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a b s t r a c t

The amphibian order Caudata, contains several important model
species for biological research. However, there is need to generate
transcriptome data from representative species of the primary
salamander families. Here we describe a de novo reference tran-
scriptome for a terrestrial salamander, Bolitoglossa vallecula (Cau-
data: Plethodontidae). We employed paired-end (PE) illumina RNA
sequencing to assemble a de novo reference transcriptome for B.
vallecula. Assembled transcripts were compared against sequences
from other vertebrate taxa to identify orthologous genes, and
compared to the transcriptome of a close plethodontid relative
(Bolitoglossa ramosi) to identify commonly expressed genes in the
skin. This dataset should be useful to future comparative studies
aimed at understanding important biological process, such as
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dult salamanders of the specie Bolitoglossa vallecula from the Andes region
Colombia.
ing Data
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ptome for a terrestrial salamander, Bolitoglossa vallecula (Caudata:

, further sampling of genes sequences across additional caudate families is
lution has maintained and diversified pathways that contribute to key
sue regeneration, antipredator defenses, and the establishment/mainte-

parative studies aimed at understanding important biological process,
roduction of antimicrobial compounds.
1. Data description

1.1. De novo transcriptome assembly

In this dataset, we present a de novo reference transcriptome of Bolitoglossa vallecula (Caudata:
Plethodontidae) (Fig.1A and B), a terrestrial salamander from the Andes. The genome size of B. vallecula
was estimated to be ~25 Gb using flow cytometry of propidium iodide-stained nuclei. The depth of
sequencing for each sample was approximately 50 million reads (Table 1).
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A reference transcriptomewas assembled to recover transcripts and isoforms from all samples with
a minimal length of 200 nucleotides. The total number of high quality assembled PE reads recovered
was 198,261,418. Using the Trinity assembler, we obtained 257,727 contigs with a GC content of 44.15%
and an average length of 912 bp, with a maximum assembled contig length of 20,962 bp (Table 2).

1.2. Gene annotation

Assembled transcripts were assigned to gene families using translated BLAST (blastx) searches
against the TreeFam database [1]. Transcript annotation for non-coding RNAs (ncRNAs) was accom-
plished by nucleotide BLAST against sequences downloaded from the miRBase [2] and RFam [3] da-
tabases. We further predicted long open reading frames (ORF) using TransDecoder software (version
3.0.0) [4] and searched for additional homologs using protein BLASTagainst the UniRef90 [5] and PFAM
database [6]. Possible contaminants in the transcriptome were filtered using reciprocal best hits of
translated BLAST searches (RBH-Blast) to sequences of bacteria, viruses, single-celled eukaryotes, fungi,
and ribosomal and mitochondrial sequences of salamander's batch downloaded from NCBI database
(ftp://ftp.ncbi.nlm.nih.gov/genomes/). Putative orthologs were identified through RBH-Blast for seven
vertebrate taxa available through the Ensembl database or RefSeq NCBI (Table 3, Supplementary table
1), namely Anolis carolinensis (GCA_000090745.1), Danio rerio (GCA_000002035.3), Gallus gallus
(PRJNA10808), Homo sapiens (PRJNA168), Mus musculus (GCA_000001635.7), Xenopus tropicalis
(PRJNA205740), Latimeria chalumnae (GCA_000225785.1). Finally, we used TransDecoder predict open
reading frames (ORFs) from nucleotide databases of three salamander species: A. mexicanum [7],
Notophtalmus viridescens [8] and B. ramosi [9], then performed protein BLAST searches against pre-
dicted ORFs from our B. vallecula assembly in order to identify homologous sequences in other sala-
manders. These were subsequently filtered to retain candidate orthologs with amino acid identity
exceeding 70%. Annotated genes (TPM � 0.95) were queried to identify Gene Ontology (GO) categories
and signaling pathways using PANTHER Data Base (Version 11.1) [10].

We identified presumptive homologs for 13% (n¼ 33,400) of B. vallecula reference transcripts (Table
3), including 6779 transcripts (non-redundant) that were orthologous to a known human gene.
Additionally, translated ORFs from B. valleculawere queried (protein BLAST) against caudate sequence
data, including the translated nucleotide databases for Ambystoma mexicanum, Notophalmus vir-
idescens and Bolitoglossa ramosi (Table 3, Supplementary table 2). The homology sequences (by percent
of identity) between the Bolitoglossa sp. were higher than other salamanders.
Fig. 1. De novo reference transcriptome of Bolitoglossa vallecula. A. Bolitoglossa vallecula is a salamander that belongs to the family
Plethodontidae and can be found in interior forests ranging in elevation from 1200 to 3000 m above sea level in the Andean
mountains of Colombia. B. Workflow used to perform annotation of the de novo reference transcriptome of B. vallecula and iden-
tification of proteins important for skin protection.

ftp://ftp.ncbi.nlm.nih.gov/genomes/


Table 1
Transcript sequence depth for samples used in this dataset.

Sample # of sequence reads

Limb_1 54,273,832
Limb_2 47,043,730
Skin 53,957,582
Heart 50,546,302

Table 2
Trinity assembly summary statistics of the de novo reference transcriptome for a non-model terrestrial
salamander, Bolitoglossa vallecula (Caudata: Plethodontidae).

PARAMETER NUMBER

Total aligned reads 200,938,561
Total number of high quality assembled paired-end reads 198,261,418
Total trinity transcripts 257,727
Total trinity 'genes' 204,067
Average 'genes' length (pb) 912
Total GC count (%) 44,15
N50
E90N50

2065
3453

Longest contig (bp) 20,962
Shortest contig 200
Number of contigs > 200 bp 201,731
Number of contigs > 1 Kb 49,646
Number of contigs > 5 Kb 6073
Number of contigs > 10 Kb 277
Number of predict ORF (transdecoder) 85,762
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Transcripts that did not return a significant sequence alignment in the BLAST searches described
above (30.3%, 78,077) were queried against the TreeFam database (Fig. 2, Supplementary table 3).
Transcripts without a gene family match in TreeFam (2.8%, n ¼ 7111), were further queried against the
(miRBas and RFam) ncRNA databases (Fig. 2, Supplementary table 4).

Additionally, complete open reading frames (ORFs) were predicted by TransDecoder software for
33% (n ¼ 85,762) of the unannotated transcripts. From these ORF translations, there were 49,721 and
59,325 transcripts recovered fromqueries of UniRef90 and PFAM, respectively (Supplementary table 5).
In total, using this strategy we recovered information for 62,274 (24%) non-redundant transcripts. We
also identified 18 presumptive mitochondrial transcripts for B. vallecula (Supplementary table 6).
Finally, translated nucleotide BLAST (tblastn) searches were also performed against microorganism
sequences to identify potential contaminants (possible microbiote components) of the B. vallecula
transcriptome, 0.73% (n ¼ 1901) of the transcriptome was likely exogenous to B. vallecula
(Supplementary table 6) and of these, 582 transcripts were also present in the B. ramosi transcriptome.

1.3. GO analysis

Gene ontology analyses were conducted using 6641 non-redundant transcripts with defined human
orthologs (Fig. 3, Supplementary table 7). The Panther Database clustered these genes into broad
“cellular” (GO:0009987) and “metabolic process” (GO:0008152) GO terms (Fig. 4). Integrin signaling
(P00034) and CCKR signaling (P06959) (Table 4), were among the most enriched pathways in B.
vallecula skin transcriptome. Pathways associated with innate immunity and injury response include
genes in the PI3 kinase pathway including: C1QB, CDK1 andMAPKAPK3; some of which have also been
previously described in the proteome of salamander skin [11]. Other genes related to injury response
include: SMAD1, TNC, and PTK7 and genes that contribute to EGF receptor signaling (P00018: TGFA,
STAT5A, RAC2), p38 MAPK (P05918: GADD45A, SRF, MAP3K7) and Ras (P04393: RAC2, RAC3, TIAM1)
pathways.



Table 3
Summary of homology searches based on alignment of the B.
vallecula reference transcriptome to several vertebrate species.

Vertebrates Orthologs

Ambystoma mexicanum 16951
Anolis carolinensis 8033
Bolitoglossa ramosi 28528
Danio rerio 7143
Gallus gallus 7472
Homo sapiens 6779
Latimeria chalumnae 8164
Mus musculus 8245
Notophalmus viridescens 16959
Xenopus tropicalis 8296

Fig. 2. Homology assignments recovered for B. vallecula transcripts. The B. vallecula transcriptome was surveyed by Reciprocal Best
Hits of translation BLAST searches (RBH-Blast) to predicted protein or translated databases from seven vertebrate taxa; namely Anolis
carolinensis, Danio rerio, Gallus gallus, Homo sapiens, Mus musculus, Xenopus tropicalis, Latimeria chalumnae. Additional gene family
homologs were assigned to B. vallecula using protein BLAST against the UniRef90 (Suzek et al., 2014) and PFAM domains (Finn et al.
2016) databases.
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1.4. Homology comparisons between Bolitoglossa sp

In a previous study [9], we assembled a reference transcriptome for B. ramosi that included tran-
scripts derived from skin tissue. We compared the B. vallecula and B. ramosi skin datasets to identify
commonly expressed transcripts between the two species. We recovered 4007 orthologous genes that
were expressed in the skin transcriptome of both B. ramosi and B. vallecula (Supplementary table 8). GO
terms associated with immune system responses, including immunomodulation and skin barrier
integrity were identified within this common set of skin transcripts (Table 5). This shared skin tran-
scriptome also included genes associated with response to stimulus (GO: 0050896), such as TXLNA and
TXLNG (antibacterial response proteins).



Fig. 3. Distribution of Gene Ontology (GO) categories for sampled Bolitoglossa vallecula transcripts. Gene ontology Level 2 categories
for Biological process, Molecular function and Cellular component.

Fig. 4. Expression-based contiguity statistics for the B. vallecula de novo reference transcriptome. The assembly has E90N50 of >3kb
(red arrow).

Table 4
Assignment of Bolitoglossa vallecula genes to signaling pathways reported in the Panther pathways database.

Pathway (Panther code) Number of Genes (P-value)

Ubiquitin proteasome pathway (P00060) 51 3.17E-06
General transcription regulation (P00023) 27 1.51E-02
Transcription regulation by bZIP transcription factor (P00055) 37 7.10E-03
Parkinson disease (P00049) 56 9.85E-03
CCKR signaling map (P06959) 92 4.62E-04
Integrin signalling pathway (P00034) 90 4.57E-02
Unclassified (UNCLASSIFIED) 5594 0.00Eþ00
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Table 5
Top 20 most representative immune response gene ontologies identified using homologous genes identified from the skin of
Bolitoglossa vallecula and Bolitoglosa ramosi.

Gene ontology process associated to Immune response Number of genes

activation of immune response (GO:0002253) 101
immune response-activating signal transduction (GO:0002757) 96
immune response-regulating cell surface receptor signaling pathway (GO:0002768) 86
regulation of innate immune response (GO:0045088) 78
negative regulation of immune system process (GO:0002683) 65
positive regulation of innate immune response (GO:0045089) 62
immune response-activating cell surface receptor signaling pathway (GO:0002429) 59
innate immune response-activating signal transduction (GO:0002758) 55
activation of innate immune response (GO:0002218) 55
regulation of immune effector process (GO:0002697) 49
immune response-regulating cell surface receptor signaling pathway involved
in phagocytosis (GO:0002433)

32

negative regulation of immune response (GO:0050777) 20
adaptive immune response (GO:0002250) 18
positive regulation of immune effector process (GO:0002699) 18
regulation of leukocyte mediated immunity (GO:0002703) 18
humoral immune response (GO:0006959) 18
leukocyte activation involved in immune response (GO:0002366) 17
cell activation involved in immune response (GO:0002263) 17
regulation of adaptive immune response (GO:0002819) 17
leukocyte mediated immunity (GO:0002443) 14
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2. Experimental design, materials, and methods

2.1. Animals and surgical procedures

All animals used in this work were collected under the Contract on Genetic Access for scientific
research for non-commercial profit (Contrato de acceso a recursos gen�eticos para la investigaci�on
científica sin inter�es commercial) resources number 118e2015, which was provided by the Ministerio
del Medio Ambiente (Ministry of Environment) of Colombia to the Principal Investigator. The Insti-
tutional Bioethics and Animal Care and Use Committee of the University of Antioquia (Medellín,
Colombia) approved all experimental procedures. Wild caught adult salamanders (7e10 cm snout to
tail length) of the species Bolitoglossa vallecula were collected by the night-time visual encounter
method [12] in the Andes region of Antioquia, Colombia. Specimens were kept in the laboratory under
established protocols for environmental conditions and maintenance [13].

Adult animals (n ¼ 4) were used to surgically collect multiple tissues (limb, skin, heart). Tissues
were collected from animals following euthanasia via immersion in 2% of MS-222 followed by
decapitation. All samples (limb, skin, heart) were stored at�20 �C in Trizol® reagent for oneweek until
total RNA was extracted individually from each tissue using the manufacturer recommended protocol
(Life Technologies).

2.2. Illumina sequencing

The quality of RNA samples was assessed by Macrogen using an Agilent 2100 Bioanalyzer. Only
samples with RNA integrity number (RIN) of eight or greater were used for further procedures.
Sequencing libraries were prepared using the Truseq RNA kit and the resulting library was paired-end
(PE) sequenced (2x 100 bp) using an Illumina Hiseq-2000.

2.3. Transcript abundance (RSEM)

We used the RSEM (RNA-Seq by Expectation Maximization) alignment-based method to obtain
estimates of transcript abundance [14]. Using the RSEM software package, sequence reads were aligned
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to the reconstructed transcriptome with Bowtie2 [15] and alignments were processed to estimate
relative levels of transcription (Transcripts Per Million, TPM).

2.4. Data records

The raw sequence reads have been deposited in the Sequence Read Archive under the accession
number SRP120553. A total of four different animals were used to obtain limb tissues (n ¼ 2 animals in
one pool), heart (n¼ 1 animal) and skin (n¼ 1 animal). Transcriptional estimates generated by RSEMare
deposited in the Gene Expression Omnibus (GEO) under the accession number GSE105232. The Tran-
scriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession
GHME00000000. The version described in this paper is the first version, GHME01000000. The output of
various annotation strategies is included in supplementary tables (Reciprocal Best Hits of translation
BLAST searches to predicted protein or translated databases, protein BLAST against the UniRef90 and
PFAM domains databases, orthologous genes inferred by TreeFam, nucleotide BLAST against ncRNA
databases, protein BLAST of predicted ORFs to translated nucleotide databases of salamanders).

2.5. Genome size (C-value) calculation for B. vallecula

The genome size of B. valleculawas tested to confirm the DNA contained within one copy of a single
genome. The protocol of Hare and Johnston (2011) [16]was follow. Red blood cells (5e10 ml) were isolated
from amputated limbs (N ¼ 3) used for flow cytometry. Samples were suspended in EDTA (pH 7.4, 0.126
mM) and fixed in methanol overnight. Thereafter, the samples were incubated in a solution of RNase (10
mg/ml), Triton X-100 (0.1% v/v), EDTA (0.126 mM) and stained with Propidium iodide (0.1 mg/ml) for 30
minutes. The fluorescence intensity was measured in a BDFACSCanto™ II flow cytometer. Chicken Red
blood cells (DNA QC particles kit, USA) were used as a control. The genome size was calculated by
comparison with the reference control (Gallus gallus) using the calculation of Hare and Johnston (2011):

GSunk¼GSref *
PIfluorUnk
PIfluorRef

where, GSunk¼ genome size unknown, GSref¼ genome size of reference, PI-fluorUnk¼ the fluorescent
intensity of propidium iodide of unknown sample and PI-fluorRef ¼ the fluorescent intensity of pro-
pidium iodide of reference sample.
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