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Traumatic brain injury (TBI) is a serious disease that threatens life and health

of people. It poses a great economic burden on the healthcare system.

Thus, seeking effective therapy to cure a patient with TBI is a matter of

great urgency. Microglia are macrophages in the central nervous system

(CNS) and play an important role in neuroinflammation. When TBI occurs,

the human body environment changes dramatically and microglia polarize

to one of two different phenotypes: M1 and M2. M1 microglia play a role

in promoting the development of inflammation, while M2 microglia play a

role in inhibiting inflammation. How to regulate the polarization direction of

microglia is of great significance for the treatment of patients with TBI. The

polarization of microglia involves many cellular signal transduction pathways,

such as the TLR-4/NF-κB, JAK/STAT, HMGB1, MAPK, and PPAR-γ pathways.

These provide a theoretical basis for us to seek therapeutic drugs for the

patient with TBI. There are several drugs that target these pathways, including

fingolimod, minocycline, Tak-242 and erythropoietin (EPO), and CSF-1. In this

study, we will review signaling pathways involved in microglial polarization and

medications that influence this process.
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Introduction

Traumatic brain injury (TBI) occurs when the brain is hit by an external force,
with a series of serious consequences. The global annual incidence of TBI exceeds
50 million individuals, and a study has said that half of the world’s population is
likely to have one or more TBIs in their lifetime (Maas et al., 2017). The morbidity
of TBI in China is estimated to be approximately 0.013%, which is similar to the
rates reported in other countries (Jiang et al., 2019). China has the world’s largest
population, which means that China would also have the most individuals who
would encounter a TBI, making TBI a major public health concern in China. In
another review, China was found to have approximately 770,060–890,990 new cases
of TBI every year, and the average cost of patients ranges from U28,000 to 129,000
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(Gao et al., 2020). Damage to neuronal tissues following TBI has
two stages: the primary injury, which is directly caused by an
external force when TBI occurs; and the secondary injury, which
follows primary insult and causes tissue and cellular damage.
The primary injury in TBI is largely irreversible, so the research
focuses on changing the course of secondary injury. However,
the pathophysiological mechanisms of the secondary injury are
not well understood, including but not limited to excitotoxicity,
mitochondrial dysfunction, oxidative stress, lipid peroxidation,
neuroinflammation, axon degeneration, and apoptotic cell death
(Ray et al., 2002). Neuroinflammation is the most intensively
studied of these pathological mechanisms. In accordance with
Bergold (2016) review, neuroinflammation plays a major role
in traumatic brain damage, regulating the inflammatory process
that can effectively treat TBI.

Microglia are cells present in the adult mammalian brain
that account for 5–20% of all glial cells. They are derived from
erythroid myeloid precursors in the embryonic yolk sac and are
distributed within the embryonic mouse brain (Ginhoux et al.,
2010). Microglia are vital to CNS homeostasis and are involved
in the evolution of a variety of neurological pathophysiological
states such as neuropsychiatric disorders, neurodegeneration,
neuroinflammation, sterile injury responses, and infectious
diseases (Nayak et al., 2014). The most important role of
microglia is in neuroinflammation. Under normal conditions,
microglia assume a neural-specific phenotype (Schmid et al.,
2009) and retain a relative quiescent surveillance phenotype
for constant monitoring of the brain parenchyma (Davalos
et al., 2005). Modulation of neuroinflammation following
TBI may require addressing both inflammatory pathways
and facilitating repair (Corrigan et al., 2016). Within injured
tissues, microglia exist in various states of activation and retain
the capability to shift their functional phenotype during the
inflammatory response (Stout et al., 2005). When an injury
occurs, microglia activation can be divided into two processes.
First, microglia polarize toward the pro-inflammatory (M1)
phenotype that produces pro-inflammatory cytokines, such as
TNF-α, interleukin (IL-1β, IL-12), present antigens, and express
high levels of inducible NO synthase (iNOS) for NO production
(Gordon and Taylor, 2005; Villalta et al., 2009). Then, microglia
polarize to the M2 phenotype, expressing anti-inflammatory
cytokines (IL-4, IL-10, IL-13, and TGF-β), arginase-1 (Arg-1),
CD206, and chitinase-3-like-3 (Ym1 in rodents) (Colton, 2009;
Henkel et al., 2009).

Classical activation (M1) is defined as the stimulation
of microglia by external factors or elements, such as
microorganisms and some cytokines, resulting in high
expression of pro-inflammatory cytokines and an enhanced
capacity for phagocytosis. Activating substances include two
aspects, external matters, such as exogenous particles and
bacteria, and endogenous matters, such as interferon-γ, TNF,
and cell debris. The M1 phenotype is usually associated with the
host defense against intracellular pathogens (Mackaness, 1977;

Gordon and Taylor, 2005; Dale et al., 2008). The M2 phenotype
is more complex (see Table 1). The M2 phenotype can be
divided into three subtypes: M2a, M2b, and M2c. In the early
1990s, the concept of macrophage alternative activation was
developed largely based on research showing a role for IL-4
in the induction of an alternative (M2) activation state (Stein
et al., 1992) inducing the expression of anti-inflammatory
cytokines IL-4, IL-10, IL-13, and TGF-β and arginase-1 (Arg-1),
CD206, and chitinase-3-like-3 (Ym1 in rodents) (Colton, 2009;
Henkel et al., 2009). M2 microglia play an important role in
allergy response, parasite clearance, inflammatory dampening,
tissue remodeling, angiogenesis, immunoregulation, and tumor
promotion (Sica and Mantovani, 2012). Further studies have
found that the M2a activation state is induced by parasitic
products or associated signals (IL-4 and IL-13) with a longer
term function for resolution and repair (Rutschman et al.,
2001; Gordon and Taylor, 2005; Lawrence and Natoli, 2011;
Wynn et al., 2013). In this case, the IL-4 receptor and its
downstream molecules lead to the inhibition of nuclear factor
kappa B (NF-κB) signaling and subsequent inhibition of M1
phenotype activation. M2b polarization is observed with the
triggering of Fc-γ receptors, TLRs, and immune complexes
(Murray et al., 2014). M2c polarization occurs in response
to specific anti-inflammatory factors such as IL-10, TGF-β,
and glucocorticoids (Vodovotz et al., 1993; Gordon and
Taylor, 2005; Martinez et al., 2008). The alternative activation
of microglia has been proposed for 40 years, but there is
crosstalk among the subtypes of M2 phenotype, indicating
that the polarization subtypes and functions of M2 microglia
subtypes have not been fully understood so far. A recent
study showed that energy metabolism plays an important
role in the process of microglial polarization (Ghosh et al.,
2018). Energy metabolism in microglia is mainly supplied
by the tricarboxylic acid cycle (TCA). When microglia are
induced to move toward the M1 phenotype by the external
microenvironment, they will inhibit mitochondrial oxidative
phosphorylation (OXPHOS) (Baseler et al., 2016). In contrast,
“alternatively activated” microglia adopt a metabolic program
dominated by fatty acid-fueled OXPHOS. More studies focus
on how to facilitate the two processes to regulate microglial
polarization. Compared with serum-cultured microglia,
microglia cultured in a defined medium performed less well
after the same stimulation, which was related to their metabolic
state (Montilla et al., 2020). However, how metabolic states
affect microglial polarization levels by regulating related
cellular signaling pathways has not been clearly explained.
Some researchers have focused on the mechanistic target
of the rapamycin (mTOR) pathway. mTOR inhibition led
to decreased production of LPS-induced pro-inflammatory
cytokines by suppressing glycolysis (Hu et al., 2020). mTOR
receptor inhibits the classical polarization of M1 microglia by
enhancing anaerobic glycolysis in microglia and weakening
mitochondrial function. Now, more and more studies have
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shown that microglia are not simply divided into M1 and
M2 types, but also include other types, such as rod microglia.
In addition to the classic M1/M2 classification of microglia,
rod-shaped microglia, which were first introduced in 1899 (Au
and Ma, 2017), are the current focus of research. Despite 100
years of study, little is known about the specific functions of
rod-shaped microglia due to the lack of technology to cultivate
rod-shaped microglia in vitro. Rod microglia, also called
bipolar microglia, were observed in a single trajectory with
their highly polarized processes seemingly connected (Ziebell
et al., 2012). In a recent study, rod microglia were identified
as an abundance of iba1-positive microglia with phagocytosis.
With aging society as an aggravating factor, individuals with
AD place considerable pressure on the healthcare systems in
society. Due to its contribution to the development of AD,
rod microglia are now the focus of several studies (Bachstetter
et al., 2015). A cost-effective and highly reproducible method
has been established to enrich bipolar/rod-shaped microglia
in vitro (Tam and Ma, 2014; Tam et al., 2016), leading to
accelerated research on these cells over the past few years. In
the optic nerve transection (ONT) model, the appearance of
rod microglia is not only closely related to injury time but is
also related to the cortical position (Yuan et al., 2015). The
distribution density of rod-shaped microglia differs in different
cortices, which may be related to the different phenotypes
of static microglia induced by specific microenvironment in
different parts of the brain after injury. The process by primitive
microglia are transformed into rod microglia is mediated
by the granulocyte-macrophage colony stimulating factor
(GM-CSF) and intracellular calcium concentration ([Ca2+]i)
of microglial cells (Suzumura et al., 1990; Frei et al., 1992). In
the ONT model, rod microglia showed strong phagocytosis,
and rod-shaped microglia disappeared after tissue fragments
were removed (Yuan et al., 2015). Therefore, cell debris may
also be factors inducing the formation of rod microglia. The
development of new therapeutic interventions by switching
the microglial phenotype from amoeboid to rod microglia
might shed new light on pathogenesis and identify targets for
treating neurodegenerative diseases. As mentioned above, in
addition to the classical and alternative pathways, there are
other pathways involved in microglia activation. Therefore, the
current international description of the polarization state of
microglia focuses more on its function, following which they
are classified into “pro-inflammatory” (or the M1) phenotype
and the “anti-inflammatory” (or the M2) phenotype. Different
microglial subtypes are dominant between 1 and 3 weeks after
injury (Jin et al., 2012). Indeed, the M2 phenotype peaks at
1 week of TBI, decreases thereafter, and returns to normal
level within 4 weeks. However, the M1 phenotype increases 4
weeks after injury. Different results were reported by Kumar
et al. (2016) who found that M1 and M2 phenotypes were
activated after TBI, but the M2 phenotype was replaced by the
M1 phenotype at 7 day post-injury. This shift toward the M1

phenotype was associated with increased neurodegeneration.
The focus of this study is to identify the process so that the
transformation could be prevented or slowed down, as well as
to prolong the expression of M2 microglia. Here, we organized
a number of cellular signaling pathways that influence the
transformation of microglial phenotypes.

Cell signaling pathways that
influence microglial polarization

Microglia play a very important role in neuroinflammation,
and many signaling pathways are involved in their polarization.
Clarifying the interaction between these pathways and their
influence on microglia is very important for regulating the
polarization of microglia, while also providing a basis for the
development of therapeutical drugs. Here, we summarize some
of the classical and important signaling pathways involved in
microglial polarization.

Toll-like receptor-4/NF-κB pathway

A toll-like receptor (TLR) is a pattern-recognition receptor
that detects microbial components, and the TLR family consists
of 13 members (Takeda and Akira, 2015). TLR-4 is expressed
in microglia, astrocytes, and macrophages in the brain, and
can be activated by LPS (Badshah et al., 2016). NF-κB is a
key regulator of immune development, immune responses, and
inflammation (Mitchell et al., 2016). The canonical pathway
of the NF-κB pathway is triggered by TLR, and RelA is an
activating substance between them. The pathway function is to
regulate the expression of pro-inflammatory and cell survival
genes (Karin et al., 2006; Lawrence, 2009).

In microglia, TLR-4/NF-κB is a traditional transcription
factor that is activated by lipopolysaccharide (LPS) and regulates
the expression of most M1-signature genes encoding pro-
inflammatory cytokines (Taetzsch et al., 2015). Polarization of
microglia in the direction of the M1 phenotype induced by the
TLR-4 signaling pathway leads to damage to white matter tracts
in the corpus callosum (Yang et al., 2018). In another study, the
development of PD-associated neuroinflammation was reduced
in TLR-4-deficient Parkinson’s disease (PD) mouse models
compared with normal mice without PD (Campolo et al., 2019).
TLR-4 could be considered an encouraging therapeutic target in
neurodegenerative disease.

The diagnosis and treatment of patients with TBI now
focus on inhibiting the TLR-4/NF-κB pathway. For instance, the
viral inhibitory peptide of TLR-4 (VIPER) interacts with the
myeloid differentiation factor 88 (MyD88) adaptor-like (Mal)
and TRIF-related adaptor molecule (TRAM) to inhibit the TLR-
4/NF-κB pathway and attenuate microglia activation (Lysakova-
Devine et al., 2010; Masson et al., 2015). Vascular endothelial
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TABLE 1 The characteristics of the different sub-types of microglia.

Microglia
phenotype

Activation
substances

Cell surface
protein

Secrete
protein

Function

M1 LPS,
Interferon-γ,

TNF

CD16, CD32
CD86, MHC-II

IL-1β Pro-inflammatory, Boost inflammation Todd et al., 2019

IL-6 Pro-inflammatory, Boost inflammation Trapero and Cauli, 2014

IL-12 /p70 Pro-inflammatory, Boost inflammation Sun et al., 2015

TNF debris removal Probert, 2015

IFN-γ positive feedback Orihuela et al., 2016

CCL5 Pro-inflammatory, Boost inflammation Skuljec et al., 2011

CXCL1 Sterilization Stamatovic et al., 2020

CXCL10 apoptotic cell removal Tassiulas et al., 2007

M2a IL-4, IL-13,
TREM2

CD206 IL-1Ra Wound healing Martinez et al., 2008

IL-4 Anti-inflammatory, increases microglia and macrophage
phagocytosis Zhao et al., 2015

TGFβ Anti-inflammatory Zhong et al., 2018

M2b TLRs+ immune
complexes

IL-6, VEGF,
IGF-1, CD86,
TNF-α, CD64

Ym1 Immunoregulatory Adams, 1989; Martinez et al., 2008

Arg1 Suppresses inflammation Munder et al., 2005

IL-10 Anti-inflammatory, mediate microglia and macrophage
phagocytosis Durafourt et al., 2012

IL-4Rα tissue stabilization Mozo et al., 1998

G-CSF Mediates microglia and macrophage survival, proliferation and
differentiation Roberts, 2005

FIZZ1 Anti-inflammatory; induction depends on IL-4 and IL-13 Raes
et al., 2002

M2c IL-10 CD163
CD206,

TGF-B Immunosuppressive Martinez et al., 2008; Bogdan et al., 1992

SLAM immune regulation Dragovich and Mor, 2018

Sphk-1 tissue repair Yu et al., 2009a

THBS1 ECM synthesis Yamashiro et al., 2020

HMOX-1 reduce oxidative stress Zhu et al., 2017

growth inhibitor (VEGI) could alleviate the post-traumatic
excessive inflammatory response and remit the secondary brain
damage by downregulating the expression of the TLR-4/NF-
κB signaling pathway and inflammatory cytokines (Gao et al.,
2015). Therefore, the TLR-4/NF-κB pathway can be said to
promote M1-type polarization after TBI.

Janus kinase/signal transducers and
activators of transcription pathway

The Janus Kinase/Signal Transducers and Activators of
Transcription (JAK/STAT) signaling pathways have been
recognized as one of the most important pathways in mediating
innate and adaptive immunity (O’Shea and Plenge, 2012).
The JAK family has four main members with over 1,000
amino acids each, and their molecular weights range from
120 to 140 kDa (Cai et al., 2015). The STAT family in the

cytoplasm is a downstream target of JAKs, which consists of
seven members with molecular weights ranging from 79 to 113
kDa (Darnell, 1997; Boengler et al., 2008; Yu et al., 2009b).
When JAK is attached to the ligand, STAT is phosphorylated,
dimerized, and transported into the nucleus to regulate the
expression of related genes. The JAK/STAT pathway is well
known to modulate various signals to maintain homeostasis
in inflammatory conditions. It induces neuroinflammatory
diseases such as PD and multiple sclerosis (MS) by modulating
microglial polarization (Xin et al., 2020). The phenotype of
microglia changes to M2 from M1 after the JAK/STAT signaling
pathway phosphorylation process is inhibited, and the microglia
then produce fewer inflammatory cytokines (Qu et al., 2019).

CNS homeostasis is disrupted for which microglia are
overactivated, leading to an inflammatory storm after TBI.
The severity of this inflammatory storm can be regulated
via the JAK/STAT pathway to improve the prognosis of TBI.
JAK2/STAT1 is a pro-apoptotic pathway that upregulates the
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expression of Fas, FasL, and IRF-1 and inhibits the anti-
apoptotic NF-κB (Chin et al., 1997; Kumar et al., 1997;
Wang et al., 2000). Additionally, this pathway promotes
the polarization of microglia into the M1 phenotype (Porro
et al., 2019). JAK2/STAT1 activation induces the expression
of genes encoding IL-1β, TNF, and CXC motif chemokine 10
(CXCL10), indicating that the JAK2/STAT1 pathway promotes
the polarization of macrophages into the M1 phenotype
(Lawrence and Natoli, 2011). When the JAK2/STAT3 pathway
was activated by paraquat, microglia were found to polarize
into the M1 phenotype, consequently causing inflammatory
damage to the hippocampus (Fan et al., 2022). Unlike this,
the JAK2/STAT6 pathway promotes polarization of microglia
to the M2 phenotype (Yang et al., 2017). The effect of the
JAK/STAT family on microglia is not fully understood; thus,
further studies are needed to clarify the different JAK/STAT
pathways that could influence the polarization of microglia and
the therapeutic needs of TBI.

HMGB1

High mobility group box 1 (HMGB1) is a non-histone
nuclear protein with high electrophoretic mobility of 215 amino
acids. HMGB1 was first described by Goodwin and Johns
(1977). It is estimated that each nucleus contains approximately
1 × 106 HMGB1 molecules, which is only just lower than the
core histone (Romani et al., 1979). The function of HMGB1
in the nucleus is DNA-binding activity, DNA chaperone,
and DNA-bending activity (Kang et al., 2014). Extracellular
HMGB1 functions as an immune adjuvant to trigger a robust
response to activation or suppression of cells including T cells,
macrophagocytes, and dendritic cells.

HMGB1 plays an important role in regulating the systemic
inflammatory response in infectious diseases, and the serum
level of HMGB1 in patients with sepsis is elevated (Wang et al.,
1999). Current studies show that the regulation of HMGB1
on local inflammation can effectively change the occurrence,
development, and prognosis of diseases such as stroke, TBI,
PD, epilepsy, and Alzheimer’s disease (AD) via the regulation
of microglial polarization (Nishibori et al., 2019). Paudel et al’s
paper discussed the contribution of the HMGB1/TLR4/RAGE
signaling pathway in TBI and other neuroinflammatory
diseases, arguing the possibilities of HMGB1 as a common viable
biomarker of TBI (Paudel et al., 2018).

A previous study showed that early treatment with anti-
HMGB1 monoclonal antibody (m-Ab) might be a promising
strategy for TBI (Okuma et al., 2012). One in vitro study
demonstrated that HMGB1 induced the polarization of
microglia toward the pro-inflammatory phenotype (Fan et al.,
2020b). The study also demonstrated that inhibiting the
HMGB1-RAGE axis prevented pro-inflammatory microglial
polarization and afforded neuroprotection after SCI in rats. Li

et al. (2020) found that the HMGB1 inhibitor BAI could improve
acute neurocognitive impairment by HMGB1-mediated
inhibition of neuroinflammation in LPS-induced mice.

Members of the mitogen-activated
protein kinases signaling pathway

Members of the mitogen-activated protein kinases (MAPKs)
family are typically activated by various mitogenic agents such as
growth factors and hormones. This family plays an important
role in regulating cell division and differentiation (Gustin
et al., 1998). The MAPK family, including extracellular signal-
regulated kinase (ERK), p38, and c-Jun N-terminal kinase, is a
group of signaling molecules that plays an important role in the
expression of pro-inflammatory cytokines (Liu et al., 2020). NF-
κB is a downstream molecule of MAPK. MAPK/NF-κB pathway
plays an important role in regulating the release of inflammatory
mediators (Deng et al., 2018).

The MAPK/NF-κB pathway has been shown to be involved
in the production of pro-inflammatory mediators in LPS-
treated BV2 cells (Do et al., 2020). In spinal cord injury, when
this pathway is activated, it induces the production of pro-
inflammatory cytokines, including IL-6, TNF-α, or IL-1β, from
microglial cells, which is indicative of microglial polarization
toward the M1 phenotype (Liu et al., 2020). Methionine
sulfoxide reductase A (MsrA) is an enzyme that plays a role in
demyelination and has been shown to suppress inflammatory
activation of microglia and oxidative stress via inhibition of the
MAPK/NF-κB signaling pathway (Fan et al., 2020a).

In the CCI mice model, bazedoxifene was found to
protect cerebral cognitive functions after TBI and attenuate
impairments in blood-brain barrier (BBB) damage by blocking
the MAPK/NF-κB signaling pathway (Lan et al., 2019). Research
tends to focus almost entirely on using drugs to suppress one
specific inflammatory signaling pathway, but one interesting
phenomenon is that splenectomy in TBI mice can downregulate
the MAPK/NF-κB signaling pathway, thereby inhibiting the
polarization of microglia to the M1 phenotype (Chu et al.,
2013). Together, these results support a potential role for
the MAPK/NF-κB signaling pathway in the modulation of
microglial polarization after TBI.

Peroxisome proliferation-activated
receptors-gamma pathway

Peroxisome proliferation-activated receptors (PPARs) are
nuclear hormone receptors that directly bind and respond
to ligands such as steroids, thyroid hormone, retinoids,
cholesterol by-products, and lipids (Chandra et al., 2008).
PPARs are composed of three isoforms: PPAR-α, PPAR-
β/δ, and PPAR-γ (Berger and Moller, 2002). These receptors
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contain poorly conserved A/B regions that, in some cases, act
as potent transcriptional activators, provide sites of protein
phosphorylation, or form direct interactions with other receptor
domains or regulatory proteins (Bain et al., 2007). These
three isotypes differ from each other in terms of their tissue
distribution, ligand specificities, and physiological roles. PPAR-
γ is highly expressed in white and brown adipose tissue, and it
plays a key role in the regulation of adipogenesis, energy balance,
and lipid biosynthesis (Lehrke and Lazar, 2005; Medina-Gomez
et al., 2007).

It was previously thought that this receptor only
participates in lipoprotein metabolism; however, a recent
study showed that PPAR-γ also participates in the regulation
of microglial polarization (Zhou et al., 2020). Why does
a receptor that is primarily found in adipose tissue cells
exert a regulatory effect on microglia? in an article by
Fujisaka et al., The M1-to-M2 ratio was increased by a
high-fat-diet and decreased by subsequent pioglitazone,
PPAR-γ agonist, treatment (Fujisaka et al., 2009). This
indicates that lipid metabolism can affect microglial
polarization, but its internal molecular mechanisms need
more research. It is confirmed that PPAR-γ agonists can be
a promising therapy for PD because it suppresses the M1
phenotype and production of pro-inflammatory cytokines
(Carta and Pisanu, 2013).

A research team at Zhejiang University, China, was
among those who studied the role of PPAR-γ in TBI. They
confirmed that axonal injury after TBI can be alleviated by
PPAR-γ agonists, which induced microglia polarized to the
M2 phenotype (Wen et al., 2018). In another study using
a mouse model, Jiang et al., found that the Chinese herb
phyllyrin inhibits inflammation of microglia via the PPAR-
γ signaling pathway, protecting mice from TBI (Jiang et al.,
2020). As discussed above, microglia are polarized to the
M1 phenotype when anaerobic glycolysis increases within
the cell; thus, the inhibition of microglia via the PPAR-
γ signaling pathway may be related to the increase in
aerobic glucose metabolism. Further investigations are needed
to determine the validity of the PPAR-γ pathway in the
polarization of microglia.

Specific inhibitors/agonists
targeting specific signaling

Currently, several promising anti-TBI drugs are undergoing
clinical trials (Table 2). Most exert neuroprotective effects by
inhibiting M1 phenotype microglia or enhancing M2 phenotype
microglia. In this review, we emphasized the importance of
the M2 phenotype in microglial responses following TBI, and
treatment strategies with a focus on modulating or enhancing
microglia with the M2 phenotype.

Fingolimod

Fingolimod (FTY720, R,2-amino-2[2-(4-octylphenyl)
ethyl]-1,3-propanediol)), sold under the brand name Gilenya,
was originally synthesized by the Japanese chemist Tetsuro
Fujita (Huwiler and Zangemeister-Wittke, 2018). It is a high-
affinity agonist of sphingosine-1-phosphate (SP1) receptor
(Fujita et al., 1996). SP1 is well known to be involved in immune
regulation in the body (Obinata and Hla, 2019). Therefore,
FTY720 is involved in immunoregulation.

When FTY720 was synthesized, it was first applied to solid
organ transplantation for its function as an agonist of SP1, which
regulates inflammatory processes (Napoli, 2000). A growing
body of evidence suggests that FTY720 is neuroprotective
in CNS injuries due to its effects on the improvement of
cognitive function, protection of BBB function, inhibition of
apoptosis and inflammation, suppression of oxidative stress, and
regulation of autophagy [87]. FTY720 has been used in various
models of stroke and neurological disorders (Carreras et al.,
2019; Wang et al., 2020; Rajabi et al., 2021).

Fingolimod is the first FDA-approved drug for the
treatment of multiple sclerosis (MS) (Brunkhorst et al., 2014).
Now, more and more scientists focus on its role in TBI.
Consecutive administration of FTY720 for 3 days in a CCI
mouse model was found to improve neurological functions
and modulate multiple immune responses by attenuating the
generally activated microglia and augmenting the M2/M1 ratio
accompanied by decreased axonal damage (Gao et al., 2017).
On the contrary, in a C57BL/6 mouse model of focal cortical
cryo-lesion injury, FTY720 attenuated neuroinflammation but
did not alter the lesion size or affect functional recovery
(Mencl et al., 2014). These contradictory results may be
because of the different types of brain injury in the above
studies. There are also some contradictory results regarding
the signaling pathway involved in FTY720. FTY720 has been
found to significantly transform pro-inflammatory microglia
into anti-inflammatory microglia by suppressing autophagy
via STAT1 (Hu et al., 2021). Qin et al. found that FTY720
facilitated M1 to M2 switch of microglia via the STAT3
pathway (Qin et al., 2017). FTY720 does mitigate post-
traumatic neuroinflammatory responses via a variety of
signaling pathways.

Minocycline

Minocycline was first introduced in 1967 as a second-
generation tetracycline derivative (Jonas and Cunha, 1982). It
has a wide spectrum of activity against both gram-positive and
gram-negative bacteria (Garrido-Mesa et al., 2013). Minocycline
shares the basic four-ring structure of the other commonly
used tetracyclines, having as its chemical characteristic the
substitution of a dimethylamino group in the seventh position
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TABLE 2 Anti-TBI drugs.

Drugs Mode of action Effects on microglia Clinical Trial

fingolimod S1PR activator Zhang and Wang, 2020 Inhibit M1 phenotype polarization Phase III

minocycline Inhibiting MAPK-NF-κB signal pathway Yoshida et al., 2020 Inhibit M1 phenotype polarization Phase II

Tak-242 TLR-4 inhibitor Samarpita et al., 2020 Inhibit M1 phenotype polarization Phase II

EPO Anti-inflammatory Zhou et al., 2017 Shift M1 phenotype to M2 phenotype Phase II

CSF-1 CSF-1R activator Stanley et al., 1978 Shift M1 phenotype to M2 phenotype Phase II

(Allen, 1976). It is usually prepared as dihydrated hydrochloride
and, in that form, has a molecular weight of 530.

Obviously, minocycline is a broad-spectrum antibiotic, but
how does it play an anti-inflammatory role? Some proposed
mechanisms for its anti-inflammatory properties include the
inhibitory effects on the activities of key enzymes, like iNOS and
MMPs (Garrido-Mesa et al., 2013). In particular, minocycline
has been shown capable of inhibiting the M1 polarization
state of microglia in the CNS via inhibition of NF-κB and
via interference of the MAPK pathways (Kobayashi et al.,
2013). Minocycline also promotes M2 microglial polarization
via upregulating the TrkB/BDNF pathway after intracerebral
hemorrhage (ICH)(Miao et al., 2018). In addition, the
minocycline could shift the activated M1 microglia phenotype
into the M2 phenotype.

Minocycline significantly reduced impairments of spatial
learning and memory in the water maze test after TBI in mouse
models (Lam et al., 2013). The effects of minocycline treatment
in an animal model of TBI revealed that the protective effects
could be detected in a short term after injury (3 days after injury)
but not in long-term therapy (7 days after injury) (Hanlon
et al., 2016). Further experiments confirmed that minocycline
is ineffective in reducing microglial activation and ameliorating
injury-induced deficits following repetitive neonatal traumatic
brain injury. However, in mild blast-induced TBI (mb-TBI)
models, acute minocycline treatment appears to prevent the
development of neurobehavioral abnormalities likely through
normalizing damage markers like NSE, NF-H, Tau, S100β, and
glial markers of the injury (Kovesdi et al., 2012). In clinical
trials, minocycline is beneficial in patients with moderate-to-
severe TBI, but the therapeutic effect did not increase with
the dose of minocycline administered (Meythaler et al., 2019).
As it is an old pharmaceutical agent, further research on the
newer applications, time and method of administration of
minocycline is required.

TAK-242

TAK-242 (ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)
sulfamoyl] cyclohex-1-ene-1-carboxylate) is a small molecule
that selectively binds to TLR-4, thereby inhibiting TLR-4 signal
transduction (Sha et al., 2007). TAK-242 binds selectively to
Cys747, which is the intracellular domain of TLR-4 (Matsunaga

et al., 2011). It is well known that TLR-4 plays an important
role in inflammation, so its antagonist TAK-242 is first applied
in anti-inflammation. TAK-242 has a lower molecular weight
and liposoluble capacity, which allows it to cross the BBB
(Hua et al., 2015).

TAK-242 has become a focus drug for neuroinflammatory
disease due to its special molecular structure and anti-
inflammatory effects. In AD mice models, TAK-242
administration significantly improved neurological function
and increased the expression levels of the M2 phenotype
of microglia. The mechanism of the phenomenon may be
that TAK-242 modulates MyD88/NF-κB/NLRP3, which is
the downstream signaling pathway of TLR-4 (Cui et al.,
2020). Neuroinflammation contributes to the progression of
amyotrophic lateral sclerosis (ALS). The microglial reaction
is attenuated in TAK-242-treated mice (Fellner et al., 2017).
Further research showed that TAK-242 also reduces spinal
motor neuron loss in ALS; however, this effect did not result in
an increased survival rate.

There is evidence indicating that TAK-242 is beneficial to
TBI. Pre-injury treatment of mice with TAK-242 significantly
enhances cognitive functional recovery after TBI by inhibiting
autophagy and neuroinflammation (Feng et al., 2017). Further
experiments confirmed that TAK-242 mainly inhibited the
TLR4-MyD88/TRIF-NF-κB signaling pathway to exert anti-
neuroinflammatory activity. Ischemia/reperfusion (I/R) injury
is a mechanism of brain injury after TBI (Hua et al., 2015). TAK-
242 mitigates I/R injury by inhibiting the TLR-4 pathway, which
is associated with microglial polarization to the M1 phenotype
(Bell et al., 2013). The effects of TAK-242 on patients with TBI
have a wide therapeutic time window which is from 4 hours to 5
days after injury (Zhang et al., 2014). However, all experimental
results are from animal experiments; therefore, more clinical
trials are needed to validate these findings.

Erythropoietin

Erythropoietin is a well-known plasma factor that stimulates
erythrocyte production and was first purified in 1977 (Witts,
1961; Miyake et al., 1977). EPO is mainly produced by
interstitial cells in the adult kidney in response to hypoxia
(Miyake et al., 1977; Kobayashi et al., 2017). In the late
1980s, recombinant human EPO (rh-EPO) became available for
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clinical use, revolutionizing the management of renal anemia.
Now, more and more functions of EPO have been discovered,
especially in neuroprotection (Hemani et al., 2021).

Erythropoietin significantly reduced brain tissue loss
volume, ameliorated white matter injury, and improved
neurobehavioral outcomes after ischemic stroke (Wang et al.,
2017). The authors also demonstrated a shift from the M1
phenotype to the M2 phenotype at the infarct border after
EPO treatment could attenuate brain injury. In a randomized,
prospective clinical trial, it was confirmed that repeated, low-
dose, rh-EPO treatment reduced the risk of disability for infants
with moderate hypoxic-ischemic encephalopathy (HIE) without
apparent side effects (Zhu et al., 2009).

The EPO receptor was shown to be highly expressed
on the surface of microglia after brain injury, suggesting
its role in the brain after an injury (Spandou et al., 2004).
Reactive microglia are particularly effective at producing and
releasing ROS/RNS (Block et al., 2007). Treatment with EPO
activates the Akt/mTOR/NF-κB pathway, which is implicated
in shifting macrophage activation state polarization from
M1 to M2 (Xu et al., 2013). There is also evidence that
EPO modulates neuroinflammation by decreasing levels of
ROS/RNS, limiting microglial infiltration by preserving the
health of the microvascular endothelial cells at the BBB (Bond
and Rex, 2014). However, current clinical trial studies focus too
much on the effectiveness and safety of EPO, but there is no
corresponding clinical trial evidence on the method and time
of administration.

Colony-stimulating factor 1

CSF-1 (Colony-stimulating factor 1, namely Macrophage
colony-stimulating factor) is the primary growth factor required
for the control of monocyte and macrophage differentiation
(Sehgal et al., 2021). The CSF-1 was initially purified from
human urine in Stanley et al. (1975). Similar to rh-EPO,
rh-CSF-1 was synthesized from the c-DNA of CSF-1 in the
1980s. CSF-1 has not been found substantial clinical application,
but CSF-1 administration promotes microglia infiltration,
differentiation, clearance of damaged cells and repair (Stanley
et al., 1978). Therefore now scientists are interested in its use in
neurological diseases.

The specific role of CSF-1 in microglia polarization is
unclear, but it is known that CSF-1 significantly promotes
proliferation and differentiation of microglia (M1, M2, or
other types) (Stanley and Chitu, 2014). CSF-1 usually interacts
with other molecules on microglia to enhance its role
in controlling the direction of microglia polarization. This
effect is similar to that of glucocorticoids that enhance
the vasoconstriction of catecholamines by permissive action.
CSF-1 upregulates TLR-4 and CD14 expression in microglia
through ERK1/2 and p38, and thus promotes the LPS-induced

microglia polarizing to proinflammatory phenotype (Parajuli
et al., 2012). When CSF-1 is inhibited, this “permissiveness”
effect is mitigated, reducing the inflammatory response. The
inhibition of colony-stimulating factor 1 receptor (CSF-1R)
exerted neuroprotection in ischemia cerebral stroke mice model
through inhibiting microglia M1 polarization and NLRP3
pathway and increasing the balance function of injured mice
(Liu et al., 2020).

Colony-stimulating factor 1 also plays an important
role in TBI. An experiment by Li et al. (2020) showed
that both immediate administration (within 24 h after
injury) and the sequelae stage (3 months after injury) could
effectively improve the recovery of cognitive function in
m-TBI mice (Rajabi et al., 2021). Further studies showed that
microglia activity was inhibited after drug administration,
but the changes in microglia function were not elaborated.
A previously published paper showed that eliminating
chronically activated microglia by inhibitors of the CSF-1R
could improve long-term neurological function after TBI
(Henry et al., 2020). This experiment further indicated that
if the inflammatory response of microglia after TBI could be
precisely controlled, the therapeutic window of TBI will be
greatly increased. As a cytokine targeting microglia, CSF-1
needs more basic and clinical studies on how to better apply it
in clinical practice.

Discussion

Traumatic brain injury has become a major health
and socioeconomic problem worldwide. Primary injuries in
TBI are largely irreversible, so the secondary damage stage
becomes the only way to administer therapeutic measures.
Neuroinflammation is the most important mechanism in
secondary injury, and microglia play an important role in
neuroinflammation. After microglial polarization, the cell
phenotype changes, and its functions also change significantly.
In this review, we have summarized that polarization of
microglia to the M1 phenotype contributes to secondary damage
after TBI, and M2 phenotype microglia aid in recovery from
TBI. How to control the directions of polarization of microglia
after TBI is an important consideration in the treatment of
patients with TBI. We further summarized the cell-signaling
pathways that were involved in microglial polarization after
TBI, which provides a theoretical basis for further research
and development of drugs targeting microglial polarization.
In this paper, we also summarized some newly developed
drugs and some new usages of old drugs that mainly inhibit
the polarization of M1 microglia in the treatment of clinical
patients. However, it is well known that M1 microglia are
beneficial for a short period of time after TBI. Therefore, how
to use existing clinical measures to detect when to use drugs to
inhibit M1 microglia has become a current hotly discussed and
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difficult consideration, and more experiments are needed to put
forward feasible measures in this aspect.
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