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Some neuronal receptors perceive external input in the form of hybrid periodic signals. The signal detection
may be based on the mechanism of vibrational resonance, in which a system’s response to the low frequency
signal can become optimal by an appropriate choice of the vibration amplitude of HES. The vibrational
resonance effect is investigated in a neuron model in which the intra- and extra-cellular potassium and
sodium concentrations are allowed to evolve temporally, depending on ion currents, Na*-K* pumps, glial
buffering, and ion diffusion. Our results reveal that, compared to the vibrational resonances in the model
with constant ion concentrations, the significantly enhanced vibrational multi-resonances can be observed
for the single neuron system where the potassium and sodium ion concentrations vary temporally. Thus, in
contradiction to a popular view that ion concentrations dynamics play little role in signal detection, we
indicate that the neuron’s response to an external subthreshold signal can be largely improved by sodium
and potassium dynamics.

especially in biology fields. Many animals perceive external input from their surroundings in the form of

hybrid signals with multiple frequencies. One of the well studied examples is weakly electric fish which are
both electrogenic and electro-receptive. When they are in the vicinity of one another, they communicate through
electric organ discharges with a frequency range of 500-700 Hz for females and 800-1000 Hz for males. These
signals, together with low frequency signals (<20 Hz) from environmental information, would be sensed by
electroreceptors in the fish’s skin and used for navigation, electrocommunication and electrolocation®.

Now comes an interesting question of how animals such as weakly electric fish manage to get useful informa-
tion from the input of hybrid signals. To be specific, how do the neurons of weakly electric fish decipher the low
frequency signals from the high frequency modulated signals? Middleton et. al have discussed the cellular basis for
the parallel transmission of two signals of different frequencies in an electrosensory system’, envelope encoding
and lower frequency signal extraction in a sensory pathway®®. Electric images of one fish in the company of
another one at three representative phases within a beat cycle have also been discussed'’. Moreover, the proces-
sing of two stimulus attributes by midbrain electrosensory neurons have been studied''.

Besides electric organ discharges, it has also been discovered that two frequency bands are significant for long
distance vocal communication in the green treefrog'? and that applying electrical stimulation with different
frequencies to certain body cites facilitates the release of specific neuropeptides in the central nervous system'’.
The visual evoked potentials with stimuli modulated by sinusoids at distinct frequencies have been studied by
Victor et. al.

The mechanism for hybrid signal detection may depend on the principle of vibrational resonance (VR), when a
system’ s response to a low-frequency signal (LFS) can become optimal by an appropriate choice of the vibration
amplitude of the high-frequency signal (HFS)". This phenomenon is similar to the stochastic resonance, where
random noise enhances the response at the frequency of a subthreshold signal'®"'®. Due to the significance of its
potential application, the VR phenomenon has already been studied numerically, analytically or
experimentally~¢.

Previous investigations into the applications of VR to neuroscience are mostly based on too simplified
neuron models, such as FHN model**>***”** Instead, we adopt a multi-compartment neuron model with five
types of active ionic channels. It has been revealed that this model can present rich dynamical phenomena
and exhibit several firing patterns when stimulated by various depolarizing DC current intensity*”. The

T wo-frequency periodic signals are pervasive and significant in many science and application fields'~,
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model later was modified to allow potassium accumulation in an
interstitial space outside the cell’®. To make it more biologically
realistic, we further improve the model by allowing potassium and
sodium concentrations inside the cell and in the interstitial space
to evolve dynamically.

We are curious about the effect of ion concentrations dynamics on
VR, although they are not considered important in signal detection
for neuron systems in previous simulations. The variation in ion
concentrations not only depends on but also affects the electrical
behavior of individual neurons. During neuronal activity ions move
across the membrane, causing variation in ion concentrations, espe-
cially the increase in extracellular potassium ([K*],) and intracellular
sodium concentrations ([Na*];). Neurons are tightly packed in
mammalian brains resulting in small intra- and extra-cellular
volumes. Thus, ion concentrations dynamics should have a large
effect on neuron activity.

Actually, it has been recognized long ago that potassium accu-
mulation occurs during neuronal firing*'~** and that sodium concen-
trations alter due to variation in membrane potential****. In addition,
it has been proposed that abnormal potassium concentration plays a
key role in some pathological states of the central nervous system,
such as hypoxia induced spreading depression®® and in diseases
including diabetes and arrhythmias®~*. Besides, it has been sug-
gested that epilepsy is connected with a reduction of the Na™ - K*
pump*' and impairment of the glial K* uptake*’, and it has been
reported that extracellular K™ concentration has effects on firing
patterns of low calcium epileptiform activity*~*. Recently, computer
simulations have pointed out the critical roles of variable ion con-
centrations. It was suggested that dynamical ion concentrations are
responsible for some particular physiological electrical oscillations,
and that proper neuronal function requires ion concentration home-
ostasis***%. The changes of [K*], can modulate bursting frequency
and cause multi-stability*>*. It has also been suggested that K" dif-
fusion among neighboring cells is a contributing factor in the estab-
lishment of periodic neuronal firing in a small network®>".

In this paper, we use a biophysically plausible neuron model with
sodium and potassium dynamics to investigate its responses to
external biharmonic signals. We find that, although the multiple
VRs can be observed in the model with constant ion concentrations,
the presence of temporally dynamical ion concentrations signifi-
cantly broadens the VRs when the two signals have much different
signals.

The contents of this paper are organized as follows: The neuron
model subject to a LFS and a high frequency driving force is intro-
duced in Sec. II. The full model is formulated for which ion concen-
trations are dynamically dependent on the competition of ion
currents, Na* - K* pumps, glial buffering, and ion diffusion. To
understand the role of ion concentrations dynamics in signal detec-
tion, we make the ion concentrations stay at their equilibrium levels
to formulate a reduction of this model to make comparisons. In Sec.
III, It is observed that VRs are induced by adjusting the amplitude of
the high-frequency force for these two models. The different results
by these two models are compared and the effects of ion concentra-
tion dynamics on VRs are addressed. Finally, conclusions are made
in Sec. IV.

Formulism

The neuron model is schematically shown in Fig. 1. The neuron
comprises ten compartments of apical dendrites, five compartments
of basal dendrites, and a soma compartment. All active ionic chan-
nels are assumed to be included in the soma. The extracellular space
outside the soma separates into an interstitial space immediately
surrounding the soma and the bath.

Membrane potential dynamics. The ordinary differential equations
governing the membrane potential are as follows:

dv;
Cs = (INa + Ik + Lpeak +Ipump +Isd) + Litim

dt (1)
Itim = Acos(wt) 4+ Bcos(Nwt)

dVan

Ciz_lenlna 2
i (Tazeak.n +Tad.n) ()

where 0 <n<15and n # 5. V; is the membrane potential for the
somatic compartment and Vg , for the dendritic compartments. The
stimulus current Iy, applied to the soma has an external LFS
Acos(wt) and an external HFS Bcos(Nwt). Note that the angular
frequency of the high-frequency force is N times higher than that
of the LFS.

Relevant somatic currents include the sum of Na* currents Iy, the
sum of K* currents I, the leakage current I .., the current caused
by the Na*-K" pump I,ump and the axial current Ioy. Specifically,
somatic currents are given by

INa = INaF + INaP + INaLeak

Inar =gnarm h(V — Exa)

Inap = gNapW( Vs — Exa)

INaLeak = §NaLeak (Vs — ENa)

Ix = Ixpr +Ixka + Ixm + IkLeak

Ixpr = gkorn* (Ve — Ex)

Ixa =gKAab(Vs—EK) (3)
Ixm = gimtd? (Vs — Ex)

IKLeak = gKLeak (Vs — Ex)

IsLeak = sLeak ( Vs - EsLeak)

P S22 T U (I
pump = fmax +ﬂ +[Na—+]i

La=gs4(Vi— Vi) + g56(Vs— Vs),

where

Ex=26.71 xIn ( [K+]§>

By =26.71 xIn [ N2 o
N [Na+]i

which both have the unit of mV and vary with time. The active pump
is implemented for the balance of sodium and potassium ions and it
is electrogenic because more sodium is extruded than potassium
absorbed®’.

The currents through the voltage-dependent channels are con-
trolled by the gating variables m, h, w, n, a, b, and u. These activation
and inactivation variables represent probabilities of ion channels that
are in the open state. They vary between 0 and 1 and obey the form:

dx _ x(V)—x
dr Ty

= (V) —x(ete(V) + Bo(V)). (4)

where x represents m, h, w, n, a, b, and u.
For dendrite compartments, the currents are given by
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Figure 1| Schematic diagram of the neuron model. (a) This neuron comprises ten compartments of apical dendrites, five compartments of basal
dendrites, and a soma compartment. (b) Ion concentrations inside (yellow area) and outside (blue shell) the soma of the cell are regulated by ionic
currents, the Na*-K™" exchange pump, glial buffering, and ion diffusion between the interstitial space and the bath.

IdLeak,n :gdLeak(Vn _EdLeak) (5)
Idd,n :gn,nfl(vd,n - anl) +gn,n+1(Vd,n - Vn+1)»

where I44,, is the axial current caused by the potential difference
between neighboring dendrite sections. Compartments 0 and 15
have only one neighboring compartment contributing to the axial
current.

Table I gives the values and meanings of model parameters.
Table II gives the details of the equations for the gating variables.
Note that the conductance measurements are expressed in the unit of
mS/cm’. Each dendrite compartment has a diameter of 5.2 um and a
length of 81.7 um, giving an area of 1334.67 um?, and the soma has
an approximate area of 1000 um®”. As a result, the value of soma
axial conductance (g5 4, g5 6) is not equivalent with the value of dend-
rite axial conductance between soma and dendrite (g4 s, g6,5)-

where the factor r, corrects for the volume fraction between the
interior of the cell and the interstitial space. For each item, Jxcurrents
(JNacurrents) denotes ion fluxes caused by potassium currents Iy
(sodium currents Ina), Jxpump UNapump) activity of the pump exchan-
ging K" and Na", Jigia glial buffering, and Jxpai (INabatn) diffusion of
potassium (sodium) between the interstitial space and the bath. The
expressions for the fluxes are given by

, _ kxAx107?
Kcurrents = F x Volumegey
2% Ipump X A X 1073
Ji Kpump =

F x Volumegep
Jigtia =15 X ([B]pax — [B]) —r¢ x [K*], x [B]
([K*]o = K" Jouen)

Jbath =
Tkbs (10)
Ion concentrations dynamics. The outside space of the soma _3
consists of an interstitial space and the bath, as shown in Fig. 1b. In = Ina x AX 10
The concentrations for Na* and K" in the bath are always constant, ACHITENE TR x Volumeghe
while in the interstitial space and inside the soma ion concentrations 3x] < Ax10-3
they are variable and are closely related to neuron activities. TNapump = purmp ]
The ion concentrations are described by Fx Volumee
_ (INa*],—[Na*]y,)
JNabath =
(Jl[KJr ] ° TNabs
T = JKcurrents — /] Kpump +] Kglia — Jxbath (6)
For the glial uptake system, we adopt a phenomenological model
where potassium homeostasis in the interstitial space is controlled by
dK*] a buffering scheme and the free buffer concentration [B] is modeled
i A7
dt =Ty ( — JKcurrents +]Kpump) (7) by
B .
d[Na+] 7=1‘b>< ([B]max_[B])_er [K ]ox [B]r (11)
TO = ] Nacurrents + ]Napump +] Nabath (8)
where
re Tfo
¥ ¥
dNat]. [ ]o_[K ]th
[ ar ]l =rv(_]Nacurrents_]Napump)a (9) 1+6Xp< —1.15
| 5:7684 | DOI: 10.1038/srep07684 3



Table | | Parameter values

R Radius of soma 8.9x 10™* cm (a)
F Faraday’s constant 96485 C/mol (b)
TKbs K+ diffusion time constant 500 ms ()
TNabs Na* diffusion time constant 1.47 Aty (c)
Volumeghen Volume of the interstitial space around soma 47R%/3 (b)
Volume,q Volume of soma AnR%r,/3 (b)
r, __ Volumeghen 0.15 (d)
Y™ Volumey
C Soma capacitance 1.0 uF/cm? (d)
INGF Fast Na* conductance 20.0 mS/cm? (e)
INaP Persistent Na* conductance 0.24 mS/cm? (d)
gkDR Delayed-rectifier K* conductance 22.0 mS/cm? le)
KA A-ype transient K* conductance 3.0 mS/cm? (d)
gkm Muscarinic K* conductance 3.0 mS/cm? (d)
Jsleak Soma leakage conductance 0.05 mS/cm? ()
IKleak Soma K* leakage conductance 0.154 mS/cm? ()
INaleak Soma Na* leakage conductance 0.114 mS/cm? ()
95,4,95,6 Soma axial conductance 7.35 mS/cm? (@, ¢)
Eileak Soma leakage reversal potential —-60.0 mV ()
lax Pump maximal current 70.0 uA/cm? ()
[K*bath Potassium concentration in the bath 7 mM (e)
[Na*]bath Sodium concentration in the bath 144 mM (e)
[Blmax Maximal buffer capacity 265 mM (d)
n Backward rate of buffer mechanism 0.0008/ms (d)
o Equilibrium forward rate of buffer mechanism 0.0008 (mMms)~! (d)
[K*]n Threshold [K*],, for glia buffer 15 mM (d)
Cy Dendrite capacitance 1.88 uF/cm? (d)
g4.5,.96,5 Dendrite axial conductance between soma and dendrite 5.51 mS/cm? (@, ¢)
On=1n Dendrite axial conductance between dendritic compartments (n, n = 1 # 5) 3.67 mS/cm? (d)
Jleak Dendrite leakage conductance 0.0292 mS/cm? (d)
Edloak Dendrite leakage reversal potential -60.0 mV ()
LFS amplitude 1 uA/cm? ()
» LFS angular frequency 0.002/ms (c)
B HFS amplitude 0-30 uA/cm? (c)
N Ratio between the frequencies of LFS and HFS 100-18 (c)
' HFS angular frequency N (c)
Source: (a) Shuai et al.??; (b) definition; (c) estimated and/or modified values; (d) Park and Durand®; and (e) Park et al.".
Table Il | Kinetics for gating variables
dm  117x(11.5—V)) 0.4 x (V,—10.5) (a)
- (11.57V5> (10—m)— (V5710.5> "
exp —1.0 exp —1.0
13.7 4.2
dh 0.67 2.24 (a)
dt V,+50.0 (10=h) 72.0—V, 1oh
exp< 55 > exp( 290 >+ .
V500 W (e
dt 0.2
dn 000049 x V, (10 0.00008 x (V, —10.0) (a)
a <7VS> 0—n)= (V5710.0> "
1.0—exp exp —1.0
25.0 10.0
da_ 0.0224x (V,+300) (10—q) 0056 (Vet9.0) (a)
dt ~V.—300 V,+9.0
1.0—exp( ——— exp —1.0
(F50") (%50")
db 0.0125 0.094 (a)
dt V,+8.0 (10-0) —V,—63.0 10b
exp< 145 ) exp( 160 )+ .
du Vs+26.0 0.0084 a
2:0.0084xexp(:(_)7>(1.0—u)— (a)

V. 1260\ -
P\ 610

Source: (a) Park and Durand®.
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(a) Reduced Model (log,,N = 0.9)

(b) Full Model (log,,NV =0.9)
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Figure 2 | Time evolutions of system output V; for different HFS amplitudes B for the reduced model (a) and the full model (b). The red line in
each panel represents a harmonic signal which has a higher amplitude than the LFS input. With the same evolving pattern, this new signal is adopted to
more clearly observe the coherence between the LFS and the system output. For the LFS: A = 1 pA/cm® and @ = 0.002/ms; and for the HFS:

B =0.5-11 pA/cm® and @' = 10°° w.

Reduced model. In order to show the contribution of the ion
concentration dynamics to the detection of LFS, we formulate a
reduction by fixing ion concentrations at their equilibrium values
to make a comparison with the full model where the intra- and
extracellular ion concentrations are dynamical variables rather
fixed parameters. Resting ion concentrations are set as [Na*], =
144 mM [Na™]; = 15 mM, [K*], = 7 mM, and [K*]; = 140 mM.
Thus, the reduced model is given by Egs. (1)-(5) with constant
resting ion concentrations.

Response to LFS. In order to discuss the system’s VR response to
LFS, the following responding factors have been defined":

1 2
s = 2V (t)sin(wt)dt
Q= |, 2Vilosin(an)

I
= 2Vi(t ot)dt,
Q T,—-T, JT1 «(£)cos(er)
where T is chosen sufficiently large in order to discard transient
2
processing and T, =T + ZMT \where n = 500 unless otherwise spe-
o)

cified. As information is carried through large spikes instead of

| 5:7684 | DOI: 10.1038/srep07684

5



4
— Reduced Model

31 —— Full Model

n (@) log N =02

l i

04

o 5 10 15 20 25 30

(©) log N =0.9

T ¥ T T T T T

o 5 10 15 20 25 30
B (uA/cm?)

(b)log N=0.65

T T T

o 5 10 15 20 25 30

(log N=14

T T % T T T

o 5 10 15 20 25 30

Figure 3 | Dependence of response Q as a function of B for different HFS frequencies. The difference between the results of the two models (red lines,
reduced model; black lines, full model) reveals the role of ion concentrations dynamics in the production of multiple VR. For the LFS: A = 1 pA/cm’
and @ = 0.002/ms; and for the HFS: B = 0-30 pA/cm® and o' = 10°2°90914 ¢,

subthreshold oscillations, we set a threshold V.. = —50.0 mV to
calculate Q. If Vy < Voo Vo = —60 mV; otherwise, V remains the
same.

Results

Multiple VR enhanced by dynamical ion concentrations. The
neuron is stimulated by two-frequency signals: a LFS and a
high-frequency driving force. According to the definition of VR,
we fix LFS component and observe the relation between the system
output and the low-frequency signal with different amplitudes of
the high-frequency driving force. Results for the full model and the
reduced model under the same conditions are discussed and
compared.

Fig. 2 depicts the time series of the somatic membrane potential V
with respect to several particular amplitudes of the high frequency
driving force for the reduced model (Fig. 2(a)) and the full model
(Fig. 2(b)). LES is periodic and subthreshold, as represented by red
lines in each panel of Fig. 2, for the purpose of observing its coherence
with the system output Vj (black lines). With the increase of ampli-
tude of HFS, the system response to LFS varies in a similar fashion for
these two models. When the amplitude of the high-frequency force is
low (B = 0.5 pA/cm? for both models, Fig. 2(al, bl)), it is noted that
the neuron does not fire action potentials but only exhibits subthres-
hold oscillations around the resting potential.

By increasing the amplitude of the high frequency signel, spikes
start to appear. At B = 1.5 uA/cm’ for the reduced model (Fig. 2a2)
and B = 4.5 pA/cm’ for the full model (Fig. 2b2), during the positive
half of LFS the neuron fires action potentials continuously while the
outputs of neuron fluctuate slightly around the resting potential
during the negative half part. Such responses are optimal ones where
the firing is the most coherent with the low-frequency input.

With a further increase of the high frequency driving amplitude, it
can be seen that the neuron fires relatively indiscriminately during
both the positive half and the negative half of LFS (Figs. 2(a3, b3)). In

Figs. 2(a4, b4) with a higher amplitude, it is notable that the neuron’s
outputs have more spikes for each burst during the positive half than
the negative half of the drive cycle of the low-frequency signal. Hence
the synchronization between LFS and the neuron’s outputs is slightly
upgraded again. Therefore, the weak LFS is better transmitted at B =
1.5 uA/cm® and B = 6.4 pA/cm? for the reduced model and B =
4.5 pA/cm?® and B = 11 pA/cm? for the full model.

According to Yang et al., the occurrence of VR can be induced by the
transition between different phase-locking modes™. When driven only
by the high-frequency force, the neuron displays either a non-firing
state or a particular regular firing state depending on the intensity of
the high-frequency force. The addition of a low frequency input will
greatly change the neuron’s output in some conditions during which a
transition between different electrical states occurs repeatedly over time.
For some amplitude values of HFS, the output of the system shows great
synchronization with LFS with such a transition (Figs. 2(a2, a4; b2, b4)).
For other values, however, little input/output synchronization is
achieved without such a transition (Figs. 2(al, a3; bl, b3)).

To measure the level of this synchronization, the factor Q is intro-
duced. Fig. 3 depicts the response of Q to the LFS as a function of the high
frequency amplitude for the two models. A higher value of Q indicates a
higher coherence level between the neuron output and LEFS, suggesting
that LFS has been better transmitted to the neuron output through VR
effect. The factor Q against the HFS amplitude for both models displays
several peaks, indicating the occurrence of multiple VRs.

Irrespective of ion concentrations dynamics, multiple VRs occur
commonly. The system has two input signals. The low frequency
signal is fixed, while the HFS intensity is gradually increased. At first,
the system does not exhibit any spike with low HES amplitudes.
Hence, the response Q is fixed at zero. Later, after increasing HFS
intensity over a threshold, the system starts to fire spikes during the
positive half cycle of the LFS, the number of which is directly assoc-
iated with the value of Q. The response Q reaches its maximum
immediately before the point when the negative half cycle of the
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Figure 4 | Contour plots of the response Q vs B and log;oN for the reduced model (a) and the full model (b). The colors of black, cyan, and red
correspond to increasing coherence levels. The role of ion concentrations dynamics in the production of multiple VR is better revealed by comparing these
two figures. For the LFS: A = 1 pA/cm® and w = 0.002/ms; and for the HFS: B = 0-30 pA/cm® and o' = 10°"* w.

LFS starts to have spikes. This is the peak of the first VR. Further
increasing the HFS amplitude decreases the input-output coherence
level. The second VR occurs when the spiking starts to get intensified
during the LFS positive half cycle and so on for other VRs. The factor
Q measures the difference between the spiking intensity in the pos-
itive and negative cycles of the LFS. Our simulation shows that the
first VR typically has a highest value, indicating a largest difference of
firing intensity in the two cycles of the LFS.

When the frequencies of the two input signals are around the same
level (Fig. 3(a)), the two systems display VRs with similar widths. As
the difference between the frequencies of these two signals is
increased (Fig. 3(b)), the width of the first VR peak becomes
obviously wider for the full model than for the reduced model. For
the HFS with a much higher frequency (Figs. 3(c, d)), the full model
leads to VRs with much wider peaks. Therefore, dynamical ion con-
centrations can cause the enlargement of the ranges of suitable high
frequency driving levels, when the HFS has much higher frequency
than the LFS. We will further test this conclusion from a more global
view.

VR response against amplitude and frequency of HFS. To get a
global view, the dependences of VR factor Q on the amplitude B of
HES and the frequency ratio log;oN are shown for both the reduced
model (Fig. 4a) and the full model (Fig. 4b). The colors of black, cyan,
and red correspond to increasing input-output coherence levels. The
cyan and red areas represent the occurrence of VR.

Some VR features are independent of the ion concentrations
dynamics, which could be revealed by the similarities of these two
figures. First of all, the distribution of the cyan and red regions
separated by black regions denotes the multiple VRs which occur
for a wide choice of parameter sets. Secondly, the first VRs, corres-
ponding to higher HFS frequencies, obviously correspond to higher
Q values than other VRs. Finally, at log;oN = 0 (i.e. N = 1), the two
same input signals produce a strong resonance which is a special case
called frequency-resonance-enhanced VR*.

On the other hand, the difference of the two panels in Fig. 4 shows
the role played by ion concentrations dynamics in signal transition.
When the frequency difference between HFS and LES is low, the VRs
presented by the two models are not qualitatively differently. But
approximately after log;oN > 0.9, both the red areas and the cyan
areas become much larger in Fig. 4b than in Fig. 4a. Especially, the
band of the red areas which correspond to the first VR is obviously
wider in the HFS amplitude for the full model than for the reduced
model. Furthermore, this red region of the first VR locates differently
and has a different slope for the two figures. This means that the first
VR corresponds to a higher HFS amplitude for high HFS frequencies
due to the ion concentrations dynamics and that ion concentrations
dynamics elevates the HFS amplitude for the optimal coherence more

with the increase of the HFS frequency. Therefore, the dynamically
evolving ion concentrations enhance VRs, including the first VR,
when the HFS has a much higher frequency than the LFS.
However, they also require more input energy (i.e. a higher ampli-
tude) from the HFS in order to produce the maximal Q in the first
VR.

VR response against amplitude of LFS. In addition, we investigate
the multiple VRs responding to varying LFS amplitudes. Each panel
in Fig. 5 depicts the dependence of factor Q on the HFS amplitude for
several LFS amplitudes with differently colored lines. Three
particular HES frequencies have been chosen for the two models.
The phenomenon of multiple VRs is observed for various LFS
amplitudes. We notice some effects of the variation in the LFS
amplitude on the multiple VRs.

First, there is a positive relation between the LFS amplitude and
VRs. Many centers or the maximum points of VR peaks stay the same
or shift a little bit for the varying LFS amplitude, compared to the
distance of two nearby VR peaks along the HFS amplitude axis. With
the increase of the LFS amplitude, the height and width of any VR
tend to become larger. However, this influence may be barely distin-
guishable in some cases. For example, the first VRs almost have the
same height for the four various LFS amplitudes in Fig. 5al. We also
notice that some small VR peaks melt away and are replaced by
bigger ones. In Fig. 5b2, for example, the first two VR peaks grow
and then merge into a bigger peak with the increase of the LFS
amplitude.

Overall, it can be seen that the increasing LFS amplitude plays the
similar role in these six panels, which means that the enlargement of
VRs by the increase of LES amplitude is a common behavior and does
not depend particularly on the full model or the reduced model.

Discussion

In conclusion, both the reduced model and the full model are con-
structed to investigate the role of the dynamical ion concentrations in
the expression of a low frequency signal through the neuron output
modulated by another high frequency driving force. The reduced
model has fixed ion concentrations, which is common for many
neuronal computational models, while the full model has dynam-
ically evolving ion concentrations, which is more physiologically
realistic. We study VR behaviors with these two models driven by
two periodic signals (i.e. a HFS and a LFS). Independent of the ion
concentrations dynamics, the multiple VRs can be observed by
adjusting the amplitude of the high frequency force and can take
place in a wide range of control parameter values of driving signals
and thus should be a common phenomenon. The result caused by the
implementation of ion concentrations dynamics is that the multiple
VRs become much stronger when the HFS frequency is much higher
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(a) Reduced Model (log; ;N = 0.9)
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Figure 5 | Dependence of response Q as a function of B for different HFS frequencies for the reduced model (a) and the full model (b). In each panel, the
differently coloured lines correspond to varying values of the intensity of LFS A. For the LFS: A = 0.1-1 pA/cm’® and @ = 0.002/ms; and for the HES:

B = 0-30 pyA/cm’® and @' = 10°°%4 .

than the LES. Therefore, it is revealed that the neuron response to LFS
can be largely enhanced by the ion concentrations dynamics.

It is normal in many computational simulations to fixate ion con-
centrations with the hypothesis that they would be restored to their
equilibrium values immediately after neuronal activity. However,
this point of view may seem extremely absurd as to signal detection
for a biological neuron. Our simulations reveal a possible role played
by the ion concentrations dynamics in a neuron: to enhance VRs
when the high frequency driving force has a much higher frequency
than the detected LFS, which may require more input energy (i.e. a
high HFS amplitude) for the optimal first coherence in full model.

VRs are related to the spike number during the positive cycle of
LEFS relative to the spike number during the negative cycle. The more
difference between the number of spikes during these two cycles, the
better the coherence between the LFS and the neuron output.
Generally, a higher HFS amplitude would cause more spikes during
both the positive cycle and the negative cycle of LES after when the
stimulus is over a threshold (Fig. 2b in ref 50) but not with the same
degree. During the negative cycle, however, no spike could be excited
until the neuron gains enough input energy from the driving force to
conquer the negative effect exerted by LFS, even when there are

already spikes during the positive cycle. The optimal coherence hap-
pens approximately at the point immediately before the generation of
spikes during the negative cycle of LFS. The full model may stay non-
firing during the negative cycle driven by a driving force with a
particular amplitude around the optimal case, but this HFS ampli-
tude can be strong enough to produce spikes during the negative
cycle for the reduced model, because more input energy is required
for the full model to push both membrane dynamics and ion con-
centrations dynamics to oscillate. This is consistent with the fact that
the full model has a higher threshold of spiking in the intensity of a
persistent DC current™. What happens is that, along with the
increase of the HFS amplitude, ion concentration dynamics delay
the occurrence of spikes during the negative cycle of LFS. Therefore,
the optimal response of the neuron to LES requires a higher ampli-
tude of the driving force by the ion concentrations dynamics for the
full model.

Secondly, ion concentrations dynamics cause VRs to have wider
bell-like shapes. With a little increase in the HES amplitude from the
amplitude at the optimal VR, the number of spikes increases in the
negative cycle of LFS. The variation in the number of spikes can
be very different for the two models. For the reduced model, the
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increment in the HFS amplitude may lead to almost the same spiking
intensity during the negative and positive cycles. However, for the
full model, the spikes during the negative cycle may be still much
fewer than the ones during the positive cycle. The full model tends to
change less in its behavior, responding to the same variation in the
input signal. This is because ion concentrations tend to keep the
neuron in its original state.

Many species of animals, such as weakly electric fish, have the
ability to detect nearby objects by electric signals. They send out
and accept signals with different frequencies. The principle of VR
may be naturally applicable to carrier-based sensory neuronal sys-
tems, where the expression of LFS input becomes optimal. The single
neuron model is able to extract low frequency stimulus from the
modulated HFSs. Individual pyramidal cells in vitro have the ability
to extract LFS, which strongly depends on intrinsic membrane
noise®. We suggest that it could also depend on ion concentrations
dynamics through the VR phenomenon.

In the model, the neuron consists of 16 compartments with 15
compartments for dendrites in order to simulate the dendritic
structure of the neuron. Because only passive channels are assumed
in the dendrite compartments and the active ion channels are only
considered in soma, the dendrite structure actually plays little role
in the behaviors discussed in the paper. We believe that a simpli-
fied model with only soma compartment will produce similar
results. However, it would be more interesting to use a model with
ion channels distributed along the dendrite structure. With such a
model, one can investigate the effect of ionic fluxes in dendrites on
signal detection.
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