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Introduction: Nephrotic syndrome (NS) occurs commonly in children with glomerular disease and gluco-

corticoids (GCs) are themainstay treatment. Steroid resistantNS (SRNS) develops in 15% to 20%of children,

increasing the risk of chronic kidney disease compared to steroid sensitive NS (SSNS). NS pathogenesis

is unclear in most children, and no biomarkers exist that predict the development of pediatric SRNS.

Methods: We studied a unique patient cohort with plasma specimens collected before GC treatment,

yielding a disease-only sample not confounded by steroid-induced gene expression changes (SSNS n ¼ 8;

SRNS n ¼ 7). A novel “patient-specific” bioinformatic approach merged paired pretreatment and post-

treatment proteomic and metabolomic data and identified candidate SRNS biomarkers and altered mo-

lecular pathways in SRNS versus SSNS.

Results: Joint pathway analyses revealed perturbations in nicotinate or nicotinamide and butanoatemetabolic

pathways in patients with SRNS. Patients with SSNS had perturbations of lysine degradation, mucin type

O-glycan biosynthesis, and glycolysis or gluconeogenesis pathways. Molecular analyses revealed frequent

alteration of molecules within these pathways that had not been observed by separate proteomic and metab-

olomic studies.WeobservedupregulationofNAMPT,NMNAT1, andSETMAR inpatientswithSRNS, in contrast

to upregulation of ALDH1B1, ACAT1, AASS, ENPP1, and pyruvate in patients with SSNS. Pyruvate regulation

was the changeseen inourpreviousanalysis; all other targetswerenovel. Immunoblotting confirmed increased

NAMPT expression in SRNS and increased ALDH1B1 and ACAT1 expression in SSNS, followingGC treatment.

Conclusion: These studies confirmed that a novel “patient-specific” bioinformatic approach can integrate

disparate omics datasets and identify candidate SRNS biomarkers not observed by separate proteomic or

metabolomic analysis.
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S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome
N
S is a clinical syndrome defined by massive pro-
teinuria (>40 mg/m2 per hour) with resulting

hyperlipidemia, edema, and various renal and extrarenal
complications.1 It results from abnormal glomerular
permeability that may be either primary or secondary to
systemic disease or exposures, including infections,
diabetes, systemic lupus erythematosus, neoplasia, or
various drugs.2 Common pathologic changes in primary
NS are minimal change disease, focal segmental glo-
merulosclerosis, diffuse mesangial sclerosis, and mem-
branous nephropathy,3 with minimal change disease
being the most common cause in children. GCs are the
mainstay therapy for these disorders. However, 20% to
30% of children present with or develop GC resistance
and 36% to 50% of these children progress to end-stage
kidney disease in 10 years.4 The clinical management of
SRNS is challenging because few therapies have been
found to be consistently effective and most of the
available alternative treatments have significant
toxicity.5 Furthermore, there are no validated bio-
markers that distinguish SRNS from SSNS at disease
presentation. Identification of biomarkers of SRNS
would greatly enhance our ability to develop more
effective and safer treatments for pediatric NS.

To bridge this gap, we performed an integrated anal-
ysis of plasma proteomics and plasma metabolomics data
from pediatric patients with SRNS and SSNS, both before
and following initial GC treatment.6,7 We hypothesized
that integration of proteomic and metabolomic data
would identify novel NS biomarker candidates not
identified by individual proteomics and metabolomics
analyses alone. We further hypothesized that analysis of
these paired pre-GC-treated and post-GC-treated plasma
samples using a novel “patient-specific” approach to
large data set analysis would identify molecular path-
ways associated with steroid resistance (i.e., SRNS),
despite individual patients having disparate molecular
defects along these pathways. Although such a patient-
specific approach for omics data analysis has been
developed previously for genomics and transcriptomics
data,8-12 its application to renal disease is new, and the
specific integration of proteomic and metabolomic data-
sets has been very limited.13,14 Therefore, our studies
attempted to use this “patient-specific” approach to
integrate plasma proteomics and metabolomics from pa-
tients with SRNS and SSNS to identify and compare
molecular pathways altered in SRNS versus SSNS.

TRANSLATIONAL RESEARCH
METHODS

Study Approval

All research protocols and consent documents were
approved by the institutional review board of Nation-
wide Children’s Hospital as the coordinating center
1240
(approval numbers IRB07–00400, IRB12–00039, and
IRB05–00544), as well as by each of the other partici-
pating centers of the Pediatric Nephrology Research
Consortium. Paired plasma samples were collected for
each patient, with the first sample “pretreatment” at the
time of disease presentation before even a single dose of
GC, and the second sample “posttreatment” after 6 to 10
weeks of GC therapy when the clinical determination of
SSNS versus SRNS had been made by the treating
nephrologist. All samples were anonymously coded as
stipulated by the Declaration of Helsinki.15

Study Design

Integrated pathway analysis was conducted by using
the datasets acquired by previously published research
work by our laboratory.6,7 Grouped and patient-
specific analyses were performed to investigate for
biomarkers and/or mechanistic insights of steroid
resistance. The candidate pathways and the molecules
involved were further validated by immunoblotting.
See Figure 1 for an overview of the study design.

Proteomic and Metabolomic Data Analysis

See Supplementary Methods.

“Patient-Specific” Integrated Pathway Analysis
Overview

Altered proteins and metabolites were selected for
each patient and then jointly fed into a pathway for
an enrichment analysis. Only pathways that were
enriched in at least 1 patient were further compared
between patients with SSNS and patients with SRNS.
To characterize the enrichment of a pathway in pa-
tients with SRNS compared to patients with SSNS, a
Pathway Group Enrichment Index and a Molecule
Group Enrichment Index were calculated. Finally,
the false discovery rate (FDR) was calculated jointly
for all “patient-specific” pathway analyses. The
following are detailed descriptions of these pathway
analyses.

Altered Protein and Metabolite List for Individual

Patients

The relative intensity-based absolute quantification
values of proteins from 15 paired NS plasma samples
(SSNS, n ¼ 7 pairs; SRNS, n ¼ 8 pairs) and relative
concentration of metabolites estimated from the same
subjects were used for generating protein and metab-
olite lists. For each patient, the fold change was
calculated as the ratio of posttreatment to pretreatment
(posttreatment/pretreatment) for each protein and
metabolite, and then log2 transformed to get log2 fold
change (LFC). When checking the LFCs’ distributions
of proteins and metabolites for each patient
(Supplementary Figure S1), we observed that LFC ¼
Kidney International Reports (2023) 8, 1239–1254



Figure 1. Integration of plasma proteomic and metabolomic data from patients with SRNS and patients with SSNS using a “patient-specific” joint
pathway analysis. Plasma samples were collected from 7 patients with SSNS and 8 patients with SRNS before and after GC treatment. All 30
samples underwent both proteomic and metabolomic analyses. Then for each patient, proteins and metabolites were selected and jointly fed for
enrichment analysis into MetaboAnalystR. Only pathways that were enriched (P< 0.05) in at least 1 patient were further compared between SSNS
and SRNS patients. To characterize the enrichment of a pathway in patients with SRNS compared to patients with SSNS, 2 Group Enrichment
Indexes were calculated (see Methods). Finally, the false discovery rate was calculated jointly for all “patient-specific” pathway analyses. Novel
methods for this study are highlighted with the dashed gray box. GC, glucocorticoids; KEGG, Kyoto Encyclopedia of Genes and Genomes; LFC, log2
fold change; NMR, Nuclear Magnetic Resonance; SRNS, steroid resistant nephrotic syndrome; SSNS, steroid sensitive nephrotic syndrome.

S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome TRANSLATIONAL RESEARCH
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TRANSLATIONAL RESEARCH S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome
�10 and �1 served best to separate proteins and me-
tabolites, respectively, into 3 groups: 1 unaltered group
with LFC approximately 0, and 2 altered groups with
large LFCs, while keeping enough proteins and me-
tabolites for pathway enrichment analysis. Altered
proteins and metabolites are defined as differentially
regulated having increased or decreased expression
based on respective LFC cutoffs.

Pathway Enrichment Analysis

We used the “Joint Pathway Analysis” function in
MetaboAnalystR v3.0.3 and exploited KEGG metabolic
pathway models to complete the analysis.16 For each
patient, the list of altered proteins with Uniprot protein
accession number and altered metabolites with KEGG
ID (Supplementary Data Files S1 and S2) were pooled
into a single query and were mapped to KEGG meta-
bolic pathways for hypergeometric test. Pathway hy-
pergeometric test P-value < 0.05 was considered as
significant.

Pathway Group Enrichment Index Calculation

To characterize the enrichment of a pathway in patients
with SRNS compared to patients with SSNS, we defined
the Pathway Group Enrichment Index as:

�
Number of SRNS patients with pathway altered

Total number of SRNS patients

�Number of SSNS patients with pathway altered

Total number of SSNS patients

�

� 100%

Using this equation, positive percentages indicated
the pathway was frequently altered in patients with
SRNS. Conversely, negative percentages indicated that
the pathway was frequently altered in patients with
SSNS. Pathways with absolute values of Group
Enrichment Index >25% were selected to visualize the
links between each patient and each molecular
pathway in a chord plot (see Figure 2). We chose to
investigate the top pathways for patients with SRNS
and patients with SSNS with further analyses.

Similarly, for protein and metabolite selection, we
defined the Molecule Group Enrichment Index as:
�
Number of SRNS patients with molecule up

Total number of SRNS

�Number of SSNS patients with molecule up

Total number of SSNS
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Using this equation, the Molecule Group
Enrichment Index represented the enrichment of an
upregulated protein or metabolite in patients with
SRNS compared to patients with SSNS, with posi-
tive percentages indicating enrichment in patients
with SRNS and negative percentages indicating
enrichment in patients with SSNS. Given the small
sample size, we required the absolute value of the
Molecule Group Enrichment Index to be at least
30% to consider a molecule as a candidate for
validation.

FDR Determination

The FDR is the expected rate at which features
called significant are truly null.17 If we set the
significance level a ¼ 0.05, then under the null
hypothesis, the conditional probability of a false
discovery (mistakenly claim an enriched pathway)
is P¼0.05. In our study, we controlled the ex-
pected proportion of false discoveries among the
predicted enriched pathways Supplementary Data
File S3) in 3 scenarios as follows.

Scenario 1. If a pathway is enriched more
frequently in patients with SRNS (e.g., the nicotinate
and nicotinamide metabolism, SSNS ¼ 0, SRNS ¼ 4),
we ask the question: “Is this pathway enriched (hy-
pergeometric P-value < 0.05) more frequently in pa-
tients with SRNS?” The probability that at least 4 of 8
patients with SRNS are enriched in 1 pathway follows
binomial distribution:

Pbinomðn � 4 jN ¼ 8; p ¼ 0:05Þ ¼ 0:000372

The probability that at most 0 out of 7 patients
with SSNS is enriched in 1 pathway is calculated
as:

Pbinomðn� 0 jN ¼ 7;P ¼ 0:05Þ ¼ 0:698

The joint probability is:
Pbinomðn�4 jN¼ 8;p¼ 0:05Þ$Pbinomðn�0 jN¼ 7;

p¼ 0:05Þ¼ 0:000372� 0:698 ¼ 0:00026
regulated post GC treatment

patients

regulated post GC treatment

patients

�
� 100%

Kidney International Reports (2023) 8, 1239–1254



Figure 2. Comparison of pathways altered by glucocorticoids in patients with SRNS vs. patients with SSNS using a “patient-specific” analysis
of integrated omics. Chord plot represents pathways that were significantly perturbed (P < 0.05) by joint pathway analysis for individual pa-
tients. R1–R8: 8 patients with SRNS (in red); S1–S7: 7 patients with SSNS (in blue). For example, patient R1 had 2 pathways significantly
perturbed: nicotinate and nicotinamide metabolism and mucin type O-glycan biosynthesis. For pathway mucin type O-glycan biosynthesis, 3
patients with SRNS (R1, R2, and R6) and 5 patients with SSNS (S1, S3, S4, S6, and S7) had this pathway activated. The percentages labeled
above the pathways are Pathway Group Enrichment Index numbers calculated by�

Number of SRNS patients with pathway altered

Total number of SRNS patients
�Number of SSNS patients with pathway altered

Total number of SSNS patients

�
� 100%

, which represents the enrichment of a pathway in patients with SRNS compared to patients with SSNS. Although a total of 34
KEGG metabolic pathways were perturbed in 15 patients, we selected 12 pathways whose Pathway Group Enrichment Index
was < �25% or >25% to show in this chord plot. TCA, tricarboxylic acid cycle.

S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome TRANSLATIONAL RESEARCH
We have 83 unique metabolic pathways for hyper-
geometric test. So, the expected proportion of false
discoveries is:
FDR ¼ 83� 0:00026 ¼ 0:022
Kidney International Reports (2023) 8, 1239–1254
Scenario 2. If a pathway is enriched equal times in
patients with SRNS and in patients with SSNS (e.g., the
glycerolipid metabolism, SSNS ¼ 4, SRNS ¼ 4), we ask
the question: “Is this pathway enriched in both groups
1243



TRANSLATIONAL RESEARCH S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome
of patients?” The probability that at least 4 out of 8
patients with SRNS are enriched in 1 pathway:

Pbinomðn � 4 jN ¼ 8; p ¼ 0:05Þ ¼ 0:000372

The probability of at least 4 out of 7 patients with
SSNS are enriched in 1 pathway is calculated as:

Pbinomðn � 4 jN ¼ 7;P ¼ 0:05Þ ¼ 0:000194

The joint probability is:

Pbinomðn�4jN¼8;p¼0:05Þ$Pbinomðn�4 jN¼7;

p¼0:05Þ¼0:000372�0:000194¼7:196�10�8

We have 83 unique metabolic pathways for hyper-
geometric test. So, the expected proportion of false
discoveries is:

FDR ¼ 83� 7:196� 10�8 ¼ 5:97� 10�6

Scenario 3. If a pathway is enriched more
frequently in patients with SSNS (e.g., the lysine
degradation, SSNS ¼ 7, SRNS ¼ 5), we ask the ques-
tion: “Is this pathway enriched more frequently in
patients with SSNS?” The probability that at most 5 out
of 8 patients with SRNS are enriched in 1 pathway:

Pbinomðn � 5 jN ¼ 8; p ¼ 0:05Þ ¼ 1

The probability of at least 7 out 7 patients with SSNS
are enriched in 1 pathway is calculated as:

Pbinomðn � 7 jN ¼ 7; p ¼ 0:05Þ ¼ 7:813� 10�10

The joint probability is:
Pbinomðn � 5 jN ¼ 8; p ¼ 0:05Þ$Pbinomðn � 7 jN ¼ 7;

p ¼ 0:05Þ ¼ 7:813� 10�10

We have 83 unique metabolic pathways for hyper-
geometric test. So, the expected proportion of false
discoveries is:

FDR ¼ 83� 7:813� 10�10 ¼ 6:48� 10�8
Principal Component Analysis

The Principal Component Analysis (PCA) was done on
the LFC of proteins for proteomics data, LFC of metab-
olite concentrations for metabolomics data, combined
proteomics and metabolomics datasets, and proteins and
mebolites mapped to the selected 5 altered pathways.
These PCA plots were generated by R package fac-
toextra v1.0.7 (https://www.rdocumentation.org/pac
kages/factoextra/versions/1.0.7).
1244
Heatmap Annotated With Clinical Data

To evaluate the trends of LFC of protein abundance and
metabolite concentration, the LFC data of each protein or
metabolite were centered by subtracting their mean
values across 15 patients. Then, the values of each pro-
tein and metabolite entry were scaled by dividing the
centered values by their standard deviations across 15
patients. These normalized LFCs were used for heat map
generation using R package Complex Heatmap v2.2.0.

Immunoblotting

See Supplementary Methods.

Statistics

All values were presented as mean � standard error of
the mean. Statistical analyses were performed using R
and GraphPad Prism. Statistically significant differ-
ences were determined by Wilcoxon rank sum test. P-
values less than 0.05 were of significance. For immu-
noblots, nonparametric Wilcoxon rank sum analyses
were conducted for LFC comparison and Kruskal-
Wallis tests were used for preabundance and post-
abundance comparisons. Tests were 2-tailed, at alpha ¼
0.05, with P-values less than 0.05 considered statisti-
cally significant.

RESULTS

Integration of Plasma Proteomic and

Metabolomic Data From Patients with SRNS

and Patients with SSNS using a

“Patient-Specific” Joint Pathway Analysis

Integrated pathway analysis was conducted by using
previously acquired nuclear magnetic resonance
metabolomic and liquid chromatography tandem mass
spectrometry proteomic data.6,7 The analysis workflow
is shown in Figure 1. Plasma samples collected from 7
patients with SSNS and 8 patients with SRNS, before
and after initial GC treatment were processed for omics
and data preprocessing. The SRNS and SSNS patient
demographics were reported in a previous study6 (see
Supplementary Table S1). Briefly, patients were be-
tween the ages of 2 and 14 years old (8.7 � 1.0 years),
with similar pre-GC and post-GC treatment sampling
(6.0 � 0.5 weeks), and all were steroid-naïve before
enrollment. The details of the sample collection, sample
preparation, and data acquisition were described pre-
viously.6,7 Clinical information of patients, including
laboratory tests and biopsy results are listed in
Supplementary Table S2. We reprocessed and repro-
filed previous raw nuclear magnetic resonance metab-
olomic data to increase the number of metabolites for
pathway-based integration study, and all 45 metabo-
lites were included in the downstream analysis.
Whereas the previous studies were focused on the
Kidney International Reports (2023) 8, 1239–1254
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S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome TRANSLATIONAL RESEARCH
discrimination of SRNS from SSNS populations using
separate proteomic and metabolomic analyses,6,7 the
current study integrated the previously acquired pro-
teomic and metabolomic datasets using a novel “pa-
tient-specific” approach (Figure 1, gray dashed box).
Consequently, the relative (to internal standard) con-
centrations of the metabolites were recalculated
(Supplementary Data Files S4a, S4b). For each metabo-
lite, the missing value fractions in pre-GC treatment
and post-GC treatment samples were independent of
patients of SSNS and those with SRNS (Supplementary
Data File S5). For proteomics data, the relative
intensity-based absolute quantification values of pro-
teins were subjected to missing value imputation and
filtering steps (see Methods section and Supplementary
Figure S1A–C). For each patient, the LFC was then
calculated as the log2 transformed ratio of post-GC
treatment level to pre-GC treatment level (posttreat-
ment/pretreatment) for each protein (Supplementary
Data File S3) and metabolite (Supplementary Data File
S2). On the basis of distributions of LFCs
(Supplementary Figure S2), we included proteins with
LFC < �10 or > 10 and metabolites with LFC < �1 or
> 1 in the joint pathway analysis. Subsequently, for
each patient, the lists of altered proteins and metabo-
lites were combined and mapped to KEGG metabolic
pathways for pathway enrichment analysis by using
hypergeometric tests (Supplementary Data File S6).

We identified 34 enriched metabolic pathways in pa-
tients with SRNS and patients with SSNS based on hy-
pergeometric P-values <0.05 (Supplementary Table S3).
To determine if specific pathways were enriched more
frequently in SRNS versus SSNS, we ranked these 34
pathways by their Pathway Group Enrichment Index
percentage, calculated as the frequency of enrichment in
SRNS versus SSNS (defined in detail the Methods sec-
tion). A positive index indicated pathways that were
enriched in a greater number of patients with SRNS, and
a negative index indicated pathways that were enriched
in a greater number of patients with SSNS. For instance,
the nicotinate and nicotinamide pathway (also known as
the NADþ biosynthesis pathway) had a Pathway Group
Enrichment Index of 50% (i.e., enriched in 4 of 8 patients
with SRNS and 0 of 7 patients with SSNS, FDR ¼ 0.022),
whereas the lysine degradation pathway had a Group
Enrichment Index of �37.5% (i.e., enriched in all 7 pa-
tients with SSNS and 5 of 8 patients with SRNS, FDR <
0.0001).

Comparison of Pathways Altered by GCs in

Patients With SRNS Versus SSNS Using a

“Patient-Specific” Analysis of Integrated Omics

Of 34 significantly altered pathways in post-GC treat-
ment, 12 pathways with a Group Enrichment
Kidney International Reports (2023) 8, 1239–1254
Index < �25% or > 25% were used to visualize links
between patients and molecular pathways. This cut-off
was set to provide a minimum likelihood of the
pathway being enriched in patients with SRNS or pa-
tients with SSNS (for a detailed explanation, refer to
Methods section). A chord plot was then created to link
each patient with SRNS (R1–R8 in Figure 2,
Supplementary Data File S7) and each patient with
SSNS (S1–S7 in Figure 2, Supplementary Data File S7) to
each of these 12 enriched molecular pathways.
Notably, the chord plot provided a holistic view of the
personalized integrated analyses of each patient. For
instance, patient R4 with SRNS had 2 pathways (shown
by red links) significantly altered after GC treatment as
follows: (i) butanoate metabolism, and (ii) glycine,
serine, and threonine metabolism; and patient S7 with
SSNS had 2 different pathways (shown by blue links)
significantly altered after GC treatment as follows: (i)
mucin type O-glycan biosynthesis, and (ii) lysine
degradation pathway (Figure 2, Supplementary
Figure S4). If we count 1 link in the chord plot as a
“patient-specific” altered pathway activity, 7 patients
with SSNS had 27 activities (shown in blue in Figure 2)
in 9 unique molecular pathways significantly per-
turbed after GC therapy. Notably, the SRNS group had
only 18 activities (shown in red) in 6 unique pathways
significantly perturbed after GC therapy. This suggests
the biologic pathways altered by GC treatment in
children with SRNS were not similarly altered by GC
treatment in SSNS.

Comparison of Pathways Suppressed by GCs in

Patients With SSNS Versus SRNS

To identify active pathways at baseline that are suc-
cessfully suppressed by GC treatment in SSNS but not
in SRNS, we performed joint pathway analysis on the
downregulated proteins (Log2FC < �10) and altered
metabolites (|Log2FC| > 1). Results showed 32 path-
ways significantly (hypergeometric test, P < 0.05)
downregulated either in SSNS or SSNS (Supplementary
Table S4). Interestingly, 2 pathways were significantly
enriched for downregulated molecules by GC treatment
in SSNS compared to SRNS (FDR < 0.05): phosphati-
dylinositol signaling system and lysine degradation.
The following 3 pathways were enriched for sup-
pression by GC treatment in SSNS and unchanged in
SRNS: aminoacyl-tRNA biosynthesis, citrate cycle
(tricarboxylic acid cycle cycle), and pyruvate meta-
bolism; but their FDR was not < 0.05. These data
suggest the hypothesis that these pathways may be
related to the disease process that responds to steroids.
Further, the following 3 pathways with down-
regulated molecules were enriched in patients with
SRNS and unchanged in patients with SSNS:
1245



TRANSLATIONAL RESEARCH S Bhayana et al.: Patient-Specific Multiomics of Nephrotic Syndrome
glycosaminoglycan biosynthesis � chondroitin sul-
fate/dermatan sulfate; neomycin, kanamycin, and
gentamicin biosynthesis; and starch and sucrose
metabolism. These pathways may be related to un-
derlying mechanisms of steroid resistance.
Principal Component Analysis of Targets from

Enriched Pathway Integration Enabled Better

Separation of SRNS From SSNS than Analysis

of Entire Proteomic Data Alone

No 2 patients had identical pathways enriched, regard-
less of their being in the SRNS or the SSNS group. On the
basis of the directionality of these molecular changes
derived from both proteins and metabolites for the 5
pathways enriched, PCA was able to separate the 2
groups of patients with only a moderate degree of
overlap, emphasizing that the analysis of integrated
multiomic data identified pathways was able to differ-
entiate SRNS from SSNS (Figure 3a). In comparison, a
similar PCA plot derived from the entirety of the pro-
teomic and metabolomic data in a population-based
analysis was unable to distinctly differentiate SRNS
from SSNS, as illustrated by the increased overlap of the
SRNS and SSNS ellipses (Figure 3b). In addition, the
ellipses for the patient groups were tighter with less
intragroup variation for the enriched pathways from the
integrated “patient-specific” approach (Figure 3a) as
compared to those derived from the entirety of data
using a grouped approach (Figure 3b). A protein-only
PCA plot demonstrated poor differentiation between
the 2 groups (Supplementary Figure S3a), whereas a
Figure 3. Principal component analysis of targets from enriched altered
than analysis of integrated data set alone. PCA of the LFCs from (a) th
enriched $ |30%| and (b) all proteins and metabolites. The variation exp
the axis label. The small blue dots represent individual patients with SS
with SRNS. Each ellipse defines the region that contains 95% of all sam
The large blue dot and large red triangle represent the group centroids. S
nephrotic syndrome.

1246
metabolites-only PCA plot better differentiated the pa-
tient groups (Supplementary Figure S3b).

Nicotinate and Nicotinamide Metabolism Maps

from Patients with SRNS Highlight Extensive

“Patient-Specific” Molecular Diversity among

Patients with Identical Phenotypes (i.e. SRNS)

We also compared individual molecular pathway maps
of patients within the same response group (i.e., SRNS
or SSNS) to investigate the molecular diversity under-
lying GC responses. Figure 4 shows an example of this,
where we found that the nicotinate and nicotinamide
metabolism pathway was enriched in 4 patients with
SRNS (R1, R5, R6, R7); however, the specific molecules
altered and the direction of changes were not identical
for all patients with SRNS. Additionally, multiple
pathway maps could be generated for individual pa-
tients (Supplementary Figure S4). These findings
highlight the “patient-specific” molecular diversity of
these patients within a common pathway, all of whom
presented with the identical clinical phenotype of
primary SRNS.

Identification of “Patient-Specific” Molecular

Alterations among Pathways Altered in SRNS

Versus SSNS

To increase stringency in our selection and to identify a
biomarker frequently altered we narrowed our focus
from 12 to the top 5 altered pathways (nicotinate and
nicotinamide metabolism, butanoate metabolism,
glycolysis or gluconeogenesis, mucin type O-glycan
biosynthesis, and lysine degradation) that were
pathway integration enabled better separation of SRNS from SSNS
e integrated proteins plus metabolites in the 5 altered pathways
lained by each principal component is indicated in parenthesis on
NS, whereas the small red triangles represent individual patients
ples that can be drawn from the underlying Gaussian distribution.
RNS, steroid resistant nephrotic syndrome; SSNS, steroid sensitive

Kidney International Reports (2023) 8, 1239–1254



Figure 4. Nicotinate and nicotinamide metabolism maps from patients with SRNS highlight extensive “patient-specific” molecular diversity
among patients with identical clinical phenotypes. Proteins (rectangles) and metabolites (circles) are mapped with interactions (arrows) for the
pathway. Upregulated molecules above the LFC threshold are indicated in red, and downregulated molecules below the LFC threshold are
indicated in green. Molecules that changed but were not above the thresholds are indicated in yellow. Molecules with no data are indicated in
gray. SRNS, steroid resistant nephrotic syndrome.
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dysregulated in at least 3 patients and graphed the
relative abundance of the LFCs of the proteins/metab-
olites in these pathways in a heatmap (Figure 5). Mol-
ecules such as NAMPT and NMNAT1 in the nicotinate
and nicotinamide metabolism pathway (highlighted
with red text in Figure 5 Section #1 at top), together
with SETMAR in the lysine degradation pathway
(highlighted with red text in Figure 5 Section #12 at
the bottom), had more frequent positive LFCs (i.e.,
protein expression increased in response to GC
Kidney International Reports (2023) 8, 1239–1254
treatment) in patients with SRNS versus patients with
SSNS. Meanwhile, ENPP1, ALDH1B, AASS, and
ACAT1 had less frequent positive LFCs in patients with
SRNS (highlighted with blue text in Figure 5).

Molecule Group Enrichment Index Scores

Differentiate Molecules Most Altered in Patients

with SSNS Versus SRNS

We next determined the Molecule Group Enrichment In-
dex of the molecules in the 5 chosen pathways in the
1247



Figure 5. Identification of “patient-specific” molecular alterations among pathways altered in patients with SRNS versus SSNS. Heatmap
represents LFCs of protein or metabolite LFCs from 15 patients (8 SRNS and 7 SSNS) for the 5 pathways with Pathway Group Enrichment Index
values # �30% or $ 30% (pathways # 1, 2, 10, 11, 12 in Figure 2). Clinical data are plotted at the top. For numeric variables (age, height, and
weight), the red dots represent values above the median and the black dots represent values below the median. Based on the frequency of
positive LFCs in a group, 10 molecules were selected and were highlighted by red or blue text if more positive LFCs existed in patients with
SRNS (red text) and patients with SSNS (blue text). SRNS, steroid resistant nephrotic syndrome; SSNS, steroid sensitive nephrotic syndrome.
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Figure 6. Molecule Group Enrichment Index scores differentiate molecules most altered in patients with SSNS versus patients with SRNS. A
volcano plot displays all identified plasma proteins and metabolites on the basis of their Molecule Group Enrichment Index, calculated as

�
Number of SRNS patients with molecule up regulated post GC treatment

Total number of SRNS patients

�Number of SSNS patients with molecule up regulated post GC treatment

Total number of SSNS patients

�
� 100%

This value for each molecule represents the enrichment of an upregulated protein or metabolite in patients with SRNS versus
patients with SSNS. The y-axis is the P-value of Wilcoxon rank sum test between the number of positive LFCs of patients with
SRNS and patients with SSNS, log10 transformed and multiplied by �1. Given the small sample size, we required the absolute
value of the Molecule Group Enrichment Index to be at least 30% for choosing a molecule as a candidate for validation, and we
did not set a cut-off for P-value. A positive index indicates enrichment in patients with SRNS and those molecules enriched
with an index >30% are shown as red dots, whereas a negative index indicates enrichment in patients with SSNS and those
molecules enriched < �30% are shown as blue dots. SRNS, steroid resistant nephrotic syndrome; SSNS, steroid sensitive
nephrotic syndrome.
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patients with SRNS versus patients with SSNS (Figure 6).
These analyses revealed that NAMPT, SETMAR, and py-
ruvate LFC levels showed significant differences between
patientswith SRNSandpatientswith SSNS (Wilcoxon rank
sum test; P-value < 0.05). Although ALDH1B1, ACAT1,
NMNAT1, and ENPP1 had more frequent positive LFCs in
either patients with SRNS or patients with SSNS, their
differences were not significant. Given the small sample
size, we required increasing the stringency of our analysis
and narrowed our focus for validation. Of the 77 molecules
in the 5 pathways, 8 molecules were thus selected.

Unfortunately, in the previously published grouped
analyses6,7 the small numbers of differentially expressed
proteins (n¼ 60) andmetabolites (n¼ 3) (Supplementary
Figure S5) were not suitable to perform pathway ana-
lyses, which confirmed that the integrative multiomics
approach provided additional knowledge that could not
be revealed by analyses of the separate datasets.

Confirmation of Changes in Proteins-of-Interest

by Immunoblotting

Our integrated pathway analysis approach identified 8
molecules (SETMAR, NAMPT, NMNAT1, pyruvate,
Kidney International Reports (2023) 8, 1239–1254
ALDH1B1, AASS, ENPP1, and ACAT1) based on
their $ |30%| Molecule Group Enrichment Index and
we selected NAMPT, ALDH1B1, and ACAT1 for
further validation. We analyzed pre-GC and post-GC
treatment plasma from the same patients and per-
formed immunoblotting on all samples to observe the
following: (i) average pre-GC and post-GC expression
levels, (ii) the change in expression with GC treatment
in each patient, and (iii) the LFC in Expression with GC
treatment.

ALDH1B1 was readily detected in patient samples,
both pre-GC and post-GC treatment (Figure 7a).
ALDH1B1 levels were significantly lower (P < 0.01)
pre-GC in patients with SSNS versus SRNS, demon-
strating its potential as a predictive biomarker of SRNS
(Figure 7a, left panel). Most patients with SSNS had
increased ALDH1B1 levels post-GC treatment, whereas
most patients with SRNS showed decreased levels with
GC treatment (Figure 7a, middle panel). Aligned with
the heatmap in Figure 5, the log2 fold change (post-GC
treatment/pre-GC treatment) for ALDH1B1 was
significantly higher in patients with SSNS versus SRNS
(P < 0.01; Figure 7a, right panel).
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Figure 7. Validation of proteins-of-interest by integrated omics analysis using immunoblotting. Equal protein amounts of patient plasma were
heat-denatured and subjected to immunoblotting. Images of bands of all samples are shown above their quantification and analysis for the
respective proteins (ALDH1B1, ACAT1, and NAMPT). Bands were normalized to a corresponding blot control loaded to each blot, which was an
identical sample of healthy adult plasma. (a) ALDH1B1, (b) ACAT1, and (c) NAMPT expression was examined before and after GC treatment.
Graphs left to right show: (1) pretreatment and posttreatment relative abundances, (2) individual patient responses to GC treatment, and (3) the
log2 fold change of post/pre-ratio. Lines and whiskers on graphs represent mean � standard error of the mean. Patients whose LFC trended
similarly to that in Figure 5 are indicated with a yellow marker. Statistical significance was determined by Kruskal-Wallis (pre, post- levels) or
Wilcoxon rank sum test (Log2FC), 2-tailed, with alpha ¼ 0.05, as indicated *P < 0.05, ** P < 0.01. SRNS, steroid resistant nephrotic syndrome;
SSNS, steroid sensitive nephrotic syndrome.
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Next, we analyzed ACAT1 protein expression and
found that ACAT1 pre-GC levels were significantly (P<
0.05) lower in patients with SSNS (Figure 7b, left panel),
also demonstrating its potential as a predictive
biomarker of SRNS. Patients with SSNS also had signif-
icantly (P < 0.05) increased expression after GC treat-
ment (Figure 7b, left panel), whereas SRNS patient
responses were more heterogeneous (Figure 7b, left and
middle panels). The log2 fold change in ACAT1 expres-
sion with GC treatment showed a greater increase in
SSNS versus SRNS, although the difference was not
significantly significant (P ¼ 0.0721) (Figure 7b).

In addition, NAMPT was readily detected in pa-
tients’ samples (Figure 7c), and NAMPT levels were
significantly (P < 0.05) increased in post-GC treated
versus pre-GC treated patients (Figure 7c, left panel).
Whereas patients with SSNS had a trend toward
increased expression, the changes were not significant.
Post-GC levels of NAMPT were significantly higher in
patients with SRNS than in patients with SSNS (P <
0.05) (Figure 7c, left panel), indicating its potential as a
mechanistic biomarker of GC resistance.
DISCUSSION

The lack of effective treatments for SRNS represents a
major unmet medical need among both children and
adults with NS and makes SRNS clinical management
challenging. Available alternative immunosuppressants
are incompletely effective and have significant sides
effects. Patients with SRNS also have an increased risk
of progressive kidney failure. Therefore, there is a clear
need to identify prognostic and predictive biomarkers
that can prevent patients who present with SRNS from
being unnecessarily treated with GC. Multiomics ap-
proaches have the potential to identify novel bio-
markers, however, the analysis of such large datasets
has historically been difficult. Although there are re-
ports of proteomic and metabolomic profiles from the
SRNS and SSNS, the heterogeneity between patients
within the same clinical group can complicate the
analysis of the datasets. The current studies were
designed to use a novel “patient-specific” analytical
approach that integrates proteomics and metabolomics
data to understand the interplay of proteins and me-
tabolites and to discover comprehensive pathways that
differentiate SRNS from SSNS.18 This approach of
integrating different omics datasets from the same pa-
tient sample enabled both grouped analyses and
personalized analyses for each patient. These studies
confirm the ability of a novel “patient-specific”
analytical approach to integrate disparate omics data-
sets to identify candidate biomarkers of SRNS not
observed with either omics approach alone.
Kidney International Reports (2023) 8, 1239–1254
In these studies, we integrated proteomics and
metabolomics data acquired from the plasma of chil-
dren with SRNS and SSNS before and after GC treat-
ment. We observed 34 significantly altered pathways
in these patients. Using < �25% or >25% cutoffs for
the Pathway Group Enrichment Index we narrowed
the analysis to 12 pathways more frequently altered in
SSNS and/or SRNS. We then narrowed our focus to the
5 most commonly regulated pathways hypothesizing
that the most regulated pathways would be the most
likely to contain changes in protein expression that
could be confirmed by immunoblot. We found that
nicotinate and nicotinamide metabolism and butanoate
metabolism were more frequently activated in patients
with SRNS than in patients with SSNS, whereas
glycolysis or gluconeogenesis, mucin type O-glycan
biosynthesis, and lysine metabolism were more
frequently perturbed in patients with SSNS than in
patients with SRNS. Quantitation of the molecules in
these pathways identified NAMPT, NMNAT1, and
SETMAR as more frequently altered in patients with
SRNS than in patients with SSNS, whereas ALDH1B1,
ACAT1, AASS, ENPP1, and pyruvate were more
frequently perturbed in patients with SSNS than in
patients with SRNS. Immunoblotting subsequently
confirmed significant increases of NAMPT in patients
with SRNS, and of ALDH1B1 and ACAT1 proteins in
patients with SSNS. Pre-GC treatment plasma levels of
ALHD1B1 and ACAT1, and post-GC treatment levels of
NAMPT were significantly different between patients
with SRNS and those with SSNS. These differences
were present not only between groups but were also
observed in individual patients who had that pathway
identified in the “patient-specific” pathway analysis.
These immunoblotting findings validated the pattern of
expression of proteins associated with pathways iden-
tified in each group and were aligned with the patients
within the group that had specific proteins upregulated
or downregulated. The similar responses observed for
ACAT1, ALH1B1, and AASS (Figures 5, 6, 7), strongly
suggest the involvement of the lysine metabolism
pathway in steroid responsiveness in NS. Although
these findings identified 2 new candidate molecular
pathways (NADþ biosynthesis and lysine degradation)
as potential regulators of clinical steroid resistance in
children with NS, validation studies in a larger cohort
of patients are needed.

Nephrology has entered the era of big data omic
analysis through consortia such as the Kidney Precision
Medicine Project, the Cure Glomerulonephropathy
Consortium, and NEPTUNE.19-22 With the RNA, pro-
tein, and metabolite profiling of kidney biopsy tissue
and fluid samples, the need has arisen for effective
computational tools and algorithms that can integrate
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the varied high-dimensional profiling data to generate
reliable biomarkers and identify disease mechanisms,
and, ultimately, individualize treatment. Working to-
ward an individualized approach, the current studies
integrated available proteomics and metabolomics data
to establish new protein-metabolite connectors that
identify pathways relevant to either SSNS or SRNS.
Using this approach, our underlying hypothesis that
combining evidence from changes in both protein
abundances and metabolite concentrations can improve
our ability to identify the pathways involved in
determining clinical steroid resistance versus steroid
sensitivity was confirmed. This approach also enabled
grouped as well as “patient-specific” analyses to better
understand to what extent patients deviated within
their groups.

Overall, the 5 pathways selected for further explo-
ration were nicotinate and nicotinamide metabolism,
butanoate metabolism (more frequently perturbed in
patients with SRNS), lysine degradation, glycolysis or
gluconeogenesis, and mucin type O-glycan biosyn-
thesis (more frequently perturbed in patients with
SSNS). Of note, nicotinate and nicotinamide metabolism
(also known as NADþ biosynthesis pathway) is
involved in generating NADþ and NADPþ via salvage
pathways from nicotinamide.23 In the kidney, NADþ is
known to stabilize mitochondrial function, and NADþ

depletion has been observed in acute kidney
injury.24,25 Increased intracellular and extracellular
NAMPT levels are reported in conditions of acute or
chronic inflammation and cancer.26-31 In our studies,
we found that patients with SRNS had significantly
increased levels of plasma NAMPT after GC treatment
compared to patients with SSNS. These findings sug-
gest the hypothesis that an increase in NAMPT in pa-
tients with SRNS could contribute to GC resistance.

Notably, the lysine degradation pathway had mul-
tiple members (including AASS, ACAT1, and
ALDH1B1) that were upregulated in patients with
SSNS after successful GC treatment, in contrast to
patients with SRNS in whom these levels failed to
increase after GC treatment. These targets suggest a
molecular mechanism that may either enable or induce
remission of NS. In this context, the lysine degrada-
tion pathway may have direct clinical relevance,
because defects causing reduced activity of its en-
zymes cause errors in metabolism.32 In a notable
study, treatment of mononuclear cells with the GC
dexamethasone increased ACAT1 expression at both
the mRNA and protein levels, with in silico analysis
revealing a GC-response element in the ACAT1 pro-
moter.33 Furthermore, ALDH enzymes have been
shown to oxidize corticosteroids.34,35 This suggests
1252
the hypothesis that plasma ALDH preemptively de-
grades GCs and potentiates GC resistance. Our obser-
vation of higher plasma ALDH1B1 levels in patients
with SRNS is consistent with this hypothesis. Upre-
gulation of this pathway in response to GC might
contribute to the clinical responsiveness to steroids in
patients with SSNS.

These studies have several limitations and
strengths. Most notably, our analyses were per-
formed in a small number of metabolomic and pro-
teomic datasets. We cannot generalize about the
clinical utility of potential therapeutic targets and
diagnostic biomarkers from our limited data. As
such, the findings of selected specific molecular
pathways and candidate biomarkers that differen-
tiate SRNS from SSNS reported will require much
larger validation studies that employ antibody-based
methods. In addition, the methods employed in
attempting to narrow the very large amounts of data
derived from each patient studied necessitated the
use of several mathematical cutoffs at key steps in the
analyses. Because of an unequal number of patients
in the SRNS and SSNS group, the Group Enrichment
Index cutoff creates a calculation bias toward pa-
tients with SSNS as follows: if 2 more patients in the
SSNS group as compared to the SRNS group have a
pathway or molecule enriched, the index will be
greater than 25% but it would take 3 more patients
in the SRNS group as compared to the SSNS group for
the index to be greater than 25%. These studies also
had some important strengths in that this analysis
was performed on specimens from NS patients both
before GC treatment (i.e., steroid-naïve samples rep-
resenting a “disease-only” state) and from those same
patients following initial treatment with GC. In
addition, the confirmation by immunoblot of find-
ings only seen in merged proteomic and metabolomic
data is a useful finding.

In summary, the current studies used a novel “pa-
tient-specific” approach to compare integrated plasma
proteomic and metabolomic profiles from children with
SSNS versus SRNS to identify predictive and mecha-
nistic candidate biomarkers of SRNS. These studies
highlight the potential of integrated plasma proteomics
and metabolomics analyses to identify novel candidate
biomarkers, and provide support for the evaluation of
larger independent cohorts of patients with NS to
confirm these and additional biomarkers of SRNS using
orthogonal antibody-based assays such as enzyme-
linked immunosorbent assay. Integrating omics data
from patient blood, urine, and kidney biopsy samples
may prove useful in advancing precision diagnostic
and therapeutic approaches to kidney disease.
Kidney International Reports (2023) 8, 1239–1254
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