supply at which the sys-

tem becomes unstable is partly determined by the magnitude of these imaginary parts.

Our theory predicts when a feasible and stable equilibrium does or does not exist in the

dynamics of our model. It cannot, however, shed light on what happens to the consumers in

an ecosystem without a stable equilibrium. In Fig 6, we plot the dynamics of two different con-

sumption networks—a correlated but otherwise unstructured network and the tradeoff net-

work–for three different inflow levels of one externally supplied resource. B has purely real

eigenvalues for the tradeoff consumption network, but some of the eigenvalues of B have non-

zero imaginary part for the correlated network. In the tradeoff parameterization, consumers

converge to a stable equilibrium across the different resource inflows, while in the correlated

parameterization, they converge to equilibrium only when the resource supply is sufficiently

large. When the dynamics do not converge to a stable equilibrium, the consumers undergo

large fluctuations which vary in amplitude (Fig 6). In the presence of demographic noise, these

large fluctuations would likely lead to exclusion. In addition to these semi-regular fluctuations,

consumers appear to converge to stable limit cycles in some cases. Depending on the initial

conditions, it is also possible for some consumers to become limited by a different resource,

leading to consumers reaching low abundances or even becoming excluded (see Fig K of the

Fig 6. Stable and unstable consumer dynamics for varying resource inflows. We plot the consumer dynamics for two different

consumption networks—one where the coefficients are sampled randomly from a distribution with correlations across the diagonal

(labeled Correlated) and the other according to the tradeoff consumption network described in the text (labeled Tradeoff)—for

three different magnitudes of one externally supplied resource (Low Inflow: ρ1 = 0.001, Medium Inflow: ρ1 = 0.1 and High Inflow: ρ1

= 1). The S = 15 consumers’ growth rates are determined by the most limiting resources following Liebig’s law. All other resources

are not supplied (ρi = 0 for i = 2, . . ., S). In each case, the production network is given by the constant parameterization where all

other resources are produced from a given incoming resource. For the tradeoff network, the equilibrium is stable regardless of

resource inflow levels, while the correlated network becomes unstable when the resource inflow is low. Parameters: S = 10, Cd = 10,

ηi = 1, θ = 0.9, �ii = 0.05 and �ij = 1 for i 6¼ j. Consumption coefficients sampled from uniform distributions on [0.5, 1.5] before the

constraints are imposed.

https://doi.org/10.1371/journal.pcbi.1010521.g006
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S1 Appendix). In general, the unstable dynamics in our model can be highly irregular and lead

to the exclusion of some consumers.

Discussion

Unlike many classic ecological models in which species interactions are completely deter-

mined by the abundances of the competing species [38, 39], our model explicitly tracks the

dynamics of resources [8, 40–42]. As the resource abundances vary over time, the per-capita

effect of one consumer on another can change, in contrast to most pairwise models, where

these per-capita interactions are fixed in time. Additionally, consumers grow according to Lie-

big’s law, meaning that each consumer is limited by only a single resource at a time, even

though they can deplete other resources. Liebig’s law has been found to accurately describe

microbial growth rates, as well as the resource limitation properties of plants, across many dif-

ferent ecosystems [12, 13, 18, 43–45]. In our model of Liebig’s law, there is a mismatch

between microbial growth and resource depletion that directly gives rise to the exchange of

resources.

In this paper, we investigated how these two linked processes—microbial growth governed

by Liebig’s law and the subsequent cross-feeding of nutrients—jointly affect stability in arbi-

trarily large microbial communities. We analytically determined two stability criteria that are

together sufficient for stability of the entire community. Our first stability criterion ensures

that the interactions between the microbial species are reciprocal. Under our first condition,

each consumer must affect the limiting resource of other consumers in exactly the same way

that every other consumer affects its limiting resource. In our second stability criterion, we

identified an effective interaction matrix for the community. When our first stability condition

is satisfied, the stability of this effective interaction matrix implies that the equilibrium where

all consumers coexist is also stable. Guided by these stability criteria, we found four main

results. First, our two stability criteria were not only sufficient for, but in fact appear exactly

predictive of, stability in simulated communities. Second, reciprocal interaction structures

protected the community from instability at low consumer abundances, but communities with

non-symmetric interactions generically became unstable when resources were scarce. Third,

our analytical results applied qualitatively to situations where microbes compete for a single

external resource and therefore have highly variable consumer abundances at equilibrium.

Fourth, interaction networks that were not exactly symmetric still promoted stability, as long

as the spectra of these networks had small imaginary parts.

Our model incorporates a more mechanistic picture of microbial interactions by consider-

ing how essential resources and cross-feeding alter ecological dynamics. At the same time, it is

still a highly coarse-grained version of true microbial metabolism. We have focused on a par-

ticular form of Liebig’s law with explicit stochiometric requirements, but other models without

these requirements have been investigated as well [46–48]. In our consumption matrix param-

eterizations, we have also implicitly assumed that each consumer can deplete many of the

available resources. Similarly, we have assumed that any resource can be produced from any

other. In other words, although we have conserved total biomass in our model, we have not

ensured that the basic biochemical building blocks are conserved when consumed resources

are being converted into other nutrients. In reality, there are stochiometric rules that these

matrices must obey [49–51]. Intriguingly, recent experiments [10] have shown that resource

production networks are approximately, though not precisely, hierarchical because of bio-

chemical constraints. Understanding how the chemical properties of abiotic nutrients and the

metabolic strategies of specific bacterial strains constrain the consumption and production

networks is therefore an important direction for future work. It would be particularly
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interesting to evaluate whether these biochemical constraints on resource exchange create pro-

duction networks with spectral properties similar to those we have shown to promote stability.

Even though our consumer-resource model does not capture the full complexity of micro-

bial metabolism, it still produced stability criteria that refine our understanding of microbial

coexistence. Recent theory [52, 53] has shown that population abundances do not affect stabil-

ity in a randomly parameterized Lotka-Volterra model. In the present work, we find the oppo-

site result—given consumption and production networks which do not satisfy our symmetry

conditions, some choices of equilibrium consumer abundances generate stable systems, while

others do not. By contrast, our theoretical results do align with other analyses of consumer-

resource dynamics. The resilience of a food web (defined as the speed at which the abundances

return to equilibrium after a perturbation) has been shown to increase as the residence time of

nutrients in the system decreases [54]. One possible interpretation of our results is that, when

resource supply is low, resources remain in the community for longer times, inducing instabil-

ity, but further work is needed to understand this connection more completely. Recent simula-

tions of model microbial communities with cross-feeding showed that, when consumers are

resource limited, the constituent species interact in a characteristic pattern at equilibrium [7].

These results mirror our simulations, where ecosystems with specific symmetric interaction

structures are protected from instability at low resource inflow. In [7], the characteristic inter-

action patterns emerge from community assembly, while in our theory, we impose them from

the outset. This connection is particularly interesting because it suggests that special interac-

tion structures may emerge from assembly processes in specific resource environments.

Similarly, a recent mathematical analysis of consumer-resource models with multiple forms

of consumption also showed that resource inflow mediates a transition to instability [6]. This

recent theory, however, treats resource exchange as coming directly from consumer biomass,

as though resource production were an additional source of mortality, rather than as an

explicit transformation of resources. As a result, the overall strength of production for each

species is a tunable parameter and, if it exceeds the total consumption of a single species, then

the feasible equilibrium can be unstable [6]. In our model, the strength of production is deter-

mined by the resource consumption that is not used for growth, and so cannot exceed the total

consumption for each species. Nevertheless, we find that unstable equilibria are still possible

due to the mismatch between resource depletion and consumer growth, rather than from the

strength of resource production overwhelming resource depletion, as in [5].

Our results can also be seen as a multi-species generalization of classic stability results for

species competing for two resources (termed contemporary niche theory) where instability

occurs because of the difference between impact and sensitivity vectors [23, 55–57]. In con-

temporary niche theory, there are three criteria which must be satisfied for a stable equilibrium

to exist. First, the species zero net growth isoclines (ZNGIs) must intersect. In our model, this

is always true, since each species is limited by a single resource, so it is straightforward to find

resource abundances where every consumers’ growth is zero. Second, each species must

impact the resources that it finds most limiting more strongly than it impacts other resources.

Our second stability criteria is a direct and quantitative generalization of this result—if each

species more strongly regulates the resource it requires for growth than it affects all other

resources in the system, then the equilibrium is stable. Third, the supply point must lie above

the ZNGIs for the coexisting species. In our theory, we ensure that this criteria is satisfied by

requiring the equilibrium to be feasible through Eq (3). We also show in the Feasibility Analy-

sis section of the S1 Appendix that our second stability criterion and the feasibility criteria are

closely related—as species more strongly regulate their most limiting resource, the likelihoods

of both stability and feasibility are increased. Our theory can be interpreted as an extension of
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prior work applying contemporary niche theory to competition for essential nutrients to

diverse microbial communities [23, 58].

By contrast, there is no clear analog of our first stability criterion for low diversity ecosys-

tems. It can, however, be interpreted as requiring perfectly balanced pairwise competition

between the consumers, even though the model itself is not built on pairwise competition coef-

ficients. The phenomenon that reciprocity promotes stability has been found in other theoreti-

cal studies of microbial communities [6], but also in a diverse set of other fields, from the

evolution of cooperation [59, 60] to the exchange of food in early societies [35, 61]. In addition

to our symmetry condition, we showed numerically that other consumption and production

networks that generate B matrices whose eigenvalues are purely real also prevent instability at

low consumer abundances. Although we lack a precise understanding of how these network

structures promote stability, we describe intuitively how the imaginary parts of the eigenvalues

of B affect the spectrum of the Jacobian in the Stability Criteria section of the S1 Appendix. A

more complete mathematical understanding of the connection between the spectrum of the

interaction matrix B and the spectrum of the Jacobian for the entire community would give us

a deeper understanding of why certain modes of resource exchange are stabilizing.

There are a number of other important directions for future work. Previous simulations of

consumer-resource dynamics governed by Liebig’s law have found that large numbers of spe-

cies can coexist in oscillatory or chaotic dynamics [46–48], so it would be instructive to better

understand the behavior of our model away from equilibrium. Similarly, we have only

observed a single unique equilibrium in our models, but cross-feeding can generate multiple

equilibria [62]. Our stability criteria may still be able to delineate which of these multiple equi-

libria are attracting. It would also be interesting to rigorously understand the stability proper-

ties of an ecosystem where consumers grow on many different substitutable resources at

variable efficiencies but still leak resources back into the environment through cross-feeding

[7]. Last, the model we have considered here is completely deterministic, and so the mismatch

between resource depletion and consumer growth resulted from a specific modeling choice. In

a stochastic model, depletion and growth may be decoupled through only the differing fluctua-

tions that the consumers and resources undergo, potentially yielding the same stability transi-

tion we have observed in our model. More generally, the combination of stochastic drift and

the biological mechanisms we have explored here could produce interesting macroecological

patterns [63, 64].

Because our consumer-resource model connects coexistence patterns to empirically acces-

sible quantities, our theoretical results can be tested experimentally. One direct test of our the-

ory would be to design small microbial communities with experimentally-characterized

interaction networks [11, 65]. Then, an experimentalist can manipulate, for example, the

degree to which the interaction network is reciprocal, and observe whether or not coexistence

if favored. Conversely, our theoretical results suggest an interpretation of coexistence out-

comes when the exact consumption and production networks are unknown. When an experi-

mentalist reduces the resource inflow rates in a serial dilution experiment, the resulting

coexistence (or lack thereof) suggests which types of consumption and production networks

may be present. This relationship between the interaction network and the eventual stability

properties of the entire community could also potentially be used to constrain the space of pos-

sible interactions when inferring these parameters from microbial abundance data [66–69].

Because we showed numerically that our analysis applies to a variety of resource inflow pro-

files, our theory may also delineate the boundaries of stable coexistence in recent experiments

where only one nutrient is externally supplied [9, 10, 70]. For example, recent work has shown

experimentally how the resource production network explains the variation in species richness

as more resources are externally supplied [10]. Our theory suggests that, if this metabolite
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production network has eigenvalues with small imaginary parts, the community will be better

protected from resource scarcity. Future work should seek to further clarify how the relation-

ship between coexistence outcomes and resource inflow changes depending on network struc-

ture. This line of research is especially important because of the difficulty in obtaining well-

resolved and quantitative consumer-resource networks for diverse microbial communities.

Supporting information

S1 Appendix. Supplementary proofs, calculations and simulation results. We provide

proofs of the main results, additional numerical simulations and descriptions of all of the

matrix parameterizations.
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