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Abstract N6-methyladenosine (m6A) is one of the most abundant modifications on mRNAs and

plays important roles in various biological processes. The formation of m6A is catalyzed by a

methyltransferase complex (MTC) containing a key factor methyltransferase-like 3 (Mettl3). How-

ever, the functions of Mettl3 and m6A modification in hepatic lipid and glucose metabolism remain

unclear. Here, we showed that both Mettl3 expression and m6A level increased in the livers of mice

with high fat diet (HFD)-induced metabolic disorders. Overexpression of Mettl3 aggravated HFD-

induced liver metabolic disorders and insulin resistance. In contrast, hepatocyte-specific knockout of

Mettl3 significantly alleviated HFD-induced metabolic disorders by slowing weight gain, reducing

lipid accumulation, and improving insulin sensitivity. Mechanistically, Mettl3 depletion-mediated

m6A loss caused extended RNA half-lives of metabolism-related genes, which consequently pro-

tected mice against HFD-induced metabolic syndrome. Our findings reveal a critical role of

Mettl3-mediated m6A in HFD-induced metabolic disorders and hepatogenous diabetes.
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Introduction

As the most prevalent mRNA modification in eukaryotes [1],
N6-methyladenosine (m6A) is catalyzed by a methyltransferase

complex (MTC). MTC is composed of methyltransferase-like 3
(Mettl3), methyltransferase-like 14 (Mettl14), and wilms’
tumor 1-associating protein (Wtap), among which Mettl3

functions as the catalytic subunit [2,3]. m6A methylation can
be reversed by at least two ‘eraser’ enzymes, fat-mass and
obesity-associated protein (Fto) and a-ketoglutarate-
dependent dioxygenase alkB homolog 5 (Alkbh5) [4,5]. And

m6A is mainly recognized by YTH domain-containing family
‘reader’ proteins (Ythdfs) [6–10]. As the most abundant and
reversible modification on mRNAs, m6A has been proved to

play key roles in all fundamental aspects of mRNA metabo-
lism, such as RNA stability [6], RNA splicing [8], and mRNA
translation efficiency [7,9–11]. Many essential biological pro-

cesses are known to be regulated by m6A, including cell fate
determination [12,13], embryonic development [13–15], and
tumorigenesis [16].

As the major site of fatty acid disposal, the main source of
endogenous glucose production, and the primary site of insulin
degradation, liver plays a central role in the regulation of lipid
and glucose metabolism [17]. Unhealthy diet habits can result

in liver metabolic disorders, followed by whole-body insulin
resistance [17]. Several studies have revealed that m6A modu-
lation of mRNA expression is involved in obesity [18] and liver

metabolism [19,20], and plays an important role in the mainte-
nance and progression of liver diseases [21–23]. For instance, a
significant increase in FTO mRNA and protein levels has been

found in the liver of non-alcoholic fatty liver disease (NAFLD)
patients [24]. Elevated levels of Fto mRNA and protein can
also be found in a NAFLD rat, which was involved in oxida-
tive stress and lipid deposition [25]. Knockdown of Mettl3 or

Ythdf2 in vitro increased the expression and stability of perox-
isome proliferator activator receptor a (Ppara) mRNA, and
then led to reduced accumulation of lipids [20]. A recent study

showed that Mettl3 inhibited hepatic insulin sensitivity via
m6A located in fatty acid synthase (Fasn) mRNA and pro-
moted fatty acid metabolism [26]. All these studies indicated

the important roles of m6A in liver metabolic diseases. How-
ever, the underlying mechanisms and pathways by which
Mettl3-mediated m6A methylation affects liver metabolism

are still not fully elucidated.
In the present work, we demonstrated that the m6A methyl-

transferase Mettl3 and m6A level were consistently up-
regulated in the liver of mice after feeding high fat diet

(HFD). Adeno-associated virus (AAV)-mediated liver-specific
overexpression of Mettl3 aggravated HFD-induced liver meta-
bolic disorders and insulin resistance. In turn, we specifically

inactivated Mettl3 in the mouse liver using Alb-Cre-mediated
Mettl3 conditional knockout (Mettl3cKO) model and con-
firmed that Mettl3 depletion protected mice against HFD-

induced liver metabolic disorders and insulin resistance. Fur-
thermore, mechanism analysis suggested that Mettl3 deletion
altered the expression pattern of hepatic lipid and glucose
metabolic genes, and particularly extended the mRNA half-

life of an important regulator of liver metabolism, Lpin1.
Together, these findings reveal the critical role of Mettl3-
mediated m6A modification in HFD-induced liver metabolic
disorders and hepatogenous diabetes, supporting that m6A
could be used as a potential therapeutic and diagnostic target

for hepatic diseases.

Results

Mettl3 expression and m6A level increased in HFD mice

To explore the potential role of m6A in the regulation of lipid
and glucose metabolism of HFD-induced obese mice, we first
measured the relative mRNA levels of m6A ‘writers’, ‘erasers’,

and ‘readers’, including Mettl3, Mettl14, Wtap, Fto, Alkbh5,
Ythdf1, Ythdf2, Ythdf3, Ythdc1 (YTH domain-containing pro-
tein 1), and Ythdc2, in mouse liver after HFD (60 kcal% fat

diet) for 20 weeks. The mRNA expression of m6A methyltrans-
ferases significantly increased in HFD mouse liver, while there
was no difference in demethylases or m6A binding proteins

(Figure 1A). Given Mettl3 is the key ‘writer’ of m6A modifica-
tion [2,3], we further confirmed the significantly increased pro-
tein level of Mettl3 by Western blotting and

immunohistochemistry assay (Figure 1B and C).
To further investigate the underlying mechanisms of

Mettl3-mediated m6A methylation in HFD-induced metabolic
disorder, we performed RNA sequencing (RNA-seq) and m6A

individual-nucleotide-resolution cross-linking and immuno-
precipitation sequencing (miCLIP-seq) using mRNAs
extracted from the livers of normal diet (ND) and HFD mice

(Figure S1A). Consistent with previous reports [6,27], the m6A
sites on liver mRNAs were also enriched in the regions with
RRACH motif (Figure S1B) and tended to occur near stop

codons within CDS and in 30 UTRs (Figure S1C). More
importantly, we detected increased m6A sites in HFD mouse
liver (Figure 1D). To further validate the presence of m6A
modifications on the mRNAs of HFD mouse liver, we applied

ultra-performance liquid chromatography–triple quadrupole
mass spectrometry coupled with multiple-reaction monitoring
(UPLC–MRM–MS/MS) analysis to quantify the m6A con-

tents on mRNAs, and observed increased mRNA m6A modi-
fications in HFD mouse liver (Figure 1E), which was
consistent with the higher expression of Mettl3. In addition,

16,686 m6A sites were newly induced on mRNAs of HFD
mouse liver corresponding to 1860 methylated genes (Fig-
ure S1D and Table S1). The proportion of unique m6A sites

and overlapping m6A sites with higher level in HFD mouse
liver also confirmed the increased m6A level on HFD mouse
liver mRNAs (Figure S1E). To investigate the association of
m6A with gene expression, we analyzed the RNA-seq data

from ND and HFD mouse liver samples and identified 1913
differentially expressed mRNAs in total with 714 up-
regulated genes and 1199 down-regulated genes (RPKM > 1).

Meanwhile, we combined the gene expression data with m6A
levels, and discovered 514 genes with increased m6A level in
HFD mouse liver. Since it has been reported that the presence

of m6A sites facilitated mRNA degradation [6], we mainly
focused on the 409 genes with both hyper m6A level and
down-regulated expression in HFD mouse liver (Figure 1F),
as this group of transcripts was likely to be stabilized after

m6A depletion. Gene Ontology (GO) analysis revealed that



Figure 1 Mettl3 expression and m6A level increased in HFD mice

A. qRT-PCR analysis of the expression of Mettl3, Mettl14, Wtap, Fto, Alkbh5, Ythdf1, Ythdf2, Ythdf3, Ythdc1, and Ythdc2 in the livers of

ND and HFD mice. Ubc served as the internal control. n = 5. B. Western blotting detection and quantification of Mettl3 protein

expression in the livers of ND and HFD mice. Actin was used as the loading control. n = 3. C. Immunostaining of Mettl3 (green) in the

livers of ND and HFD mice. Scale bar, 20 lm. D. Distribution of m6A sites along the 50 UTR, CDS, and 30 UTR regions of mRNAs from

ND and HFD mouse livers. E. UPLC-MRM-MS/MS showing the percentage of m6A/A in mRNAs of ND and HFD mouse livers. n= 4.

F. Distribution of genes with significant changes in both m6A level (hyper- or hypo-) and gene expression (up- or down-) under HFD

condition. G. Significantly enriched (P < 0.05) GO (biological process) categories of genes with down-regulated expression and higher

m6A level in HFD mouse liver. HFD mice were fed with a 60 kcal% fat diet for 20 weeks. Data are presented as mean ± SEM. Significant

difference was determined by unpaired student’s t-test (*, P < 0.05; n.s., no significance). ND, normal diet; HFD, high fat diet;

UPLC–MRM–MS/MS, ultra-performance liquid chromatography–triple quadrupole mass spectrometry coupled with multiple-reaction

monitoring; m6A, N6-methyladenosine; GO, gene ontology. Raw data are displayed in Table S2.
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most of these genes were enriched in lipid metabolic processes,
including acylglycerol metabolic process and fatty acid meta-
bolic process. Glycometabolism related pathways, such as reg-

ulation of carbohydrate catabolic process, were also enriched
(Figure 1G). Taken together, m6A level and its methyltrans-
ferase Mettl3 were consistently up-regulated in the liver of

HFD mice, indicating that Mettl3-mediated m6A methylation
might be involved in metabolic disorders induced by HFD.
Overexpression of Mettl3 aggravated liver metabolic disorders

and hepatogenous diabetes

To confirm the relationship between high expression level of
Mettl3 and HFD-induced metabolic disorders, we specifically
overexpressed Mettl3 in mouse liver by hepatocyte-targeted

AAV8 [28] and hepatocyte-specific promoter (LP1) [29] (Fig-
ure S2A). Living imaging reconfirmed the specifically
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expressed luciferase in mouse liver at 4 weeks after AAV retro
orbital injection, which demonstrated that Mettl3 was also
specifically expressed in liver (Figure S2B). Moreover, qRT-

PCR and Western blotting revealed the successful overexpres-
sion of Mettl3 in liver (Figure S2C and D).

We tracked the changes in mouse body weight and meta-

bolic parameters in response to HFD. Compared with mutant
Mettl3 conditional overexpression mice (Mettl3cOE-Mut,
served as a control), Mettl3 conditional overexpression mice

(Mettl3cOE) showed more increase in body weight during
HFD (Figure 2A), due to more subcutaneous fat in Mettl3cOE

mice (Figure S2E). The ratio of liver weight to body weight, as
well as Oil Red O (ORO) staining, further revealed that Met-

tl3cOE mice presented more serious hepatic steatosis (Fig-
ure 2B–D). Moreover, compared with Mettl3cOE-Mut mice,
serum total cholesterol (TC) of Mettl3cOE mice also increased,

while there was no significant change in total triglyceride (TG)
(Figure 2E and F).

Although there was no significant change in serum insulin

level (Figure 2G), glucose tolerance test (GTT) showed that
Mettl3cOE mice presented significantly worse glucose tolerance
than Mettl3cOE-Mut mice in HFD condition (Figure 2H and

I). Besides, insulin tolerance test (ITT) also revealed that insu-
lin sensitivity of Mettl3cOE mice was also notably worse than
Mettl3cOE-Mut mice in HFD condition (Figure 2J and K).
Together, these results indicate that Mettl3 overexpression

can aggravate liver metabolic disorders and hepatogenous dia-
betes, suggesting that high level of Mettl3 may be a risk factor
for HFD-induced metabolic syndrome.

Mettl3 ablation protected mice against HFD-induced metabolic

syndrome

Considering that overexpression of Mettl3 can aggravate liver
metabolic disorders and hepatogenous diabetes induced by
HFD, we supposed that Mettl3 ablation in liver could resist

HFD-induced metabolic syndrome. To verify this hypothesis,
we generated Mettl3 conditional knockout mice (Mettl3cKO)
by crossing Alb-Cre and Mettl3flox/flox mice (Figure S3A).
Cre enzyme were specifically expressed in liver and produced

Mettl3 transcripts without exons 2–4. Moreover, Cre enzyme
didn’t leak into other tissues (Figure S3B). qRT-PCR, Western
blotting, and immunohistochemistry assay together confirmed

the successful deletion of Mettl3 in liver at both mRNA and
protein levels (Figure S3C–E).

As expected, the body weight of Mettl3cKO mice increased

more slowly than Mettl3Ctrl (Figure 3A), and they also had less
subcutaneous fat than Mettl3Ctrl after HFD for 20 weeks (Fig-
ure S3F). HFD-induced hepatic steatosis was slighter in Met-
tl3cKO mouse liver, which was evaluated by the ratio of liver

weight to body weight and ORO staining (Figure 3B–D).
However, in the late stage of HFD, Mettl3 depletion seemed
could not confront the lipid accumulation significantly. We

speculated that in the late stage of HFD, lipid accumulation
may have reached the limit of liver. However, more numerous
and larger vacuoles in Mettl3Ctrl mouse liver indicated that the

damage of Mettl3Ctrl mouse liver was more serious than Met-
tl3cKO (Figure 3E). In addition, although there was no signif-
icant change in serum TG, serum TC of Mettl3cKO mice

decreased in HFD condition, consistent with the phenotype
of Mettl3cOE mice (Figure 3F and G).
It’s worth noting that serum insulin level significantly
decreased in Mettl3cKO mice in HFD condition (Figure 3H).
Meanwhile, consistent with the glucometabolic phenotype of

Mettl3cOE mice, Mettl3cKO mice presented significantly better
glucose tolerance (Figure 3I and J) and insulin sensitivity (Fig-
ure 3K and L) than Mettl3Ctrl in HFD condition. Taken

together, these results suggest that Mettl3 depletion in liver
could protect mice against HFD-induced metabolic syndrome,
indicating that Mettl3 might be a potential therapeutic target

for liver metabolic diseases.

Mettl3 ablation altered the expression pattern of lipid and

glucose metabolic genes

To further explore the underlying mechanisms of Mettl3 deple-
tion in protecting liver from metabolic syndrome induced by
HFD, we analyzed RNA-seq and miCLIP-seq data generated

from livers of Mettl3Ctrl and Mettl3cKO mice after 20 weeks of
HFD (termed as Mettl3Ctrl(HFD) and Mettl3cKO(HFD),
respectively). Similarly, the m6A sites on Mettl3cKO(HFD)

mouse liver mRNAs were enriched in the regions with
RRACH motif (Figure S4A), and tended to occur near stop
codons within CDS and in 30 UTRs of mRNAs (Figure S4B).

Within all the methylated mRNAs, around 35.1% of methy-
lated mRNAs were found to contain one m6A site (Figure S4C
and Table S1). Since HFD-induced Mettl3 up-regulation and
Mettl3 knockout genetic manipulation had opposite effects

on m6A level, there was no obvious difference in the number
of m6A sites or methylated genes between Mettl3Ctrl(HFD)
and Mettl3cKO(HFD) mouse livers (Figure 4A). Meanwhile,

the m6A sites across the entire gene bodies of Mettl3Ctrl(HFD)
and Mettl3cKO(HFD) mouse livers also displayed similar dis-
tribution (Figure 4B). However, it seemed that HFD-induced

Mettl3 up-regulation played a more dominant role, because
the proportion of unique m6A sites and overlapping m6A sites
with higher level in Mettl3cKO mouse liver was greater than

that in Mettl3Ctrl in HFD condition (Figure 4C). Among the
hypo-methylated genes, 212 genes were up-regulated while
116 genes were down-regulated in Mettl3cKO(HFD) mouse
liver (Figure 4D). Given that m6A was mainly reported to play

a negative role in mRNA stability regulation, we focused on
the m6A-containing up-regulated genes in Mettl3cKO(HFD)
mouse liver, performed GO analysis, and found that these

genes were enriched in insulin response and lipid metabolic
related processes (Figure 4E).

qRT-PCR further validated the expression of these candi-

date genes which were down-regulated in Mettl3Ctrl(HFD)
mouse liver (compared with Mettl3Ctrl(ND)), such as Lpin1,
Pck1, G6pc, Lpin2, Ppara, and Hc. Among them, Lpin1 and
Pck1 were up-regulated in Mettl3cKO(HFD) mouse liver (com-

pared with Mettl3Ctrl(HFD)) (Figure 4F). mRNA stability
assay revealed that most of these candidate genes were more
stable in Mettl3cKO mouse liver due to Mettl3 depletion-

induced m6A loss (Figure 4G). Among them, Lpin1 has been
reported to play an important role in liver lipid metabolism
and insulin resistance [30–33], Furthermore, Lpin1 protein

decreased in Mettl3Ctrl(HFD) mouse liver (compared with
Mettl3Ctrl(ND)) while increased in Mettl3cKO(HFD) mouse
liver (compared with Mettl3Ctrl(HFD)). Its expression pattern

was contrary to that of Mettl3 protein (Figure 4H). Collec-
tively, these findings demonstrate that Mettl3 ablation stabi-



Figure 2 Overexpression of Mettl3 aggravated liver metabolic disorders and hepatogenous diabetes

A. Body weight gain curve of Mettl3cOE-Mut and Mettl3cOE mice during 7 weeks of HFD treatment. Gain of body weight (g) = final body

weight (g) – initial body weight (g). n = 10. B. The ratio of liver weight to body weight for Mettl3cOE-Mut and Mettl3cOE mice after

7 weeks of HFD treatment. n= 5. C. Representative photomicrographs of ORO stained livers of Mettl3cOE-Mut and Mettl3cOE mice after

7 weeks of HFD treatment. Scale bar, 50 lm. D. The proportion of ORO stained area in Mettl3cOE-Mut and Mettl3cOE mouse livers after

7 weeks of HFD treatment. n = 3. E.–G. Serum TG (E), TC (F), and insulin (G) contents of Mettl3cOE-Mut and Mettl3cOE mice after

7 weeks of HFD treatment. n= 10. H. Blood glucose curve of Mettl3cOE-Mut and Mettl3cOE mice after 7 weeks of HFD treatment during

GTT. n = 8. I. AUC statistics for (H). n = 8. J. Blood glucose curve of Mettl3cOE-Mut and Mettl3cOE mice after 8 weeks of HFD

treatment during ITT. n = 8. K. AUC statistics for (J). n = 8. Data are presented as mean ± SEM. Significant difference was determined

by unpaired student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; n.s., no significance). Mettl3cOE-Mut, mutant

Mettl3 (DPPW ? APPA) conditional overexpression mice, served as a control; Mettl3cOE, Mettl3 conditional overexpression mice; ORO,

Oil Red O; TG, triglyceride; TC, total cholesterol; GTT, glucose tolerate test; ITT, insulin tolerate test; AUC, area under the curve. Raw

data are displayed in Table S2.
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Figure 3 Mettl3 ablation protected mice against HFD-induced metabolic syndrome

A. Body weight gain curve of Mettl3Ctrl and Mettl3cKO mice during 20 weeks of HFD treatment. n = 10. B. The ratio of liver weight to

body weight for Mettl3Ctrl and Mettl3cKO mice after 20 weeks of HFD treatment. n = 5. C. Representative photomicrographs of ORO

stained livers of Mettl3Ctrl and Mettl3cKO mice after 7 weeks and 20 weeks of HFD treatment. Scale bar, 50 lm. D. The proportion of

ORO stained area in Mettl3Ctrl and Mettl3cKO mouse livers after 7 weeks and 20 weeks of HFD treatment. n = 3. E. The proportion of

vacuole area in Mettl3Ctrl and Mettl3cKO mouse livers after 7 weeks and 20 weeks of HFD treatment. n= 3. F.–H. Serum TG (F), TC (G),

and insulin (H) contents of Mettl3Ctrl and Mettl3cKO mice after 20 weeks of HFD treatment. n = 8. I. Blood glucose curve of Mettl3Ctrl

and Mettl3cKO mice after 20 weeks of HFD treatment during GTT. n = 10. J. AUC statistics for (I). n = 10. K. Blood glucose curve of

Mettl3Ctrl and Mettl3cKO mice after 21 weeks of HFD treatment during ITT. n = 10. L. AUC statistics for (K). n = 10. Data are

presented as mean ± SEM. Significant difference was determined by unpaired student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001;

****, P < 0.0001; n.s., no significance). Mettl3Ctrl, Mettl3flox/flox mice; Mettl3cKO, Mettl3flox/flox;Alb-Cre mice. Raw data are displayed in

Table S2.

376 Genomics Proteomics Bioinformatics 18 (2020) 371–383



Li Y et al /Mettl3 Function in Liver Metabolic Disorders 377



3

378 Genomics Proteomics Bioinformatics 18 (2020) 371–383
lized key lipid and glucose metabolic genes, especially
improved the stability of Lpin1 mRNA through modulating
m6A levels.

Discussion

As the most prevalent mRNA modification in eukaryotes [1],
m6A involves in many essential biological processes, including
cell fate determination [12,13], embryonic development [13–

15], and tumorigenesis [16]. Recent studies have demonstrated
that m6A modulation of mRNA expression plays important
roles in adipogenesis [18], hepatic lipid metabolism [20], obe-
sity [21], and other metabolic diseases, such as NAFLD and

type 2 diabetes (T2D) [21–26]. However, the underlying mech-
anisms and pathways by which Mettl3-mediated m6A modifi-
cation regulates liver metabolism remain unclear.

A recent study reported that Mettl3 inhibited hepatic insu-
lin sensitivity via m6A located in Fasn mRNA and promoted
fatty acid metabolism [26]. In our current work, we present

several findings demonstrating the significance of m6A in
HFD-induced liver metabolic disorders: 1) The major m6A
methyltransferase Mettl3 and m6A level were consistently ele-
vated in the liver of mouse after feeding HFD. 2) AAV8-

mediated liver conditional overexpression of Mettl3 aggra-
vated liver and whole-body metabolic disorders, including liver
lipid accumulation, abnormal serum TC and obesity. More-

over, Mettl3cOE mice presented worse glucose tolerance and
insulin sensitivity compared with Mettl3cOE-Mut mice (served
as a control). 3) Mettl3cKO mouse model generated by crossing

Alb-Cre and Mettl3flox/flox mice confirmed that Mettl3 ablation
protected mice against HFD-induced liver metabolic disorders
and hepatogenous diabetes. 4) Mettl3 ablation stabilized key

genes involved in liver lipid and glucose metabolism, and par-
ticularly elevated the mRNA stability of an important regula-
tor of hepatic lipid and glucose metabolism, Lpin1.
Collectively, our findings demonstrate the critical roles for

Mettl3-mediated m6A modification in HFD-induced liver
metabolic disorders and hepatogenous diabetes, supporting
that m6A might be a potential therapeutic and diagnostic tar-

get for hepatic diseases.
Previous studies have shown that METTL3 was elevated in

peripheral venous blood and livers of T2D patients [26,34],
Figure 4 Mettl3 ablation altered the expression pattern of lipid and g

A. Venn diagram depicting the number of unique and overlapping m6A

mice, as well as the number of unique and overlapping methylated gene

represent the counts of m6A sites or methylated genes in each group.

regions of liver mRNAs from Mettl3Ctrl(HFD) and Mettl3cKO(HFD)

(only) and overlapping m6A sites with higher level (up) in the livers o

representing the relationships between altered genes (up-regulated or do

Numbers represent the counts of genes in each group. E. GO (biolo

expression and lower m6A level in the livers of Mettl3cKO(HFD) mice.

All of these genes were down-regulated in Mettl3Ctrl(HFD) mouse live

up-regulated in Mettl3cKO(HFD) mouse liver (compare with Mettl3Ctrl

lives of Pck1, G6pc, Lpin2, Ppara, Hc, and Lpin1. mRNA levels w

Actinomycin D treatment. Ubc served as the internal control. n= 3.H.

protein expression in liver extracts fromMettl3Ctrl(ND), Mettl3Ctrl(HFD

n = 3. All mouse liver samples were prepared after 20 weeks of H

difference was determined by unpaired student’s t-test (*, P< 0.05; **,

Raw data were displayed in Table S2.
while the reason for METTL3 increase was considered as a
result of FTO-induced decrease in m6A. High-glucose stimula-
tion elevated FTO expression, which led m6A to decrease, as a

response, METTL3 might increase to maintain the normal
m6A level [34]. In the present study, we also detected elevated
Mettl3 in the liver of mice after feeding HFD; however, the

expression of Fto didn’t show a significant increase. Therefore,
we highly speculate that the up-regulation of Mettl3 in HFD
mouse liver may result from other signal pathways.

Several studies showed that Fto-mediated m6A demethy-
lation positively regulated adipogenesis. For instance, m6A
demethylation promoted adipogenesis in porcine intramuscu-
lar preadipocytes through inhibiting the Wnt/b-catenin sig-

nal pathway [35], increased adipogenesis in mouse
embryonic fibroblasts and primary preadipocytes by regulat-
ing mitotic clonal expansion [36], and controlled adipogene-

sis through the regulation of cell cycle in an Ythdf2-m6A-
dependent manner [37]. Moreover, consistent with these
in vitro studies, Fto overexpression induced adipocyte hyper-

plasia in HFD mice [36]. Conversely, Mettl3 negatively cor-
related with adipogenesis in porcine adipocytes through m6A
methylation [38], which seems to conflict with the weight

loss of Mettl3cKO mice after HFD as we observed. However,
obesity is caused by many factors. In this study, it was the
result of initial liver metabolic disorders and hepatogenous
diabetes, rather than adipogenesis or proliferation of preadi-

pocytes. Meanwhile, the lipid accumulation in hepatocytes
was a comprehensive result of liver lipid synthesis, catabio-
sis, and transportation. Mettl3 was likely to be involved in

all these processes and eventually increased lipid accumula-
tion in HFD mouse liver.

It is interesting to note that lipid accumulation unexpect-

edly increased in Mettl3cKO mouse liver in ND condition (data
not shown), contrary to the corresponding phenotype in HFD
condition. By high- throughput RNA-seq and miCLIP-seq, we

compared the hypo-methylated up-regulated genes in Met-
tl3cKO mouse liver under both ND and HFD conditions. We
found that Mettl3-targeted genes were enriched in sterol
biosynthetic process in ND condition, while in several catabo-

lism pathways in HFD condition, such as fatty acid catabolic
process and positive regulation of fatty acid oxidation. These
findings indicate that Mettl3 might regulate different subsets
lucose metabolic genes

sites on liver mRNAs fromMettl3Ctrl(HFD) and Mettl3cKO(HFD)

s in Mettl3Ctrl(HFD) and Mettl3cKO(HFD) mouse livers. Numbers

B. Distribution of m6A sites along the 5ʹ UTR, CDS, and 3ʹ UTR

mice. C. Donut chart showing the proportion of unique m6A sites

f Mettl3Ctrl(HFD) and Mettl3cKO(HFD) mice. D. Venn diagram

wn-regulated in Mettl3cKO(HFD) mice liver) and lower m6A level.

gical process) categories (P < 0.05) of genes with up-regulated

F. qRT-PCR validation of liver lipid and glucose metabolic genes.

r (compare with Mettl3Ctrl(ND)), while only Lpin1 and Pck1 were

(HFD)). Ubc served as the internal control. n = 5. G. mRNA half-

ere measured by qRT-PCR at the indicated time points after

Western blotting detection and quantification of Lpin1 and Mettl3

), and Mettl3cKO(HFD) mice. Actin served as the loading control.

FD treatment. Data are presented as mean ± SEM. Significant

P< 0.01; ***, P< 0.001; ****, P< 0.0001; n.s., no significance).
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of genes in different diet conditions and serve as a bidirectional
switch in lipid metabolism.

Taken together, we found that Mettl3 served as an essential

regulator of liver lipid and glucose metabolism. It could pro-
tect mice from metabolic disorders and hepatogenous diabetes
induced by HFD. These results will promote Mettl3-mediated

m6A as a target for hepatic diseases’ therapy and diagnosis.

Materials and methods

Mice

The mice used in this study were C57BL/6 strains. Specific
pathogen-free-grade mice were purchased from Beijing Charles
River Laboratory Animal Center and housed in the animal

facilities of the Institute of Zoology, Chinese Academy of
Sciences (CAS), China.

Mouse breeding

Mettl3flox/+ mice were generated by the CRISPR-Cas9 system-
assisted homologous recombination as previously described

[39]. C57BL/6 Alb-Cre transgenic mice were purchased from
Shanghai BRL Medicine Company (China). Mettl3flox/flox mice
were obtainedbymatingMettl3flox/+ to eachother.Mettl3flox/+;
Alb-Cre mice were obtained by mating Mettl3flox/flox and Alb-

Cre mice. Mettl3flox/+;Alb-Cre and Mettl3flox/flox mice were
crossed to generateMettl3flox/flox;Alb-Cre (Mettl3cKO) mice.

Genotyping of mice

All mice were genotyped with the tail DNA which was
extracted using the Mouse Direct PCR Kit (Catalog No.

B40015, Bimake, Houston, TX). Briefly, mouse tails were
mixed with 50 ll Buffer L and 1 ll Protease Plus, incubated
at 55 �C for 30 min, and then incubated at 100 �C for 5 min

according to the manufacturer’s instructions.
Two pairs of primers were used to detect the loxp insertions

into the Mettl3 intron 1 (L-loxp-F and L-loxp-R) and intron 4
(R-loxp-F and R-loxp-R). The product sizes were 222 bp and

335 bp for the loxp sequence insertions into Mettl3 intron 1
and intron 4, respectively; whereas the product sizes for WT
were 182 bp and 295 bp, respectively. Cre recombinase was

detected by the Alb-Cre primers, and its PCR product was
350 bp. Heart, liver, spleen, lung, kidney, and brain were
detected to confirm the deletion of Mettl3 with the primers

L-loxp-F and R-loxp-R. The Mettl3 deletion product was
318 bp, whereas the WT product was 2554 bp. All primers
are listed in Table S3.

RNA extraction and qRT-PCR

Total RNA was extracted from the whole liver with TRIzol
Reagent (Catalog No. 15596-018, Invitrogen, Carlsbad, CA),

and then reverse-transcribed into cDNA using the Reverse
Transcription System (Catalog No. A3500, Promega, Madi-
son, WI). qRT-PCR was performed using SYBR Premix Ex

Taq kit (Catalog No. RR420A, TaKaRa, Kyoto, Japan) on
Agilent Stratagene Mx3005P. Relative gene expression was
analyzed based on the 2�DDCt method with Ubc as the internal

control. All primers are listed in Table S3.
Western blotting

Western blotting was performed as described previously [40]
with corresponding antibodies: anti-Mettl3 (1:500; catalog
No. ab195352, Abcam, Cambridge, UK), anti-Lpin1 (1:500;

catalog No. 5195S, Cell Signalling Technology, Bossdun,
MA), anti-b-Actin (1:2000; catalog No. A1978, Sigma, St.
Louis, MO), and anti-a-Tubulin (1:2000; catalog No. T6199,
Sigma).

Immunohistochemistry assay

Immunohistochemistry was performed as described previously

[40]. Anti-Mettl3 and Hoechst 33342 (1:1000; catalog No.
H3570, Invitrogen) were used. Images were obtained using
standard methods with a Leica Aperio VERSA 8 microscope

(Leica Biosystems, Wetzlar, Germany).

Plasmid construction and virus production

pX602 backbone was modified from pX602-AAV-TBG::NLS-
SaCas9-NLS-HA-OLLAS-bGHpA;U6::BsaI-sgRNA, which
was a gift from Feng Zhang (Addgene plasmid #61593;
http://n2t.net/addgene:61593; RRID: Addgene_61593) [41].

LP1 promoter was constructed as previously described [29].
Mettl3 catalytic mutant (395–398 aa, DPPW ? APPA) was
also generated as previous work [42].

AAV8 was generated with HEK-293 cells, purified with
chloroform, titered by qPCR as previously described [43],
and then retro orbital injected into mice at the titer of

2.5 � 1012 vg each mouse.

Oil Red O staining

Liver lipid accumulation was confirmed by Modified Oil Red
O stain kit (Catalog No. G1261, Solarbio, Beijing, China)
according to the manufacturer’s instructions. In brief, frozen
slices of liver (6–10 lm) were fixed in 10% formaldehyde for

10 min, and then washed with 60% isopropanol for 20–30 s.
Liver tissue was stained in Modified Oil Red O solution for
10–15 min. After staining, the slices were washed with 60%

isopropanol and then with H2O. Images were obtained using
standard methods, imaged with a Leica Aperio VERSA 8
microscope, and then analyzed with Image J (1.48v, Bethesda,

MD).

Metabolic measurements

For GTT assay, mice were fasted overnight (for 12 h) and then
injected intraperitoneally (i.p.) with D-glucose (2 g/kg body
weight; catalog No. G8270, Sigma). For ITT assay, mice were
randomly fed and injected i.p. with insulin from porcine pan-

creas (0.75 U/kg body weight; catalog No. I113907, Aladdin,
Shanghai, China). Blood from a tail vein was collected before
injection and at different time points after injection (as indi-

cated in the figures). Glucose concentrations were measured
with AccuCheck blood glucose meter (Roche Diagnostics
Inc., Basel, Switzerland). Serum TG and TC concentrations

were measured with Automatic biochemical analyzer (Catalog
No. Chemray 240, Shenzhen, China). Serum insulin concentra-

http://n2t.net/addgene%3a61593
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tions were measured by the Insulin test ELISA kit (Catalog
No. CEA448Mu, USCN KIT INC., Wuhan, China), and per-
formed as manufacturer’s instructions.

Fat volume measurements

Mice were anesthetized with isoflurane, put into the Quantum

FX system (PE Quantum FX, PerkinElmer, Waltham, MA),
and then scanned with X-ray. Data are analyzed with Analyze
12.0 (AnalyzeDirect, Overland Park, KS).

UPLC–MRM–MS/MS analysis

mRNAs were purified from total RNAs using Dynabeads

mRNA purification kit (Catalog No. 61006, Ambion, Carls-
bad, CA). 200 ng mRNA was mixed with 0.1 U Nuclease P1
from Penicillium citrinum (Catalog No. N8630, Sigma) and
2.0 U Alkaline Phosphatase, Calf Intestinal (Catalog No.

M0290L, New England Biolabs, Ipswich, UK). The final reac-
tion volume was 40 ll. The mixture was incubated at 37 �C
overnight, and then transferred to ultrafiltration tubes (MW

cutoff of 3 kDa; catalog No. OD003C35, Pall, New York,
NY) and centrifuged at 14,000 g at 4 �C for 25 min.

The UPLC–MRM–MS/MS analysis was performed

according to a previous report [44]. The LC was performed
on an ExionLCTM analytical system (Sciex, Framingham,
MA). Chromatographic separation was carried out on an
Acquity UPLC HSS T3 column (1.8 lm, 100 mm � 2.1 mm

ID; catalog No. 186003539, Waters, Milford, MA). The flow
rate was 0.25 ml/min. The mobile phase consisted of methanol
(solvent A) and water containing 0.1% formic acid (solvent B)

in a linear gradient. The gradient program was as follows: 0–
2.5 min, 4% A; 2.5–2.7 min, 4%–31% A; 2.7–6 min, 31% A;
6–6.2 min, 31%–95% A; 6.2–9.3 min, 95% A; 9.3–9.6 min,

95%–4% A; 9.6–14.5 min, 4% A. The column temperature
was maintained at 40 �C. The temperature of the autosampler
was set at 4 �C, and the injection volume was 4 ll.

MS/MS analysis was carried out on a Qtrap 4500 mass
spectrometer (Sciex, Framingham, MA) equipped with Turbo
Ion spray interface operating in positive ESI mode. The instru-
ment was operated with an ion spray voltage of 4.5 kV and a

heater gas temperature of 500 �C. A nebulizer gas (gas 1) of 40
psi, a heater gas (gas 2) of 50 psi, a curtain gas of 20 psi, and a
medium collision gas were used. Mass-dependent parameters,

such as the declustering potential, entrance potential, collision
energy, and collision cell exit potential, were set to the optimal
values obtained by automated optimization. A multiple reac-

tion monitoring (MRM) mode was employed for data acquisi-
tion. m/z 282.1 ? 150.1 was for m6A (collision energy, 12 eV),
and m/z 268.1 ? 136.1 was for A (9 eV). The injection volume

for each sample was 5 ll. The amounts of m6A and A were cal-
ibrated by standard curves. The dwell time for each transition
was 100 ms. Data acquisition was performed with Analyst
1.6.2 software (Applied Biosystems, Waltham, MA).

mRNA stability assay

Primary hepatocytes were plated on 6-well plates with 5 � 105

cells per well and cultured for 2 days. Then cells were treated
with actinomycin-D (10 lg/ml; catalog No. HY-17559, MCE,
Monmouth Junction, NJ) and collected at the indicated time
points (2, 4, and 6 h or 3, 6, and 9 h). Total RNA was extracted
and analyzed by qRT-PCR. Ubc was used as the internal con-
trol. The half-life of gene was calculated as previously described

[40]. Three replicates were conducted for each calculation.

RNA-seq and m
6
A-miCLIP-seq

RNA-seq libraries were directly generated using the KAPA
Stranded mRNA-Seq Kit (Catalog No. KK8401, KAPA
Biosystem, Bossdun, MA) following the manufacturer’s

instructions.
The preparation of miCLIP-seq libraries was carried out fol-

lowing previously reportedmethods [45,46] with somemodifica-

tions. Briefly, mRNAs purified using Dynabeads mRNA
Purification Kit (Catalog No. 61006, Ambion) were fragmented
to a size of around 100 nt with the fragmentation reagent (Cat-
alog No. AM8740, Life Technologies, New York, NY). Then,

2 lg purified mRNAs were mixed with 5 lg anti-m6A antibody
(Catalog No. ab151230, Abcam) in 450 ll immunoprecipitation
buffer (50 mMTris, pH 7.4, 100 mMNaCl, and 0.05%NP-40),

and incubated by rotating at 4 �C for 2 h. The solution was then
transferred to a clear flat-bottom 96-well plate on ice and irradi-
ated three times with 0.15 J/cm2 at 254 nm in aCL-1000Ultravi-

olet Crosslinker (UVP). The mixture was then
immunoprecipitated through incubation with Dynabeads Pro-
tein A (Catalog No. 1001D, Life Technologies) at 4 �C for 2 h.
After extensive washing, on-bead end-repair, and linker liga-

tion, the bound RNA fragments were eluted from the beads
by proteinase K digestion at 55 �C for 1 h. RNAs were isolated
by further phenol–chloroform extraction and ethanol precipita-

tion. Purified RNAs were used to construct the library using
SMARTer smRNA-Seq Kit for Illumina (Catalog No.
635029, Takara) according to the manufacturer’s instructions.

Sequencing was carried out on Illumina HiSeq X-ten platform
with paired-end 150-bp read length.

Analysis of RNA-seq data

All the RNA-seq samples were sequenced by Illumine Hiseq X
ten platform with paired-end 150-bp read length. Clean fastq
reads after quality control by cutadapt and Trimmomatic [48]

were aligned to mouse reference genome (GRCm38/mm10;
Ensembl version 68) via HISAT2 (v2.0.5) aligner [47] with
default settings. Only the reads with mapping quality score

(MAPQ) � 20 were kept for the downstream analysis. Fea-
tureCounts (v1.6.0) [49] was employed to estimate the read
counts per gene according to library type. Differentially

expressed genes were identified by edgeR (v3.18.1) [50] with fold
change (FC)> 1.5 andP<0.05 as thresholds betweenND and
HFD or between Mettl3Ctrl(HFD) and Mettl3cKO(HFD)

groups. In the whole process, we only kept the genes with reads
per kilobase per million mapped reads (RPKM)> 1 as the can-
didate genes for further analysis.GO (biological process) enrich-
ment analysis (P < 0.05) was performed using the R package

clusterProfiler [51].

Analysis of miCLIP-seq data

Read processing

Raw sequencing data quality control was performed by

FastQC. Adaptors were trimmed by fastx_clipper tool from



Li Y et al /Mettl3 Function in Liver Metabolic Disorders 381
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit).
For the forward reads, PCR-amplified reads were removed
by fastq2collapse.pl from CLIP Tool Kit (v1.0.3) [52] via bar-

code sequence. Cutadapt (v1.16) [48] was employed to trim the
polyA-tail. Reverse reads were reversely complemented by
fastx_reverse_complement tool from FASTX-Toolkit and pro-

cessed in the same way. Random barcode removal was accom-
plished by stripBarcode.pl from CLIP Tool Kit (v1.0.3) [52],
and only reads longer than 18 nt were kept by Trimmomatic

(v0.33) [53].

Mapping and mutation calling

Replicate samples were merged and aligned to mouse reference

genome (GRCm38/mm10; Ensembl version 68) by Burrows-
Wheeler Alignment tool (v0.7.17-r1188) [54] with the recom-
mend parameter, –n 0.06 –q 20. Cross-linking-induced muta-

tion sites (CIMS) were detected by the CLIP Tool Kit
(v1.0.3) [52] as reported. For each detected mutation site, the
CIMS software identified the coverages of unique tags (k)
and mutation position (m). In order to reduce false positive

rates, we only kept the sites with an m/k ratio 1%–50% and
mutation sites within the RRACH motif as reliable m6A sites
for subsequent analysis [55]. m6A site annotation was per-

formed by intersectBed from BEDTools (version 2.16.2) [56].
The m6A motif was generated by WebLogo3 [57]. For the dif-
ferential m6A methylation sites, the read counts span per m6A

site were calculated by the BEDTools multicov tool (version
2.16.2) [56] from miCLIP-seq and related RNA-seq data
divided by the library size. The difference of m6A enrichment

values between control and condition samples was determined
by Chi-square test with P < 0.05. Meanwhile, we kept
FC > 1.2 as threshold.

Statistical analysis

All data are expressed as mean ± SEM. GraphPad Prism 8
(GraphPad Software Inc., San Diego, CA) was used for statis-

tical analysis. Unpaired student’s t-test was used to determine
the difference between two groups; a two-way ANOVA analy-
sis followed by Bonferroni multiple-comparison test was used

to determine differences among multiple groups. P < 0.05 was
considered statistically significant.
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