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Abstract 

Background: The remarkable growth of genome-wide association studies (GWAS) has created a critical need to 
experimentally validate the disease-associated variants, 90% of which involve non-coding variants.

Methods: To determine how the field is addressing this urgent need, we performed a comprehensive literature 
review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language 
processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the 
GWAS catalog, yielding a final set of 286 articles.

Results: We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 
human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted 
through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 
24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcrip-
tion factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chroma-
tin interaction (n = 33).

Conclusions: This review of the literature is the first to systematically evaluate the status and the landscape of experi-
mentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifac-
eted approach needed for experimental validation, have practical implications on variant prioritization and considera-
tions of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, 
we show that progress is being made and provide exemplars of validation studies covering a wide variety of mecha-
nisms, target genes, and disease areas.
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Background
A central goal of genetics is to identify the genetic under-
pinnings of human diseases. Advancements in human 
genetics and its related fields and technologies over 

the past decades have had a remarkable impact on our 
understanding of human disease pathophysiology, diag-
nosis and management [1]. In Mendelian disorders and 
rare genetic diseases this often takes the form of a loss-
of-function mutation or genomic abnormality driving 
the disease phenotype. There are more than 5,000 dis-
eases that belong to this category accounted for in the 
Online Mendelian Inheritance in Man (OMIM) database 
[2]. For complex diseases, there are multiple genetic and 
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environmental factors contributing to disease risk and 
the identification of genetic risk factors associated with 
complex diseases has been rapidly accelerating with the 
utilization of next generation sequencing and dense array 
genotyping technologies in genome-wide association 
studies (GWAS). In a GWAS, thousands of genetic vari-
ants are genotyped in individuals which are then used to 
identify statistical associations between variants at cer-
tain genomic loci and a particular phenotype [3]. Since 
the first reported GWAS association for age-related mac-
ular degeneration [4] the use of these studies have grown 
exponentially, with over 200,000 genetic variants asso-
ciated with more than 3000 human traits reported [5]. 
The remarkable growth of GWAS has created a critical 
need to experimentally identify and validate the disease-
associated variants [6, 7]. This barrier has hindered the 
translation of GWAS findings to disease biology mecha-
nisms and hence therapies. There are seemingly very few 
examples of GWAS-identified genetic loci at which the 
causal variant and molecular mechanisms driving the 
association have been experimentally determined, espe-
cially considering the sheer number of genotype–phe-
notype associations that have been reported passing the 
genome-wide significance threshold.

Dissecting GWAS loci to uncover the underlying biol-
ogy is a complicated multi-step process. High linkage 
disequilibrium (LD) between many variants often neces-
sitates utilizing statistical fine-mapping approaches and 
overlapping with functional genomic annotations for 
prioritization of variants before experimental validation 
[3, 8]. For coding variants, the target gene is identified 
directly from the genomic location of the variant [9]. As 
protein-coding regions represent only a small percentage 
of the human genome, more than 90% of GWAS associ-
ated variants are annotated to be within non-coding parts 
of the genome [5]. Experimental identification and vali-
dation of non-coding variants involves additional level of 
complexity as compared to coding variants requiring the 
application of additional approaches [10, 11]. Moreover, 
the functionality of regulatory elements is often cell-type 
specific, which necessitates studying the mechanism in 
disease-relevant cell types [12].

Experimental identification and validation are criti-
cal elements in translating GWAS findings. To date 
there has been limited study of the number of GWAS-
identified loci that have been experimentally validated. 
A systematic literature review of 36,676 published arti-
cles identified 309 experimentally validated non-coding 
GWAS variants, regulating 252 genes across 130 human 
disease traits. This review of the literature is the first to 
systematically evaluate the status and the landscape 
of experimentation being used to validate non-coding 
GWAS-identified variants. We additionally curated key 

information from all included studies such as validated 
variant class, distance-to-target gene, and experimental 
validation methods. Our findings have value for future 
experimental validation studies, target gene prioritiza-
tion and functional variant prediction. The approaches 
utilized to validate coding variants as well as current 
methods used to nominate candidate functional variants 
for functional studies are outside the scope of this manu-
script and have been reviewed previously [8, 9].

Methods
We conducted a systematic literature search and report 
it in compliance with the standards set forth by the 
2020 PRISMA statement on the reporting of system-
atic reviews [13]. As a traditional keyword-based search 
approach would not enable us to thoroughly search for 
all relevant concepts and combinations, we leveraged 
natural language processing (NLP) and ontology-based 
text mining to ensure a systematic identification of rel-
evant validation articles [14, 15]. We defined the scope to 
include studies that perform validation of GWAS associ-
ated non-coding variants at least at a molecular level.

In order to build a comprehensive literature search 
strategy, we first identified 28 validation studies from 
recent reviews and published resources [6, 7, 16]. These 
index studies were evaluated to identify the optimal 
keywords and concepts that would be used in the sys-
tematic literature search. Figure 1 shows a flow diagram 
summarizing the systematic literature search approach 
that was employed. The systematic literature search was 
conducted using search and filter concepts identified by 
thorough manual and text mining-supported concept 
analysis of index articles. The initial broad search was 
based on four different sub-queries aimed at identifying 
any articles that might include experimental validation of 
GWAS variants. We included explicit mention of GWAS, 
non-coding, functional or causal variant as well as con-
textual mentions of non-coding concepts such as enhanc-
ers and promoters (Additional file  1). Queries were run 
on MEDLINE Full Index [17] (all MEDLINE content 
until February 19, 2021) using IQVIA/Linguamatics I2E 
KNIME nodes [18]. Concepts and various combinations 
were searched in title, abstract and meta-data (author 
keywords, Medical Subject Headings (MeSH) terms and 
substances) leveraging public standard life science ontol-
ogies (such as MeSH [19], NCI Thesaurus [20] or Entrez 
Gene [21], custom vocabularies and syntactical rules, 
grammatical pattern and linguistic entity classes allow-
ing to build more generalized (comprehensive) queries, 
but at the same time more precise queries than stand-
ard key word search engines. The PMIDs identified by 
each query were combined and filtered for publication 
year ≥ 2007 (using “PubMed Publication Data (entrez)”). 
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After removing duplicates, we arrived at 36,676 unique 
articles (Fig.  1A). We built seven filters reflecting our 
key inclusion criteria to narrow down the search results: 
(1) filter for primary research articles and exclude other 
article types, (2) GWAS and/or association filter, (3) fil-
ter for any human disease, (4) filter for any human gene 
(RefSeq), (5) filter for explicit mention of “non-coding” 
or non-coding context (enhancers, intron, non-cod-
ing, microRNA, etc.), (6) filter for functional, causal, or 

regulatory variant or specific rsID, and (7) wet-lab experi-
mental validation techniques (Fig. 1B, Additional file 2). 
Filters were built using an in-house entity extraction and 
literature classification pipeline combining SciBite’s TER-
Mite (TERM identification, tagging & extraction) API 
coupled with SciBite’s VOCabs [22] and IQVIA/Lingua-
matics I2E Software.

In total 1454 articles passed all filter criteria and were 
then manually reviewed by three curators (Fig. 1C). All 

A. Broad search identified 36,676 
unique articles

C. 1,454 articles evaluated for 
eligibility (206 articles sought for full 

text retrieval)

B. Articles marked ineligible by automation tools:
• Reviews (n=2,977)
• No GWAS, Association, Locus (n=5,688)
• No disease trait (n=5,505)
• No gene name (n=2,796)
• No causal, functional variant or rsID (n=5,955)
• No non-coding context (n=5,877)
• No experimental validation (n=6,424)

D. Manual curation, articles excluded:
• No variant validation (n=366)
• Indels and coding variants (n=102)
• No disease or No rsID (n=71)
• Animal SNP or phenotype (n=30)
• Article full-text not available (n=10)

F. 875 articles cross-referenced 
against the GWAS Catalog

H. 286 articles included

G. GWAS Catalog cross-
referencing, articles excluded:
• Different GWAS trait (n=311)
• Non-GWAS associated (n=278)

E. 875 articles annotated to identify:
• Validated variant rsID
• Variant class
• Target gene
• Associated disease

Fig. 1 Systematic literature search and validation approach. Flow diagram demonstrating the systematic literature search strategy starting with 
A broad Medline search including all potentially related articles. The search included several concepts related to GWAS, non-coding contexts and 
other related terms detailed in Additional file 1. B Using text-mining of article titles, abstracts and metadata, we built seven filters to narrow down 
the search results which excluded 35,222 articles. Exact search terms and their combinations used in the filters are provided in Additional file 2. C 
1454 articles of interest that passed all the filters were manually screened and evaluated for eligibility. D Through manual curation an additional 
set of 579 articles was excluded. E 875 eligible articles that passed manual curation were annotated to identify key information from each study. F 
These articles proceeded to cross-referencing against the GWAS Catalog to ensure that the validated variants and their reported associated disease 
trait match known GWAS associations. G Cross-referencing excluded 598 articles with poor GWAS trait matches or no variant match. H The final 
systematic review includes 286 articles. Reasons for exclusion at each stage are shown in red on the right side and described in more detail in the 
main text
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articles had to meet the following criteria to be con-
sidered for inclusion: (1) investigate variants associ-
ated with a human disease, (2) include experimental 
wet-lab molecular validation of one or more variants, 
(3) include putative validation of at least one non-
coding variant, and (4) investigate single nucleotide 
polymorphisms (SNPs), excluding indels, purely cod-
ing, somatic, or rare variants. Abstracts and full texts 
were reviewed resulting in the exclusion of 579 arti-
cles (Fig.  1D). Overall, this manual review identified 
875 potentially relevant articles. All these articles were 
manually curated to confirm the rsID of the reportedly 
validated variants, variant class, the reported regulated 
gene, and the associated disease (Fig. 1E).

We then used the information on the validated vari-
ant’s rsID and disease trait to cross validate our data 
with the GWAS Catalog [5] (accessed Mar 25, 2021) to 
confirm that each curated variant-disease association is 
reported in a GWAS (Fig. 1F). Corresponding associa-
tions were identified through LD between the curated 
SNP and the reported GWAS Catalog SNP, and simi-
larity between the reported GWAS trait and the traits 
extracted from the PubMed abstract as detailed below. 
Because the GWAS Catalog only reports the lead vari-
ant for each locus, and this variant is not necessar-
ily identical to the causal variant for the association, 
we performed an LD expansion from each top SNP 
to identify additional possible causal variants. Broad 
ancestry as reported in the GWAS Catalog was mapped 
to a 1000 Genomes superpopulation following meth-
ods we described recently [23]. For each associated 
SNP in the GWAS Catalog, an LD expansion was per-
formed to identify SNPs within 1 Mb with LD  r2 ≥ 0.5 
in the corresponding 1000 Genomes super-population. 
A minor allele count threshold of 5 within the corre-
sponding superpopulation was applied to reduce the 
impact of high variance LD estimates for rare variants. 
If it was not possible to map to a single superpopula-
tion, LD expansion was performed using the full 1000 
Genomes Phase 3 GRCh38 liftover to match the build 
used in the GWAS Catalog [24]. When the GWAS 
Catalog reported a specific risk allele, our LD expan-
sion took this into account, such that for multiallelic 
SNPs we would only identify variants correlated with 
the reported allele. The choice of LD threshold is moti-
vated by the goal to capture GWAS associations that 
could plausibly be explained by the cataloged variant 
and has been used elsewhere[25]. Using this methodol-
ogy, it was possible to perform LD expansion for 91% of 
variants in the GWAS Catalog. GWAS Catalog variants 
for which an LD expansion was not possible were still 
included in the analysis but could only be matched to 

the reported variant rather than other possible causal 
variants.

GWAS Catalog Experimental Factor Ontology (EFO) 
terms and disease terms curated from the literature 
were mapped to the 2020 MeSH thesaurus vocabulary 
using the approach outlined previously [26]. To allow 
for inexact matches in MeSH terms (e.g., hypertension 
and systolic blood pressure), we use two similarity met-
rics: Lin-Resnik average similarity with a cutoff value of 
0.75 [26, 27] and odds ratio of MeSH term co-occurrence 
in the same PubMed article with a cutoff of 20 [23]. We 
count a match between an article identified in our sys-
tematic review and a GWAS study if any GWAS Cata-
log association satisfies the following criteria: (1) The 
reported variant in the GWAS Catalog has LD  R2 ≥ 0.5 
to at least one curated variant, and (2) the reported trait 
in the GWAS Catalog has similarity to a main or manu-
ally curated disease from the PubMed abstract, meeting 
or exceeding the cutoff value. We excluded 347 SNPs in 
311 articles from the analysis due to not being linked to 
a GWAS Catalog SNP. A further 292 SNPs contained 
within 278 articles were excluded due to a poor match 
between the reported GWAS trait and the trait reported 
in the abstract (Fig.  1G). The final curated catalog 
includes 286 articles (Fig. 1H) [28–313].

Results
Curated catalog of 309 validated GWAS non‑coding 
variants
Several prior studies have emphasized the importance of 
experimental validations to uncover the biological pro-
cesses underlying the statistical GWAS associations [3, 
6, 7, 314, 315]. The final list of 286 articles reports 309 
experimentally validated functional non-coding variants 
regulating 252 genes across 130 human-diseases (Addi-
tional file 3 and Fig. 2). Additional File 3 includes several 
important aspects about the included articles and vari-
ants including PubMed identifiers (PMID), variant rsID, 
location, class, target gene as well as disease associations 
and experimental validation approaches. We examined 
several characteristics of the validated non-coding vari-
ants in relation to GWAS catalog studies and variants. 
Between 2007 and 2020 there is a steady increase in the 
number of validation articles over time up to the 286 we 
report here. In contrast, the total number of published 
GWAS articles is 4342 versus 286 validation articles for 
non-coding variants (Fig.  3A). Next, we evaluated the 
relationship between disease heritability explained by 
common SNPs and the ratio of validated variants to the 
total number of lead-GWAS variants. We mapped dis-
ease associations for all variants to the higher order dis-
ease categories in the MeSH terms tree structure. For 
heritability estimates, we considered liability scale h2 



Page 5 of 21Alsheikh et al. BMC Medical Genomics           (2022) 15:74  

Promoter

Cis-regulatory element

Non-coding RNA

Validated Variant classGWAS Diseases association
Neoplasms
Cardiovascular System
Immune System
Musculoskeletal System
Endocrine System
Digestive System
Nervous System
Nutritional and Metabolic
Others

309 validated non-
coding variants 

regulating 252 genes 
across 130 diseases

Fig. 2 Map of 309 validated GWAS non-coding variants. The Circos plot displays the 309 experimentally validated variants studied within the 286 
included articles. The outer most layer (i) shows the validated variants’ 252 target genes, (ii) the chromosomal map, (iii) the location of validated 
variants marked by their rsIDs, (iv) using higher order ontology mapping, we display inner links between variants associated with diseases in the 
same category. Disease systems that contain ten or more validated variants are displayed while those contain less than ten validated variants are 
grouped in “Others” category, and (v) the manually annotated validated variant class. Additional File 3 contains all variant details and annotations
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for UK Biobank phenotypes estimated using LD Score 
Regression[316, 317] which (1) mapped to a MeSH dis-
ease (2) were considered high or medium confidence and 
averaged the heritability across higher level MeSH to 

get average heritability per disease category.  Using this 
approach, we find a statistically significant (p = 0.01; cor-
relation coefficient 0.51) positive relationship between 
mean heritability and the ratio of validated/lead GWAS 
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variants per disease category (Fig.  3B). Examination of 
individual validated variants showed the majority of vali-
dated variants are in strong LD with and in close proxim-
ity to the GWAS variant (Fig. 3C, D). Allele frequencies 
of validated variants have slightly skewed distribution 
with fewer validated variants having lower allele frequen-
cies (Fig. 3E). Comparing the location of experimentally 
validated non-coding GWAS variants to GWAS lead var-
iants, we found that validated variants are about equally 
likely to be located within a protein-coding gene (58% 
for functional variants versus 55% for GWAS lead vari-
ants). However, they are much more likely to be within 
10 kb of a gene boundary (20% versus 11%) and much less 
likely to be more than 100 kb from the nearest gene (7% 
versus 16%) (Fig. 3F). Overall, these findings quantify the 
persistent need for more experimental validation studies 
to bridge the gap between association and biology. These 
findings also suggest that focusing experimental valida-
tion efforts to variants in close proximity and strong LD 
to the lead GWAS variant would lead to the identification 
of a causal variant in the majority of genetic loci.

Validated variants regulate 252 target genes 
through a variety of mechanisms
Non-coding genetic variants can exert their effect on tar-
get genes through a variety of mechanisms [318–320]. 
We divided variants into three broad categories based on 
their mechanism of regulation: cis-regulatory element 
(CRE) variants, promoter variants and variants acting 
through non-coding RNAs (Fig.  4A). Promoter variants 
were grouped separately from other CREs because they 
are functionally distinct and in addition the methods uti-
lized for their validation are different from other CREs. 
Below we highlight several exemplar studies validat-
ing variants across all these mechanisms and many dis-
eases. Interestingly, the majority of non-coding variants 
identified in our catalog regulate genes through CREs 
(n = 215). These include variants in enhancers such as 
rs4420550-MAPK3-TAOK2 in schizophrenia [168], 
rs11236797-LRRC32 in inflammatory bowel disease [40], 
and rs9349379-EDN1 in vascular diseases [49]. Some 
variants exerted their effect through silencers such as 
rs12038474-CDC42 in endometriosis [130], rs2494737-
AKT1 in endometrial carcinoma [37] and rs9508032-
FLT1 in acute respiratory distress syndrome[267]. 
Additionally, rs12936231-GSDMB-ORMDL3-ZPBP2 

seems to function through an insulator in an asthma and 
autoimmune disease risk locus [71].

Variants in gene promoters can alter transcription 
factor binding and promoter activity. For example, 
rs1887428-JAK2 in inflammatory bowel disease [256], 
rs11789015-BARX1 in esophageal adenocarcinoma 
[88], rs4065275-ORMDL3 and rs8076131-ORMDL3 in 
asthma, [248] and rs11603334-ARAP1 in type 2 diabetes 
mellitus [34]. DNA methylation is an important epige-
netic mechanism of gene regulation and increased DNA 
methylation at gene promoters can repress gene tran-
scription [321, 322]. We identified several validated vari-
ants that appear to alter promoter methylation including 
rs780093-NRBP1 in gout [127], rs143383-GDF5 in 
osteoarthritis [119], and rs35705950-MUC5B in idi-
opathic pulmonary fibrosis [258]. Alternatively, variants 
could alter promoter and transcription start site usage. 
Examples for these mechanisms in our catalog include 
rs922483-BLK in systemic lupus erythematosus [302] and 
rs10465885-GJA5 in atrial fibrillation [32].

The third broad category by which variants from our 
catalog exert their regulatory effect is through non-cod-
ing RNAs [323]. microRNAs are a major and well-stud-
ied class of regulatory small non-coding RNAs. Variants 
in microRNAs are known to impact disease biology 
through post-transcriptional regulation of their target 
genes, primarily via 3’ untranslated region (UTR) binding 
[324–326]. GWAS variants located within microRNAs 
can alter their biogenesis, expression levels and/or tar-
get specificity, while variants located in target genes are 
capable of altering microRNA binding sites [326]. Exam-
ples of validated variants within microRNAs included in 
this catalog are miR-196a2 variant rs11614913 regulating 
SFMBT1 and HOXC8 in metabolic syndrome [277], and 
miR-4513 variant rs2168518 regulating GOSR2 in cardio-
metabolic diseases [51]. Given that microRNAs typically 
target hundreds to thousands of genes, it is very difficult 
to confidently assign target genes that are mediating the 
effect of a microRNA variant. On the other hand, study-
ing variants located within mircoRNA-binding sites of 
target genes may yield more success in assigning under-
lying mechanisms [326, 327]. There are numerous exam-
ples of such variants reported in this catalog, such as 
rs5068 altering regulation of NPPA by miR-425 in hyper-
tension [96], rs1058205 altering regulation of KLK3 by 
miR-3162-5p and rs1010 altering regulation of VAMP8 

Fig. 4 Non-coding variants regulate 252 target genes through diverse mechanisms. A Illustration of some of the diverse mechanisms of regulation 
within each variant category. Examples of each mechanism from included studies are discussed in the text. B Cumulative number of validated 
variants grouped by non-coding variant categories over time. C We used Encode’s Biomart and hg38 to calculate the distance (in kb) between 
validated variants and their target gene’s closest transcription start site (TSS). Graph plots the number of variant- gene pairs grouped by variant 
class. Variants more than 200 kb away are plotted at 200 kb. D Distribution of CRE variants relative to their target gene. CRE = Cis-Regulatory 
Element, ncRNA = non-coding RNA

(See figure on next page.)
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by miR-370 in prostate cancer [54], and rs372883 altering 
BACH1 regulation by miR-1257 in pancreatic ductal ade-
nocarcinoma [174]. Another important class of non-cod-
ing RNAs is long non-coding RNAs that are recognized 
to play an important role in biology and disease [328, 
329]. Some examples of long non-coding RNA variants in 
this catalog include rs6983267 in CCAT2 regulating can-
cer metabolism through allele-specific binding of CPSF7 
[76] and rs2147578 in LAMC2-1 modulating microRNA 
binding to it in colorectal cancer [43]. We examined the 
distribution of these three broad categories of validated 
variants across publication dates. We observed a steady 
increase in the validation of promoter variants (n = 70) 
and variants acting through non-coding RNAs (n = 24) 
since 2007, but a sharp increase in the number of stud-
ies validating CRE variants around 2015. This trend 
persisted through 2020 to reach a total of 215 variants 
representing 70% of this catalog (Fig. 4B). We also char-
acterized the distance between each validated variant and 
its target gene’s closest transcription start site accord-
ing to variant category. As expected, promoter variants 
clustered immediately upstream or downstream of their 
target’s transcription start site. CRE variants were more 
widely distributed, but nevertheless, 157 (66%) of these 
fell within 50  kb from their target gene TSS. A notable 
example of a distally acting enhancer variant > 50  kb, is 
the obesity FTO locus variant rs1421085 regulating IRX3 
and IRX5, which are 500  kb and 1,163  kb away respec-
tively [147]. Since the majority of variants acting through 
non-coding RNAs identified in our catalog were located 
within 3’ UTRs, this group of variants tended to cluster 
within 100  kb downstream of gene transcript start sites 
(Fig. 4C). The dataset gave us the opportunity to exam-
ine the relationship between CRE variants and their 
target genes (n = 235 CRE variant-target gene pairs). 
Plotting the distribution of CRE variants based on their 
location relative to the target gene indicated that 41% of 
CRE variants are located within their target gene, and 
an additional 30% are intergenic and their target gene is 
the closest gene to the variant. 14% of CRE variants were 
intergenic and their target gene is not the closest gene, 
and the remaining 15% are located within a different 
gene than their target gene. (Fig.  4D). These results are 
interesting and provide greater support for consideration 
of same gene and nearby genes as candidate targets for 
CREs. These findings are also in agreement with recent 
empirical data [330, 331].

Next, using text mining, we extracted and analyzed 
the experimental methods that were used in each study 
to validate variants. We broadly classified them under 
six broad categories covering different types of estab-
lished validation techniques and related terms: (1) gene 
expression, including eQTL and molecular assessment 

of target gene expression and allele specific regulation 
(n = 272 articles), (2) reporter assays, including luciferase 
and massively parallel reporter assays (n = 171 articles), 
(3) transcription factor binding, including chromatin 
immunoprecipitation and electrophoretic mobility shift 
assays (n = 175 articles), (4) in  vivo or animal models 
(n = 104 articles), (5) genome editing, including CRISPR 
and TALEN (n = 96 articles), and (6) chromatin inter-
action, including chromosome conformation capture 
(n = 33 articles) [11]. We examined the number of these 
approaches that were utilized by the included studies and 
found that 189 (66%) of all articles utilized three or more 
approaches (Fig.  5). These results demonstrate the mul-
tifaceted approach needed for validation of non-coding 
variants [11].

Discussion
GWAS have seen a remarkable growth in the past dec-
ade. The impact of GWAS on human healthcare is 
severely limited by the bottle neck of experimental vali-
dation of disease-associated variants. Here, we report 
the first systematic approach to curate all experimental 
validation studies of non-coding GWAS variants. While 
there is general recognition that experimental validation 
of GWAS are seriously lacking [7], this systematic assess-
ment of (1) the number of published experimentally vali-
dated non-coding variants is quantified, (2) cataloged, 
and (3) methods used in identified studies analyzed.

Using a comprehensive approach, we employed natu-
ral-language processing-based text mining, manual cura-
tion and GWAS catalog cross validation. We have curated 
286 validation studies that include 309 putatively vali-
dated variants regulating 252 genes across 130 diseases. 
We then evaluated several important characteristics of 
the identified variants and their relation to GWAS lead 
variants. The ratio of validated non-coding variants to 
total GWAS lead variants showed a positive correlation 
to the mean heritability of disease groups. This relation-
ship could indicate greater success in validating variants 
in diseases with higher heritability perhaps because of 
greater individual contribution of these variants to the 
overall disease susceptibility. This could also potentially 
represent a greater interest of scientists to pursue valida-
tion of variants in more heritable diseases and with larger 
effect sizes, thus leading to greater proportion of variants 
being validated. However, we do not have enough data 
to directly address this possibility. We also evaluated the 
relationship in LD and distance between validated vari-
ants and GWAS lead variants. We find that ~ 70% of vali-
dated variants fall within 10 kb and  r2 ≥ 0.9 with the lead 
GWAS variant. On one hand, this could reflect under-
lying genetics that most validated variants are in strong 
LD with lead GWAS variants and suggests that more 
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productive research should be limited to SNPs in high LD 
and closer distance to lead GWAS variants. On the other 
hand, the status quo might be reflective of prior limits in 
search space already considered by scientists who per-
formed validation studies, however we do not have data 
to support this possibility[8].

Next, we annotated variants into broad classes based 
on the mechanisms by which these non-coding variants 
acted. This identified several interesting patterns, such 
as an increase in the number of variants functioning 
through cis-regulatory elements over time. One explana-
tion for this increase could be the growing awareness of 
the importance of these regulatory elements in human 
biology and disease which has led to the initiation of 
large projects aimed at identification, annotation and 
prioritization of non-coding regulatory elements [10, 
320, 332]. Additionally, several SNP-enrichment analyses 
have demonstrated that GWAS variants are significantly 
enriched in active regulatory regions [314]. We expect 

this trend to continue with publications by larger con-
sortia and projects that investigate regulatory elements 
in different life stages, tissues and biological conditions 
[332]. Interestingly, the majority of cis-regulatory ele-
ment variants that we found appeared to act through 
transcriptional enhancers. This dominance of enhancer 
variants over other regulatory elements might be a result 
of enhancer elements having more clearly defined func-
tions and biochemical markers (i.e., histone modifica-
tion signatures) [333, 334]. This highlights the potential 
for increased discovery of GWAS variants acting through 
silencers and insulators as our understanding of their dis-
tinct biochemical signatures is refined and assayed in dis-
ease relevant cell types [333, 335].

Our comprehensive search and filter strategy enabled 
us to identify validated variants across a large number 
of complex human diseases and those that act through 
a myriad of mechanisms. Nevertheless, the systematic 
search was limited to the MEDLINE database. Relevant 

Fig. 5 Studies utilize multiple avenues in validating non-coding variants. Using text-mining of abstracts and metadata, we examined the utilization 
of different avenues for non-coding variant validation across 286 included articles. The six broad categories were gene expression, reporter assays, 
transcription factor binding, in vivo or animal models, genome editing, and chromatin interaction. The intersection size denotes the number of 
articles that have the combination of validation categories below it. The color denotes the number of avenues used; pink – 6, orange—5, green—4, 
black—3, blue—2, red—1. The upset plot shows the overlap of the variant validation avenues and the number of articles. The Set size bars on the 
right reflect the total number of studies that used/employed each of the categories
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articles published in journals not indexed in this stand-
ard database for biomedical literature will be missing in 
our data set [336, 337]. For quality control and to identify 
limitations of our search and filter approach, we analyzed 
the recall of our index studies throughout the entire pro-
cess (Fig. 1A–H). It is important to highlight that broad-
ening the initial search to include non-coding contexts 
and association/locus instead of limiting to explicit men-
tions of non-coding and GWAS terms ensured identifi-
cation of relevant studies that we had otherwise missed. 
A significant number of index articles did not explicitly 
mention these terms [48, 78, 134, 143, 147, 171, 178, 
210, 230, 256, 302]. Our final broad search covered 27 
out of the 28 index studies which demonstrates good 
search coverage. Through an iterative process, we nar-
rowed down these results, trying to maximize the recall 
of index studies while maintaining a manageable num-
ber of articles for manual review. We are aware that the 
implemented stringent criteria bias the search to exclude 
true validation articles that did not mention any dis-
ease, protein or specific experimental validation terms 
[338–345]. Additionally, the tagging of the articles and 
normalization of concepts for filtering relies on accurate 
named entity recognition (NER) and ontologies. Even 
when using highly curated, enriched vocabularies and 
state-of-the-art NER routines, recall rates of at maximum 
80–95% are assumed (depending on entity type). Over-
all, a total of 19 index studies passed all filtering stages 
and were included in the final catalog. Finally, the data 
of our curated catalog is mainly based on the publica-
tions’ abstract information. Only in cases where infor-
mation was missing or unclear in the abstract did we 
gather data from the full text. Therefore, it is possible that 
information gathered from the final set of articles may be 
incomplete. This would have affected the experimental 
validation techniques analysis in particular, which was 
based only on abstract mining.

Construction of the catalog using controlled vocabu-
laries for diseases, variants, genes, variant classes, and 
functional follow up methods is aimed to facilitate use 
in bioinformatics follow up analyses. We expect this 
resource to be useful in evaluating the performance of 
computational fine mapping and target prioritization 
methods. Quantifying the performance of these meth-
ods on real datasets has previously been hindered by 
a lack of true positive examples. A large dataset of true 
positive examples would allow researchers to compu-
tationally identify features associated with functional 
variation. Recent efforts to compile such true positive 
datasets and use them to train target prioritization meth-
ods have come with concerns about bias towards coding 
variation [16] or are aimed at a specific trait subset such 
as molecular phenotypes [346] or immune disease [347]. 

We expect this catalog to contribute a large number of 
much needed examples of functional noncoding vari-
ants in human disease and the genes on which they act. 
Despite this important contribution, bias towards nearby 
genes and variants to the top GWAS SNP is still a con-
cern for our catalog due to the limited number of variants 
and genes evaluated in the cataloged studies. To gener-
ate an unbiased training set for computational methods, 
an ideal functional study following up on a GWAS asso-
ciation would consider all credible causal SNPs and their 
nearby genes, but studies in our catalog typically consider 
a more limited set of genes and SNPs. For example, eQTL 
variants may be shared among multiple transcripts [348], 
and in this scenario functional studies considering only 
a single gene could be misleading about the causal gene.

Conclusions
This review is the first to systematically evaluate the sta-
tus and the landscape of experimentation being used 
to validate non-coding GWAS-identified variants. Our 
results clearly underscore the multifaceted approach 
needed for experimental validation. The findings of vali-
dated variants relationship to lead GWAS variants as 
well as to their target genes provide practical insights for 
future validation studies. Finally, we aim for the catalog 
to be a useful resource aiding in the development of pre-
diction tools by providing a truth set of experimentally 
validated variants. Collectively this contributes to the 
overall effort to bridge the gap between genetic associa-
tion and function in complex diseases.
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