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Abstract: Background and Objectives: This study’s purpose was to examine the benefit of using a tibial
extension in the primary operation of total knee arthroplasty (TKA). This is important because it is not
a common practice to use the extension in a primary TKA, a standard configuration offering sufficient
stability and good long-term survivorship. The following question arises: which situation requires
the use of a standard configuration implant (without a stem) and which situation requires using the
extension? Materials and Methods: The opportunity to use the tibial extension in the primary TKA was
analyzed in correlation to the tibial bone structural properties. Using finite elements (FEs), the virtual
model of the tibial bone was connected to that of the prosthetic implant, with and without a stem,
and its behavior was analyzed during static and dynamic stresses, both in the situation in which
the bone had normal physical properties, as well as in the case in which the bone had diminished
physical properties. Results: The maximum stress and displacement values in the static compression
regime show that adding a stem is only beneficial to structurally altered bone. Compression fatigue
was reduced to almost half in the case of altered bone when adding a stem. Dynamic compression
showed slightly better results with the tibial stem in both healthy and degraded bone. Conclusions: It
was concluded that, if the bone is healthy and has good structural properties, it is not necessary to
use the tibial extension in the primary operation; and if the bone has diminished physical properties,
it is necessary to use the tibial extension at the primary operation, enhancing the stability, fixation,
and implant lifespan.

Keywords: total knee arthroplasty; primary total knee arthroplasty; implant; prosthesis; tibial stem
extension; osteoarthritis; finite element analysis

1. Introduction

Total knee arthroplasty (TKA) is the surgical intervention in which cartilage and
damaged underlying bone of the knee are excised by the surgeon and replaced with a
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prosthesis, consisting of a (1) femoral metal component, (2) polyethylene spacer, and (3)
tibial metal component (Figure 1). This implant restores the mobility of the knee joint [1].
In some cases, to improve the fixation and stability of the implant, at the distal end of the
tibial metal component, an extension with a cylindrical shape, called tibial stem (Figure 1),
is added [2].
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Figure 1. Knee arthroplasty: (A) Tibial bone with prosthesis, laboratory model, (B) Postoperative
radiograph ((1) femoral metal implant, (2) polyethylene spacer, (3) tibial metal implant, and (4) tibial
stem extension).

The most common problems that appear after total knee replacement surgery are wear
of the polyethylene insert and loosening of the femoral and tibial components, or even
their breakage.

The role of a tibial stem in the primary TKA is to enhance the stability of the implant
in complicated cases [3–7]; this is achieved by reducing micromotions at the bone–implant
interface and, as a result, the risk of aseptic loosening, which is one of the main causes of
failure [8,9]. Tibial extensions have different lengths and widths and can be fixed in different
ways, either by full cementation, only proximal cementation, or press-fit, without cement.

Medical practice reveals the following situations of a complicated primary TKA where
a stem can be effective: when the bones have altered physical properties created by various
diseases (osteoporosis, osteoarthritis, and rheumatoid arthritis), when the patients have
extreme varus–valgus deformities [10–13], when there is a pre-existing proximal tibial
defect, when there is a previously performed corrective osteotomy, when there is a large
proximal tibial defect or necrosis, when the bones have malunited fractures, and in the situ-
ation when the patients’ particularities such as age or lifestyle overexert the implant [14,15].
Moreover, there is the case of some unexpected intraoperative events that may require
additional implant fixation [16–18].

It is crucial for the survivorship of the implant to achieve a very good alignment of
the femur, tibia, and patellar components of the implant during the total knee replacement
surgery [19]. This can reduce both the mechanical stress forces on the bearing surfaces
and the shear forces at the bone–cement and bone–prosthesis levels. Moreover, a good
alignment helps to balance the forces transferred to the soft tissues, which are essential for
proper joint mobility.

The presence and configuration of the tibial extension (size and mode of fixation) [20–23]
can determine a phenomenon known as stress shielding, leading to bone loss in the areas
where it is higher. This can further weaken the implant’s fixation, requiring the implantation
of a new prosthesis.
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The need for reoperation, or revision surgery, is about 14–15%, and almost 44% of
them may require more than two supplementary interventions [24–27]. If a tibial extension
is used during the primary knee arthroplasty, then, during the revision surgery, it will have
to be removed and replaced with a new extension. A very large bone tissue resection might
be necessary in the case of a revision when removing the implant, leaving behind a low
bone stock and technical problems for fixing the revision implant [28]. This explains the
excellent long-term results generally obtained when replacing the natural knee with the
orthopedic implant in the standard configuration (without tibial extension) and makes this
design the best option in the primary TKA [29].

The main pathology where a TKA is needed is knee osteoarthritis. There are two forms
of osteoarthritis that have different causes, but they manifest with the same symptoms.

Situation 1: The natural knee joint cartilage was destroyed as a result of a triggering
factor. These triggers can be trauma, obesity, inactivity, inflammation, and genetics. This
is called secondary osteoarthritis. In this case, the physical properties of the tibial bone
are not always affected, behaving similarly to a healthy bone, during the initial stages of
the pathology.

Situation 2: The natural knee joint has been destroyed as a result of normal aging.
Everyone experiences a form of this pathology after a certain age, with some cases being
more severe and others not. This is called primary osteoarthritis, where the bone is usually
affected, and its properties are diminished compared to those of healthy bone.

The behavior over time differs in the two situations, and the medical decision may be
different regarding the choice of the type of implant.

The question arises as to whether or not, according to the quality of the tibial bone,
the tibial extension is necessary.

We hypothesized that primary TKA patients with pre-existing conditions and a modi-
fied bone structure would benefit from adding a modular stem to the tibial implant.

The finite element (FE) method [30,31] has been used extensively in orthopedic biome-
chanics for evaluating the behavior of bone tissue and prosthetic implants. This method
determines the tensile forces present in the bone tissue and establishes the connection with
biological processes, such as bone remodeling [32–34], by creating a mathematical model
that simulates this behavior.

In order to help the decisional medical act, in the present work, a study was performed
by using FE analysis. Therefore, by testing the bone–implant assembly’s behavior, both
in the version without tibial extension and also with tibial extension, both for Situation 1
(healthy bone, with good physical properties) and for Situation 2 (bone with diminished
physical properties), the conclusions are presented.

2. Materials and Methods

The digital model of the knee implant and tibial bone was made, and the bone–implant
virtual assembly was analyzed, both from a kinematic point of view and from a mechanical
strength point of view, by using finite element analysis techniques.

In the process of creating the virtual tibia model (Figure 2C), a digital model was used as
a reference model (Figure 2B), and it was obtained by scanning a real bone (Figure 2A) [35,36].
The virtual model that we obtained had distinct material properties assigned to it, deter-
mined by the level of the bone and considering the following specifications (Figure 3):
the tibia (as most long bones) is formed by a shell of compact bone substance, covering a
cancellous bone substance at the two proximal and distal parts, and having the medullary
canal in the center. These types of bony substances behave differently because they have
different bone mineral densities and properties [37–39].
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After constructing the tibial bone model, the virtual model of the knee prosthesis was 
made, consisting of a polyethylene spacer (Figure 4A), tibial component (Figure 4B), and 
tibial extension (Figure 4C) [2]. 

Figure 2. Conversion of a real tibial bone to a virtual model [35]: (A) Tibial bone, (B) Scanned model
of the tibial bone with guidelines for creating the virtual model, (*) – marks on scanned model and
used as guidelines for creating the virtual model, (C) Virtual tibial bone model during processing.
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The mechanical properties of healthy and unhealthy bones were chosen as average
values extracted from the existing specialty literature [40,41]. Three virtual materials
were modeled in the Solidworks (Dassault Systèmes Solidworks Corp., Vélizy, France)
simulation: cortical bone, healthy cancellous bone, and unhealthy cancellous bone, to
which the values present in Table 1 were attributed.

Table 1. Bone properties of virtual model.

Density Young’s Modulus
(MPa)

Poisson’s Ratio

(kg/m3) υ

Cortical bone 1800 18,000 0.3
Healthy cancellous bone 600 700 0.2

Unhealthy cancellous bone 1000 400 0.2

After constructing the tibial bone model, the virtual model of the knee prosthesis was
made, consisting of a polyethylene spacer (Figure 4A), tibial component (Figure 4B), and
tibial extension (Figure 4C) [2].
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Figure 4. Tibial prosthesis components: (A) Polyethylene insert, (B) Tibial component, (C) Tibial stem.

The mechanical properties of the implant and cement components were chosen from
their manufacturers’ catalogs. The implant components were modeled in Solidworks, and
virtual materials were assigned the characteristics from Table 2.

Table 2. Implant properties of virtual model.

Density Young’s Modulus
(MPa)

Poisson’s Ratio

(kg/m3) υ

Cement 1100 2150 0.48
Polyethylene insert 952 1070 0.41
Tibial component 4428 104,800 0.31
Tibial extension 4428 104,800 0.31

Four study models were designed: completely healthy bone (cortical and cancellous);
damaged bone (good cortical and unhealthy cancellous); and 2 situations, one with and
one without the presence of a tibial intramedullary stem.

All four study models consist of an outer layer of cortical bone with an increasing
thickness from 0.8 mm in the proximal and distal epiphysis to 4 mm in the diaphysis.
(Figure 5). The two numerical values were obtained by direct measurement of cadaveric
bones. The model also contains a part of cancellous or spongy bone, healthy or unhealthy,
positioned in the proximal, diaphyseal, and distal epiphysis; the tibial tray with and without
the tibial extension; a thin layer of cement; and the polyethylene insert.
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To simulate the in vivo behavior of the implant, the tibial bone–knee implant assembly
was created (Figure 6).
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The same conditions and parameters were applied on all four models to simulate the
behavior of dynamic stress and fatigue. We pursued certain stages in the FE study.

The first stage was establishing contact between the components of the model which
we chose to be bonded. As for connecting the tibia to the external environment, we fixed
the tibia at the distal epiphyseal part.

The implementation of external forces was made based on type, direction of action,
their nature, and intensity (Figure 7). Since the main stress the implant is exposed to is
compression, a compressive force of 2100 N was applied in the direction of the longitudinal
axis of the tibial bone. The value of a 2100 N force is used throughout the literature for
testing knee arthroplasties, and it is equal to the average weight of a patient multiplied
by three. The behavior at static compression stress was used to appreciate the behavior in
the orthostatic position, the fatigue stress to appreciate the implant’s life, and the dynamic
compression regime was used to study the behavior while walking and running.

2.1. Static Compression Behavior

We followed the distribution of tension (stress), general displacements, z-axis displace-
ments, contact pressure, and the safety coefficient, both for healthy bone and for bone with
diminished physical properties, for both the case of the implant without tibial extension
and for the case with tibial extension.

2.2. Compression Fatigue

The material that is subject to the cyclic variation of the mechanical loads can be
damaged over time, even if the stresses it is subject to are lower than the flow limit. A
microcrack can appear, it can propagate, and, finally, the material can break. We determined
the number of stress cycles at which the fatigue occurred in several representative points of
the tibial bone–knee implant.
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2.3. Stress in Linear Dynamic Regime

The loads used in the linear dynamic analysis can be predictive or non-predictive, and
in the second case, they can be statistically defined. The reaction of the analyzed system
can be important, so taking into account its inertia and absorbing forces is essential. The
following formula was utilized:

[M]
{ ..

u(t)
}
+[C]

{ .
u(t)

}
+ [K] {u(t)} = {f(t)} (1)

where [C] = damping matrix, [K] = stiffness matrix, [M] = mass matrix, {u(t)} = time varying
displacement vector,

{ ..
u(t)

}
= time varying acceleration vector,

{ .
u(t)

}
= time varying

velocity vector, and {f(t)} = time varying load vector [42].
The assembly was analyzed with finite elements for linear dynamic regime, as the force

was increased linearly from 0 to 2100 N within one second. The analysis was performed
both for healthy bone and for damaged bone.

3. Results

Table 3 summarizes the maximum stress and displacement values in the static com-
pression regime, without and with tibial stem extension, in the case of both healthy bone
and damaged bone.

The stress values are collected at the tibial-bone level, and the displacement values are
from a point of the tibial metal component, in both the case of the tibial bone without stem
and the case with stem.

As can be seen in Table 3, unhealthy bone has a lower stiffness than healthy bone,
meaning that the maximum stresses in the tibia that occur in unhealthy bone are lower
than those that occur in healthy bone for the same loading conditions, both in the stemless
version and in the stemmed version.
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Table 3. Stress and displacement values in the static compression regime.

Healthy Bone Max Stress (MPa) Max Displacement (mm)

Without tibial stem 18.04 0.1148
With tibial stem 21.2 0.1192

Unhealthy Bone Stress Max (MPa) Displacement Max (mm)

Without tibial stem 15.85 0.1047
With tibial stem 6.69 0.0645

Analyzing the values in Table 3, it is found that, when the bone has good physical
properties (healthy bone), the maximum stresses have comparable values (18.04 MPa in
the version without tibial extension, and 21.2 MPa in the version with tibial extension),
and, also, the maximum displacements have comparable values (0.1148 mm in the variant
without tibial extension, and 0.1192 mm in the variant with tibial extension), meaning that
adding the tibial extension does not bring a decrease of the maximum values of tensions
and displacements, signifying that an implant in standard configuration without tibial
extension is sufficient.

In contrast, in the case of structurally damaged bone, the values mentioned in Table 3
show that the introduction of the tibial stem extension reduces to half the maximum values
of stresses (from 15.85 MPa in the version without tibial extension to 6.69 MPa in the version
with tibial extension) and displacements (from 0.1047 mm in the version without tibial
extension to 0.0645 mm in the version with tibial extension), thus signifying that, when the
physical properties and mineral density of the bone are diminished, the introduction of the
tibial extension is necessary from the primary replacement surgery.

Regarding the fatigue stress on compression, it is found that, both in the version with
and in the version without tibial extension, the area where the fatigue occurs most likely is
the distal part of the tibia, toward the ankle.

In Table 4, we compare the number of cycles in which the phenomenon of fatigue
appeared in two different locations, Point 1 and 2, from the distal part of the tibia, which
we considered representative.

Table 4. Number of load cycles to failure.

Healthy Bone Unhealthy Bone

1 2 1 2

Without tibial stem 1,668,583 2,501,725 1,668,583 2,501,725
With tibial stem 6,667,433 7,668,583 4,168,008 5,834,292

As shown in Table 4, in the case of structurally healthy bone, adding the tibial stem
does not increase the number of stress cycles to fatigue in either representative points, so it
does not increase the resistance to fatigue, while, in the case of degraded bone, adding the
tibial extension leads to the doubling of the fatigue resistance of the bone–implant assembly
in both representative points (4,168,008 cycles compared to 1,668,583 cycles, respectively;
5,834,292 cycles compared to 2,501,725 cycles, respectively).

Regarding the compression stress in linear dynamic regime for healthy bone and for
damaged bone, the maximum values of stress and displacement are synthesized in Table 5,
as well as the values of stresses and displacements in two representative points: Point 1
(below the tibial plateaus) and Point 2 (at the distal tip of the implant).

A fatigue analysis was performed based on the initial load (2100 N, Figure 7) and the
results obtained (Table 3). The fatigue failure is given by the number of repeated stress
cycles at which the rupture occurs. Admitting that a person performs 2000 cycles/day
for × 365 days, meaning 730,000 cycles per year, we subjected the model to a number of
10,000,000 cycles that we estimated the patient with the implant to perform in approximately
14 years.
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Table 5. Stress and displacement in linear compression dynamic regime.

Tensile Stress General Displacement Z-Axis Displacement

Max
(MPa)

1
(MPa)

2
(MPa)

Max
(mm)

1
(mm)

2
(mm)

Max
(mm)

1
(mm)

2
(mm)

Healthy bone

Without tibial stem 21.070 2.700 4.792 0.080 0.007 0.005 0.080 0.006 0.005
With tibial stem 15.010 0.470 2.940 0.081 0.006 0.003 0.079 0.004 0.003

Unhealthy bone

Without tibial stem 9.707 0.893 0.472 0.080 0.006 0.004 0.079 0.005 0.004
With tibial stem 9.750 0.715 0.407 0.084 0.005 0.003 0.082 0.004 0.002

Looking at the values in Table 5, we conclude that the maximum stresses in the version
with tibial extension have values close to those in the version without tibial extension, both
in the case of healthy bone and in the case of damaged bone. The tensions measured in
Points 1 and 2 are slightly lower in the version with tibial extension, compared to those
in the version without tibial extension. All recorded values are below the permissible
material limit.

The maximum values of the general displacement, as well as those of the z-axis
displacement, in the case with tibial extension, are close to those in the case without tibial
extension, both in the alternative of healthy bone and in the one of damaged bone. The
displacements measured in Points 1 and 2 have slightly lower values in the tibial stem
variant, both in the case of healthy bone and in the case of degraded bone.

4. Discussion

The aim of this study was to compare the behavior of a modular tibial implant with
a standard configuration, which is mostly used in a primary non-complicated TKA to a
stemmed configuration usually used in a revision TKA, but also appropriate in some select
complicated primary TKAs. Our hypothesis that adding a tibial stem would increase the
stability of an unhealthy bone was proven to be correct. The concern for increasing the life
of the implant is a current scientific interest for researchers around the world.

Studies in the literature deal extensively with extension intramedullary stems in the
revision TKA, but not as extensively in the primary TKA [20–22,24,25,43,44]. Medical
practice shows that, if, in a total knee arthroplasty, a tibial stem extension is used, after a
period of time, the phenomenon of stress shielding or bone loss occurs due to the abnormal
distribution of loads to the bone, followed by the wear and tear of the implant and ultimate
failure of the arthroplasty. The longer the stem, the higher the stress shielding, which is not
desirable in a primary TKA, and an unfortunate necessity in a revision TKA [43].

We decided to exclude the femoral part of the implant from the biomechanical study,
since it has been proven that, even a stemmed modular femoral implant minimally impacts
the failure risk of the proximal tibia [31].

Some differences exist between this study and the findings of Frehill et al. (2010), who
studied the setting of a revision TKA with a tibial defect, and found that, contrary to the
commonly accepted belief, a stemmed implant can increase the stress in the implant–bone
contact area [45].

However, in some FE element previous studies, a reduction of tibial strain ranging
from 20% to 60% has been achieved with the use of stems, and also according to the
structural stiffness of the bone [46,47].

Therefore, the use of a knee prosthesis with tibial stem is not necessary in most cases;
overall, a standard configuration is the desirable choice. However, there are situations in
which it is appropriate to use the tibial extension. One of these situations is when the bone
is affected by various diseases, so it has lower resistance properties and a lower mineral
density than healthy bone. Medical practice shows that, in this situation, using the stem
extension is the proper solution.
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The limitations of the study were the accuracy of the finite elements model obtained
by scanning a tibia model. A very large computational power is necessary to create an
accurate model, and sometimes this can be an obstacle. An alternate modeling technique
proposed by the research community is using a CT scan of either a patient or a human
cadaveric specimen, the quality of the reconstruction model being negligibly higher than
that of an optical 3D model [48,49]. Mahmoudi et al. (2018, 2020) used the CT scan data to
create the inner surface of the bone model [50]. In our study, this inner surface is modified,
as in real TKA surgery itself, to accommodate the shape and size of the tibial modular
component. Moreover, some studies showed that the results can be more precise if, in
parallel with the cancellous bone, the mechanical properties assigned to the cortical bone
also have lower values, thus simulating the human anatomy better [51]. Another limitation
is the absence of muscle and ligament strains that act in the knee joint and which may cause
asymmetry in the forces applied in our finite elements model.

5. Conclusions

This paper scientifically validates this recommendation from medical practice and
draws the following conclusions:

• If the bone is healthy with a good mineral density, so it has good physical properties
(for example in the case of secondary arthrosis), then it is not necessary to use the tibial
extension in the primary TKA surgery, because the benefits it brings are fewer than
the long-term negative consequences.

• If the properties of the bone are altered, then it is necessary to use the tibial extension
in the primary TKA operation, because it increases the life of the knee implant.

In the future, we are planning to extend the research to different sizes of tibial stems
and analyze their behavior in the same circumstances used in this study, and we will try to
define an applicable guideline in terms of picking the optimal stem size depending on the
degree of structural bony damage.
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