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Ras proteins are membrane-bound small GTPases that promote cell proliferation,
differentiation, and apoptosis. Consistent with this key regulatory role, activating
mutations of Ras are present in ∼19% of new cancer cases in the United States per
year. K-Ras is one of the three ubiquitously expressed isoforms in mammalian cells, and
oncogenic mutations in this isoform account for ∼75% of Ras-driven cancers. Therefore,
pharmacological agents that block oncogenic K-Ras activity would have great clinical
utility. Most efforts to block oncogenic Ras activity have focused on Ras downstream
effectors, but these inhibitors only show limited clinical benefits in Ras-driven cancers due
to the highly divergent signals arising fromRas activation. Currently, four major approaches
are being extensively studied to target K-Ras–driven cancers. One strategy is to block
K-Ras binding to the plasma membrane (PM) since K-Ras requires the PM binding for its
signal transduction. Here, we summarize recently identified molecular mechanisms that
regulate K-Ras–PM interaction. Perturbing these mechanisms using pharmacological
agents blocks K-Ras–PM binding and inhibits K-Ras signaling and growth of
K-Ras–driven cancer cells. Together, these studies propose that blocking K-Ras–PM
binding is a tractable strategy for developing anti–K-Ras therapies.
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INTRODUCTION

RAS genes were initially identified as the viral oncogenes of acute transforming retroviruses, and it
was designated as a mammalian proto-oncogene when mutated RAS genes were discovered in
human cancer cells (Barbacid, 1987). There are three main Ras isoforms—H-, N-, and K-Ras—in
mammalian cells, and each is encoded by a different gene. H-, N-, and K-RAS are situated on
chromosomes 11 (11p15.1-p15.5), 1 (1p22-p32), and 12 (12p12.1-pter), respectively (Barbacid,
1987). There are four exons that code for H- and N-RAS, while in K-RAS, there are two alternative
fourth exons, exons 4A and 4B, that yield two splice variants, K-Ras4A and K-Ras4B (Barbacid,
1987). While H-, N-, and K-Ras4B are ubiquitously expressed in mammalian cells, K-Ras4A is
precisely and spatiotemporally expressed in the murine lung, liver, and kidney (Pells et al., 1997).
Knockout studies showed that neither H- nor N-RAS individually or in concert are required for
normal murine embryogenesis (Esteban et al., 2001), whereas K-RAS is unequivocally crucial to
embryonic development (Johnson et al., 1997; Koera et al., 1997). Intriguingly, K-Ras knockout mice
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with spatiotemporally controlled expression of H-Ras by the
K-Ras promoter have their embryonic lethality restored but
develop dilated cardiomyopathy associated with arterial
hypertension at an older age, reflecting the different molecular
functions of Ras isoforms in the cell (Potenza et al., 2005).

While the three Ras isoforms are nearly identical, sharing
∼90–100% homology in their N-terminal catalytic domain
sequences, there is a considerable lack of homology in the
C-terminal hypervariable region (HVR) of each isoform,
which accounts for <15% homology being shared between any
two isoforms (Hancock, 2003). These HVRs consist of two
different signal sequences that allow Ras proteins to traffic to
and interact with the inner leaflet of the plasma membrane (PM)
(Hancock et al., 1989). The CAAXmotif, the first signal sequence,
is constituted by the last four amino acid residues in the HVR and
is shared in common between the different Ras isoforms. For
CAAX, C is cysteine, A is an aliphatic amino acid, and X is either
serine or methionine (Hancock et al., 1989). Newly synthesized
Ras GTPases are cytosolic and require a series of posttranslational
modifications of the CAAX motif for interacting with
endomembranes. First, the CAAX motif is farnesylated by a
cytosolic farnesyltransferase (FTase) that covalently attaches a
farnesyl group to the cysteine residue via a thioether bond.
Farnesylated Ras interacts with the cytosolic leaflet of the
endoplasmic reticulum (ER), where the AAX tripeptide is
removed by the Ras and a-factor–converting enzyme (Rce1).
The now C-terminal cysteine is methylated by
isoprenylcysteine carboxyl methyltransferase (Icmt) (Hancock
et al., 1989). The CAAX motif must be processed in this series
of steps in order to maintain the correct forward trafficking of Ras
isoforms, since knockout of either Rce1 or Icmt results in Ras
mislocalization to the cytosol (Kim et al., 1999; Lau et al., 2014).

While the correctly modified CAAXmotif can direct Ras to the
ER and other endomembranes, the presence of the second
C-terminal signal motif is required for maximal membrane
affinity and PM localization (Hancock et al., 1990). The
second signal sequence situated within the HVR varies
between the different Ras isoforms such that both H-Ras, N-
Ras, and K-Ras4A are palmitoylated (Cys181 and Cys184 for
H-RasCys181 for N-Ras and Cys180 for K-Ras4A), while K-
Ras4B has a stretch of six lysine residues, forming a polybasic
domain (PBD) (Lys175-180) (Hancock et al., 1990).
Palmitoylation of H- and N-Ras by the Ras
palmitoyltransferase takes place in the ER and Golgi complex,
where H- and N-Ras are transported via the classical secretory
pathway to the PM (Apolloni et al., 2000). While palmitoylation
of H- or N-Ras is a short-lived modification with rapid kinetics
(t1/2 of <20 min), the depalmitoylation/repalmitoylation
machinery is important for delivering consistent H- and
N-Ras distribution between the Golgi and the PM at a steady
state (Rocks et al., 2005; Rocks et al., 2010). Palmitoylated Ras
proteins diffuse from the PM to other endomembrane
compartments to reach equilibrium, but depalmitoylation by
poorly characterized thioesterases enhances the rate of
diffusion, and thereby promotes their continuous redirection
to the ER and Golgi for repalmitoylation and unidirectional
trafficking back to the PM (Rocks et al., 2005; Rocks et al.,

2010). The exact mechanism on how posttranslationally
modified K-Ras4B (hereafter K-Ras) is transported from the
ER to the PM is not fully characterized. Recent studies have
demonstrated that the delta subunit of cGMP phosphodiesterase
6 (PDE6δ) functions, in part, as a K-Ras chaperone to
maintain K-Ras–PM localization. PDE6δ binds the farnesyl
moiety of cytosolic K-Ras, which is released in perinuclear
membranes by the release factors Arl2 and 3, from where it is
trapped on the recycling endosome (RE) by electrostatic
interaction, and it returns to the PM via vesicular
transport (Ismail et al., 2011; Chandra et al., 2012;
Schmick et al., 2014). Once K-Ras is transported to the
PM, it binds the PM through an electrostatic interaction of
the strong positive charge of the C-terminal PBD with
anionic phospholipid head groups in the inner PM leaflet
(Yeung et al., 2008; Zhou et al., 2017).

K-RAS AND CANCER

Oncogenic mutations in Ras are found in about 18.7% of new
cancer cases in the United States per year (1.3% for H-Ras, 3.1%
for N-Ras, and 14.3% for K-Ras) (Prior et al., 2020). While the
oncogenic mutant K-Ras is found in approximately 88% of
pancreatic, 50% of colorectal, and 32% of lung cancers (Prior
et al., 2020), no anti–K-Ras drugs are currently available in clinics.
Human cancer cells harboring oncogenic mutant K-Ras
reprogram their signaling network so that their survival and
growth depend on oncogenic K-Ras signaling, a phenomenon
called K-Ras addiction (Weinstein and Joe, 2008; Singh et al.,
2009; Hayes et al., 2016). RNAi-mediated knockdown of
oncogenic mutant K-Ras blocks cell survival and growth in a
range of pancreatic and non-small-cell lung cancers (NSCLC),
which provides the rationale that blocking oncogenic K-Ras
activity is a valid approach to treat K-Ras-dependent cancers.
Recently, two new K-Ras direct inhibitors have shown promising
outcomes in clinical trials. AMG 510 and MRTX849 are small
molecules that bind to the GDP-bound inactive K-RasG12C
mutant and form a covalent bond to the mutant Cys, which
locks K-Ras in the inactive conformation, resulting in blocked
oncogenic signaling (Ostrem et al., 2013). These compounds
exhibited pronounced anticancer effects in K-RasG12C tumor
mice models and clinical trials with lung and colorectal cancer
patients harboring the K-RasG12C mutant (Canon et al., 2019;
Hallin et al., 2020). Despite the promising clinical outcome of
these inhibitors, they are specific to the K-RasG12C mutant,
which is found in ∼3% of pancreatic, ∼4% of colorectal, and ∼13%
of lung cancers that harbor any oncogenic mutations in K-Ras
(Cox et al., 2014; Prior et al., 2020), suggesting that these
inhibitors would be suitable only for a small portion of cancer
patients with the oncogenic mutant K-Ras.

In addition to K-RasG12C–specific direct inhibitors, there are
three other approaches that are currently being investigated for
blocking all oncogenic mutant K-Ras activity. They are 1)
blocking K-Ras interaction with the PM, 2) inhibiting K-Ras
downstream effectors, and 3) dysregulating cell energy
metabolism. This review will focus on mechanisms that
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regulate the PM localization of K-Ras, which could be tractable
targets for developing new anti–K-Ras therapeutics.

DISSOCIATING RAS FROM THE PLASMA
MEMBRANE BLOCKS ITS SIGNAL
TRANSDUCTION
Preventing Ras Prenylation Dissociates Ras
From the PM and Inhibits Ras Signaling
Point mutations in the CAAX motif, which block
posttranslational modification, prevent Ras–PM localization
and completely inhibit all biological activities of oncogenic
mutant Ras (Willumsen et al., 1984). Thus, farnesyltransferase
inhibitors (FTIs) were designed to phenotypically mimic this
mode of Ras inhibition. FTIs demonstrated marked antitumor
activity in H-Ras–driven in vivo and in vitro models, which
allowed phase I studies on FTIs in 1999, with some
progressing to phase III clinical trials in 2002 (Baines et al.,
2011). However, FTIs were ineffective with regard to pancreatic
cancers in phase II and III clinical trials in which oncogenic
mutant K-Ras was found in 88% of all pancreatic cancers (Cohen
et al., 2003; Van Cutsem et al., 2004; Macdonald et al., 2005). It is
because in FTI-treated cells, an alternative prenyltransferase,
geranylgeranyltransferase (GGTase), efficiently attaches the
more hydrophobic C20 geranylgeranyl moiety to K- and

N-Ras, allowing K- and N-Ras to interact with the PM and
conduct a signal transduction that is equipotent with the
farnesylated forms (Baines et al., 2011). Concomitant
inhibition of FTase with GGTase to completely block
prenylation of K- and N-Ras has been tested, but this
approach has suffered from dose-limiting toxicities (O’Bryan,
2019). Also, there are more than 100 proteins that are prenylated,
and these combined inhibitors would induce prohibitive off-
target effects, preventing their clinical effectiveness. A recent
study has demonstrated a promising strategy to specifically
inhibit K-Ras prenylation. A modified FTI with an
electrophilic moiety specifically interacts with the CAAX motif
of K-Ras but not H-Ras, resulting in the blockage of K-Ras
farnesylation and geranylgeranylation, trapping K-Ras in
the cytosol (Novotny et al., 2017). Further improvements of
this approach could lead to a more potent inhibitor of K-Ras
prenylation and activity (Novotny et al., 2017; O’Bryan, 2019).

Perturbing K-Ras/PDE6δ Interaction Blocks
K-Ras–PM Binding and K-Ras Signaling
Recent studies have shown that blocking PDE6δ interaction
with K-Ras is a tractable strategy to inhibit K-Ras–PM
localization and oncogenic K-Ras signaling. PDE6δ binds the
farnesyl moiety of K-Ras via its hydrophobic pocket and acts in
part as a chaperone. The release factors Arl2 and 3 unload K-Ras

FIGURE 1 | Recently identified molecular mechanisms that regulate the PM localization of K-Ras. K-Ras farnesylated by FTase localizes to the PM. Once K-Ras
dissociates from the PM, PDE6δ binds K-Ras via its farnesyl moiety and releases it in the perinuclear region. K-Ras is then translocated to the recycling endosome (RE)
through electrostatic interaction, where it returns to the PM viaRE-mediated vesicular transport. Blocking K-Ras prenylation or the K-Ras/PDE6δ interaction mislocalizes
K-Ras from the PM. Perturbed SM/ceramide metabolism is proposed to dysregulate the RE via altering its lipid composition, resulting in depletion of PtdSer and
K-Ras from the PM. FTase, farnesyltransferase; FTI, FTase inhibitor; PDE6δ, phosphodiesterase 6 δ; RE, recycling endosome; PtdSer, phosphatidylserine; SM,
sphingomyelin; Cer, ceramide; PI4P, phosphatidylinositol 4-phosphate; ASM, acid sphingomyelinase; NSM, neural sphingomyelinase.
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from PDE6δ in the perinuclear region, whence K-Ras binds to the
recycling endosome (RE) for redelivery to the PM via vesicular
transport (Chandra et al., 2012; Schmick et al., 2014). Deltarasin is
a small molecule that binds to the hydrophobic pocket and inhibits
PDE6δ/K-Ras interaction, resulting in K-Ras–PM mislocalization
and abrogated signaling in K-Ras–driven cancer cells (Figure 1 and
Table 1) (Zimmermann et al., 2013). Second-generation PDE6δ
inhibitors, which bind PDE6δ more tightly via extra hydrogen
bonds, have demonstrated greater potency for blocking the growth
of K-Ras–dependent but not K-Ras–independent pancreatic
cancer cells (Papke et al., 2016; Martin-Gago et al., 2017).
Moreover, deltarasin does not inhibit the growth of cells
transformed with the oncogenic mutant B-Raf or the
overexpressed epidermal growth factor receptor (EGFR) (Klein
et al., 2019), suggesting that PDE6δ inhibitors are effective against
K-Ras–dependent cancer cells. In addition, deltarasin functions
independent of K-Ras, where it promotes autophagy by activating
the AMPK/mTOR pathway, and concomitant inhibition of
autophagy and PDE6δ potentiates deltarasin-mediated cell death
by elevating reactive oxygen species (ROS) (Leung et al., 2018).
These observations suggest that deltarasin elevates cellular ROS,
which promotes autophagy (Zhang et al., 2016), and that deltarasin
in combination with an autophagy inhibitor can be a plausible
strategy for treating K-Ras–driven cancers (Leung et al., 2018).

However, PDE6δ interacts with other prenylated small GTPases
including H-Ras, N-Ras, and Rap1 (Chandra et al., 2012;
Dumbacher et al., 2018), suggesting that the effect of deltarasin
may not be K-Ras–specific. Moreover, K-Ras knockout mice have
embryonic lethality, whereas PDE6δ knockout mice develop
normally (Johnson et al., 1997; Zhang et al., 2007), indicating
that K-Ras is active in the absence of PDE6δ. In sum, PDE6δ
interaction with K-Ras is a tractable target to inhibit oncogenic
K-Ras activity, and further validation on the K-Ras specificity of
PDE6δ would promote translation into the clinic.

REDUCING PHOSPHATIDYLSERINE
CONTENT AT THE INNER PM LEAFLET
REMOVES K-RAS FROM THE PM
Phosphatidylserine (PtdSer) is an anionic phospholipid
synthesized from phosphatidylcholine (PtdCho) and
phosphatidylethanolamine (PtdEth) by PtdSer synthase 1 and
2, respectively, in mammalian cells. While PtdSer is found in the
ER and mitochondria, it is concentrated in the inner PM via
mechanisms that are not fully elucidated (Leventis and Grinstein,
2010; Kay and Fairn, 2019). PM PtdSer plays key roles in
physiological processes including the clearance of apoptotic
cells, coagulation cascade, and recruitment and activation of
signaling proteins (Leventis and Grinstein, 2010; Kay and
Fairn, 2019). The anionic head group provides a negative
electrostatic potential to the inner PM leaflet, which allows
interaction with a stretch of positively charged amino acid
residues, called PBD, of PM-localized proteins (Yeung et al.,
2008). K-Ras binds PtdSer at the inner PM leaflet through the
C-terminal PBD concomitantly with the farnesyl moiety, which
provides specificity for PtdSer over other anionic phospholipids
(Zhou et al., 2017). Recent studies have reported a number of
mechanisms that can reduce PM PtdSer content, which in turn
inhibits K-Ras–PM localization and oncogenic K-Ras signaling
output.

Phosphatidylinositol 4-Phosphate
Regulates the PMDistribution of PtdSer and
K-Ras
Phosphatidylinositol (PI) is phosphorylated to PI 4-phosphate
(PI4P) by four PI 4-kinases in mammalian cells: PI4K IIα and β
(PI4K2A and 2B) and PI4K IIIα and β (PI4KA and PI4KB) (Balla,
2013). PI4KA and 2B localize primarily to the PM, whereas

TABLE 1 | Summary of the compounds that inhibit K-Ras interaction with the PM.

Drug Target mechanism Cell lines tested References

Deltarasin Blocking interaction of PDE6 delta with
farnesylated small GTPases

Panc-Tu-1, Capan-1, MIA-PaCa2, SW480,
HCT-116, Hke3, A549, and H358

Zimmermann et al. (2013), Papke et al. (2016),
Martin-Gago et al. (2017), Leung et al. (2018),
Klein et al. (2019), O’Bryan (2019)

Staurosporine and its
analogs

Perturbing endosomal recycling of PtdSer
and depleting PtdSer PM content

MDCK and CHO Cho et al. (2012b), Maekawa et al. (2016)

Fendiline and
antidepressants

Functional inhibitor of ASM and depleting
PtdSer PM content

MIA-PaCa2, MOH, HPAC, MPanc96, Hec-1a,
Hec-1b, Hec50, NCI H23, SK-CO-1, SW948,
SW1116, and Ca-Co2

van der Hoeven et al. (2013), Cho et al. (2016)

Avicin and its analogs Inhibiting NSM and ASM Jurkat, U2OS, NB4, AsPC-1, Panc10.05,
MIA-PaCa2, HPAFII, Panc-1, H358, and
H441

Wang et al. (2010), Garrido et al. (2020)

AMG510 Forms covalent bond with Cys in the
K-RasG12C mutant, locking it in its
inactive, GDP-bound form

H1792, H358, H23, Calu-1, MIA-PaCa2, NCI-
H1373, NCIH 2030, NCI-H2122, SW1463,
SW1573, SW837, and UM-UC-3

Ostrem et al. (2013), Canon et al. (2019)

MRTX849 H1792, H358, H23, Calu-1, MIA-PaCa2,
H1373, H2122, SW1573, H2030, and
KYSE-410

Ostrem et al. (2013), Hallin et al. (2020)

Modified
farnesyltransferase
inhibitors (FTIs)

Blocks the addition of a prenyl group to
prevent Ras–membrane association

PSN-1 and SW-620 Novotny et al. (2017)

ASM, acid sphingomyelinase; NSM, neutral sphingomyelinase; FTIs, farnesyltransferase inhibitors; PtdSer, phosphatidylserine; PM, plasma membrane.
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PI4K2A and PI4KB localize to the Golgi complex (Balla, 2013). In
mammalian cells, oxysterol-binding protein–related proteins
(ORPs) 5 and 8 exchange newly synthesized PtdSer from the
ER for PI4P from the PM at ER–PM membrane contacting sites
(MCSs) (Figure 2) (Chung et al., 2015; Moser von Filseck et al.,
2015). This process is maintained by PM PI4P by PI4KA and the
concomitant PI4P hydrolysis by Sac1 phosphatase in the ER to
keep a PI4P concentration gradient across the PM and ER
(Chung et al., 2015; Moser von Filseck et al., 2015). ORP5 and
8 recruitment to ER–PM MCSs further requires additional PM
PI(4,5)P2 (Ghai et al., 2017; Sohn et al., 2018). Several studies have
reported that perturbing this exchange process reduces PM
PtdSer content and inhibits K-Ras–PM binding and K-Ras
signal output. PI(4,5)P2 reduction by the rapamycin-
recruitable 5-phosphatase domain of INPP5E to the PM
blocks ORP5 and 8 recruitment to ER–PM MCSs, whereas
increasing the PM PI(4,5)P2 level by overexpressing PI4P 5-
kinase (PIP5K) β reduces PM PI4P levels. In both cases, the
exchange of ER PtdSer for PM PI4P is perturbed, resulting in
PtdSer reduction in the inner PM leaflet (Ghai et al., 2017; Sohn
et al., 2018). Also, the acute depletion of PM PI4P by rapamycin-
recruitable Sac1 dissociates K-Ras, but not H-Ras, from the PM
and inhibits K-Ras signaling (Gulyas et al., 2017). Ras proteins are
spatially organized into nanoscale domains on the PM, called
nanoclusters, which are critical for high-fidelity Ras signal output
(Prior et al., 2003; Tian et al., 2007; Cho et al., 2012a; Cho and
Hancock, 2013). PM PI4P depletion by either ORP5 or 8
knockdown or chemical inhibition redistributes PtdSer and
K-Ras from the PM. It further disrupts K-Ras nanoclustering
and abrogates K-Ras signal output and the growth of
K-Ras–driven pancreatic cancer cells (Kattan et al., 2019).
Consistently, ORP5 and 8 are highly expressed in certain types

of cancer and involved in the prognosis of cancer patients. A high
expression of ORP8 is observed in lung cancer tissues and
hamster bile duct cancers in comparison to normal tissues
(Fournier et al., 1999; Loilome et al., 2006). ORP5
overexpression enhances the invasion of pancreatic cancer
cells, while ORP5 knockdown abrogates it in vitro. Moreover,
the ORP5 mRNA level is significantly elevated in tumors
harboring oncogenic mutant K-Ras compared with tumors
with wild-type (WT) K-Ras in cohorts of pancreatic cancer,
NSCLC, and 33 types of cancer in the TCGA (the Cancer
Genome Atlas) database (Kattan et al., 2019). Further analysis
of overall survival periods for patients in these three cohorts
demonstrates that cancer patients with low ORP5 or 8 expression
have better prognosis than patients with high ORP5 or 8
expression (Koga et al., 2008; Kattan et al., 2019).

In addition to PM PI4P, a recent study has demonstrated that
Golgi PI4P is involved in the PM localization of PtdSer and
K-Ras. Chemical inhibition of PI4KB, which depletes PI4P at the
Golgi complex, but not the PM, translocates K-Ras and PtdSer
from the PM to the mitochondria and endomembrane,
respectively (Miller et al., 2019). Supplementation with
exogenous PtdSer acutely returns K-Ras to the PM in Golgi
PI4P–depleted cells, and mitochondrial PtdSer reduction by
overexpressing PtdSer decarboxylase, which converts PtdSer to
PtdEth at the mitochondria (Percy et al., 1983), redistributes
K-Ras from the mitochondria to the endomembranes in Golgi
PI4P–depleted cells (Miller et al., 2019). Furthermore, Golgi PI4P
depletion inhibits Ras signaling in K-Ras–transformed but not
H-Ras–transformed cells. Although the exact mechanism is yet to
be elucidated, these data suggest that Golgi PI4P regulates the PM
enrichment of PtdSer and thereby K-Ras–PM localization and
K-Ras signaling (Miller et al., 2019). In sum, the PtdSer/PI4P

FIGURE 2 | PtdSer PM enrichment is regulated by ORP5 and 8. ORP5 and 8 are lipid transporters that exchange ER PtdSer with PM PI4P. The driving force of this
process is a PI4P concentration gradient, whereby PI4P levels are high in the PM by PI4KA and are kept low at the ER by Sac1 phosphatase, which converts PI4P to PI.
PI4P is also generated at the Golgi complex by PI4KB. ORP, oxysterol-binding protein–related protein; PtdSer, phosphatidylserine; PI, phosphatidylinositol; PI4P, PI 4-
phosphate; PI(4,5)P2, PI(4,5)-bisphosphate; PI4KA, PI 4-kinase IIIα; PI4KB, PI 4-kinase IIIβ.
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exchange mechanism at the ER–PM MCSs, which regulates the
PM enrichment of PtdSer and thereby K-Ras–PM localization and
signaling, is a viable target for developing anti–K-Ras therapies.

Perturbing Recycling Endosomal Activity
Mislocalizes PtdSer andK-Ras From the PM
In addition to the non-vesicular transport of PtdSer by ORP5 and
8, PtdSer transports via the classical vesicular trafficking. Once
PM PtdSer is endocytosed, it enters the sorting endosomes, where
it either returns to the PM via the RE or is transported to
lysosomes for its degradation by phospholipases (Leventis and
Grinstein, 2010), suggesting that recycling endosomal activity is
important for maintaining PM PtdSer content. Recent studies
have reported that disruption of recycling endosomal activity
depletes PtdSer and K-Ras from the PM. Acylpeptide hydrolase
(APEH) removes the N-terminal acylated amino acids from
acetylated proteins, and regulates the ubiquitin-mediated
protein degradation (Shimizu et al., 2004). APEH knockdown
or inhibition blocks endocytic recycling of the transferrin
receptor (TfR) and EGFR and mislocalizes K-Ras and PtdSer
from the PM (Tan et al., 2019). It also reduces nanoclustering of
oncogenic K-Ras that remained at the PM and prevents
oncogenic K-Ras signaling and growth of pancreatic cancer
cells harboring oncogenic mutant K-Ras but not WT K-Ras.
This study proposes that failure to maintain PtdSer and K-Ras at
the PM in APEH-depleted cells is in part induced by aberrant RE
function.

A protein kinase C (PKC) inhibitor, staurosporine, and its
analogs accumulate PtdSer internalized from the PM in the RE,
resulting in PM PtdSer depletion in a PKC-independent manner
(Cho et al., 2012b). These compounds also induce K-Ras–PM
dissociation and disrupt K-Ras PM nanoclustering (Cho et al.,
2012b). Consistent with this, they abrogate K-Ras signaling and
cell proliferation in K-Ras–transformed cells. Taken all together,
perturbing recycling endosomal activity could prevent PM PtdSer
replenishment through the RE, which results in K-Ras–PM
dissociation and disrupted K-Ras nanoclustering and K-Ras
signaling. The perturbed recycling endosomal activity could
also block the PDE6δ/RE-mediated K-Ras–PM localization,
further contributing to disrupted K-Ras–PM localization and
signaling.

K-Ras and PtdSer PM Localization Is
Regulated by Sphingomyelin/Ceramide
Biosynthesis
Recent studies have demonstrated that perturbing the enzymes
involved in sphingomyelin (SM) metabolism depletes the PM
localization of PtdSer and K-Ras, and blocks oncogenic K-Ras
signaling. Ceramide, which is synthesized in the ER, trafficks to
the Golgi complex, where it is converted to SM. SM is further
transported to the PM and lysosomes, where it is reverted to
ceramide by sphingomyelinases (Gault et al., 2010). Several
studies have reported that the inhibition of acid or neutral
sphingomyelinase (ASM and NSM, respectively) dissociates
PtdSer and K-Ras from the PM and inhibits oncogenic K-Ras

signal transduction (Figure 1). A wide range of ASM inhibitors
including tricyclic antidepressants elevates cellular SM contents
and accumulates SM in vesicular structures. They also deplete PM
PtdSer content and translocate K-Ras, but not H-Ras, from the
PM to endomembranes (van der Hoeven et al., 2013; Cho et al.,
2016; van der Hoeven et al., 2018). Also, K-Ras is dissociated from
the PM in patient-derived Niemann–Pick type A and B cell lines,
in which SMPD1 gene–encoding ASM has inactivating and
partial loss-of-function mutations, respectively (Cho et al.,
2016; Schuchman and Desnick, 2017). These inhibitors further
perturb oncogenic K-Ras PM nanoclustering and its signaling,
and abrogate the growth of different types of human cancer cells
expressing oncogenic mutant K-Ras but not WT K-Ras (Petersen
et al., 2013; van der Hoeven et al., 2013; van der Hoeven et al.,
2018). Supplementing ASM-inhibited cells with recombinant
ASM returns PtdSer and K-Ras to the PM. Also, replenishing
PM PtdSer content with exogenous PtdSer supplementation
returns K-Ras to the PM and restores nanoclustering in ASM-
inhibited cells, which indicates that K-Ras–PM dissociation
occurs through PM PtdSer depletion (Cho et al., 2016). In
addition, pharmacological inhibitors for enzymes in the SM/
ceramide metabolic pathway redistribute PtdSer and K-Ras
from the PM (van der Hoeven et al., 2018). They further
perturb K-Ras nanoclustering and block the growth of pancreatic
cancer cells harboring oncogenicmutant K-Ras (van derHoeven et al.,
2018). In a supplemental C. elegans study, RNAi-mediated
knockdown of 14 genes encoding enzymes in the SM/ceramide
biosynthesis pathway suppressed the LET-60G13D (a K-RasG13D
ortholog in C. elegans)-induced multi-vulva phenotype (van der
Hoeven et al., 2018).

Another approach to disrupt SM/ceramide metabolism is to
alter the activity of NSM. Avicins, natural plant-derived
triterpenoid saponins from Acacia victoriae, have proapoptotic,
anti-inflammatory, and anticancer activities (Wang et al., 2010).
A recent study demonstrated that avicin G, an isomer of avicin
compounds, inhibits NSM and ASM, with a greater potency
against NSM, and elevates cellular SM, ceramide, and PtdSer
contents (Garrido et al., 2020). It also disrupts endosomal
recycling of the EGFR and perturbs lysosomal activity by
elevating the lysosomal pH (Garrido et al., 2020). Avicin G
and other NSM inhibitors redistribute PtdSer from the PM,
accumulate K-Ras in lysosomes, and increase the K-Ras
protein level. Since K-Ras and PtdSer are proposed to be
degraded in the lysosome (Lu et al., 2009; Leventis and
Grinstein, 2010), the elevated K-Ras and PtdSer levels induced
by avicin G, in part, account for the perturbed lysosomal activity
(Garrido et al., 2020). It further perturbs K-Ras PM
nanoclustering and blocks K-Ras signaling and the growth of
K-Ras–addicted pancreatic and NSCLC cell lines (Garrido et al.,
2020). Taken together, these studies propose that a correct SM/
ceramide balance maintains the PM localization of PtdSer and
K-Ras and that pharmacological agents that perturb the
sphingolipid pathways could be a new strategy for developing
anti–K-Ras therapies (van der Hoeven et al., 2018). One plausible
mechanism of PM PtdSer depletion by altering the cellular SM
contents is through perturbing recycling endosomal activity. The
RE is enriched with cholesterol, SM, and PtdSer (Gagescu et al.,
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2000; Uchida et al., 2011), and elevating cellular sphingolipid
contents blocks endosomal recycling of the glucose transporter 1
and TfR (Finicle et al., 2018). Like avicin G, staurosporine and its
analogs perturb the RE activity and elevate cellular SM content in a
PKC-independent manner by reducing the protein level of
ORMDL, which negatively regulates serine-palmitoyltransferase,
the rate-limiting enzyme for sphingolipid biosynthesis (Maekawa
et al., 2016). Taken all together, it is proposed that an increased
cellular SM level changes SM content at the RE, which disrupts
recycling endosomal activity. This, in turn, depletes PtdSer and
mislocalizes K-Ras from the PM, as discussed above.

CONCLUSION

Despite the essential role of oncogenic mutant K-Ras in the
growth and survival of pancreatic, lung, and colorectal cancers,
there are no anti–K-Ras therapies available in the clinic. Several
studies have reported that knockdown of endogenous oncogenic
mutant K-Ras in a range of NCSLC and pancreatic cancer cell
lines blocks their growth and survival, suggesting that blocking
oncogenic K-Ras activity is a valid strategy for anti–K-Ras
therapies. Ras drug discovery efforts have focused largely on
inhibitors of Ras downstream effectors including B-Raf, C-Raf,
PI3K, and MEK (Baines et al., 2011). One example is the
multikinase inhibitor, Nexavar, used against renal cell and
hepatocellular carcinoma (Llovet et al., 2008; Roberts, 2008),
although it is unclear to what extent the efficacy of Nexavar
towards these cancers is related to the inhibition of C-Raf, B-Raf,
or VEGFR (Downward, 2003; Baines et al., 2011). B-Raf–specific
inhibitors produce excellent, albeit often short-lived, responses in
patients with B-Raf mutant melanoma (Flaherty et al., 2010).
However, further studies have shown that B-Raf–specific
inhibitors paradoxically activate the MAPK cascade in melanoma
cells expressing oncogenicmutant N- or K-Ras via amechanism that
involves C-Raf hyperactivation (Heidorn et al., 2010; Cho et al.,
2012a). These studies illustrate that blocking MAPK signaling with
Raf kinase inhibitors is a limited approach to anti-Ras therapy.

Recently, two small molecules that directly bind and inhibit
the K-RasG12C mutant have shown promising outcomes in
clinical trials. While the K-RasG12C mutant is found in a
small fraction of K-Ras–driven human cancers, these studies
demonstrate that developing anti–K-Ras therapies is feasible.
One approach to inhibit all oncogenic mutant K-Ras is to
block its interaction with the PM since K-Ras must localize to
the PM for its signal transduction. However, the exact molecular
mechanisms of K-Ras transport to and maintenance at the PM
are not fully elucidated. In this review, we discussed several
recently identified mechanisms that regulate K-Ras–PM
interaction and thereby the K-Ras signal cascade. Compounds
that perturb these mechanisms dissociate K-Ras from the PM and
block K-Ras signaling and K-Ras–dependent cancer cell growth.
However, this approach has pitfalls including nonspecificity and
cytotoxicity since it does not specifically target K-Ras. For
example, PDE6δ can bind other farnesylated small GTPases
via the same hydrophobic pocket as K-Ras. Thus, blocking

this binding site by PDE6δ inhibitors can dysregulate the
cellular localizations and activities of K-Ras and other small
GTPases. Also, PtdSer at the inner PM leaflet recruits and
promotes the activity of K-Ras and other proteins containing a
polybasic domain (Leventis and Grinstein, 2010; Kay and Fairn,
2019). While PM PI4P regulates the PM enrichments of PtdSer, it
can be further phosphorylated to different PIPs, which activate
several essential signaling proteins (Balla, 2013). Therefore, while
depleting PM PtdSer or perturbing the PI4P/PtdSer exchange
mechanism prevents oncogenic mutant K-Ras activity, they can
also perturb other essential signaling cascades. Nevertheless,
many studies have reported that disrupting these molecular
mechanisms blocks the growth of human cancer cells that are
K-Ras–dependent but not K-Ras–independent in vitro and in
vivo, suggesting that targeting these mechanisms is a valid
approach for developing anti–K-Ras therapies.

Cancer chemotherapy is most effective when a combination of
drugs targeting different molecular mechanisms are applied.
There are four major approaches that are currently being
perused for developing anti–K-Ras therapies, and any one
approach alone may not be sufficient to completely block
oncogenic K-Ras signaling due to high cytotoxicity and/or
nonspecificity. A recent study has demonstrated that a
K-RasG12C inhibitor potentiates the anticancer effect of the
MEK, mTOR, and insulin-like growth factor 1 receptor
(IFG1R) inhibitors in NSCLC cells. While combined mTOR,
IGF1R, and MEK inhibition shows significant tumor regression
in K-RasG12C–driven lung cancer mouse models, replacing the
MEK inhibitor with a K-RasG12C inhibitor in combination
demonstrates greater efficacy, specificity, and tolerability
(Molina-Arcas et al., 2019). Moreover, the combination of the
K-RasG12C inhibitor with anti–PD-1 immune checkpoint
inhibition synergistically suppresses tumor growth in
K-RasG12C–driven mouse models (Canon et al., 2019).
Combination therapy of K-RasG12C inhibitors with anti–PD-1
or anti–PD-L1 in patients with solid tumors harboring the
K-RasG12C mutant is currently in clinical trials
(ClinicalTrials.gov identifier: NCT04185883, NCT03785249).
Although combination therapy with K-RasG12C inhibitors
and other anticancer approaches is promising, it is limited to
K-RasG12C–specific cancers, which accounts for ∼20% of
K-Ras–driven cancers. Therefore, it would be worthwhile to
examine the effects of combining pharmacological agents that
can block all oncogenic mutant K-Ras by dissociating it from the
PM with drugs developed for targeting the other approaches.
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