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Background: Intrauterine growth restriction (IUGR) is highly associated with fetal as well

as neonatal morbidity, mortality, and an increased risk metabolic disease development

later in life. The mechanism involved in the increased risk has not been established. We

compared differentially expressed genes between the liver of appropriate for gestational

age (AGA) and IUGR rat models and identified their effects on molecular pathways

involved in the metabolic syndrome.

Methods: We extracted RNA from the liver of IUGR and AGA rats and profiled gene

expression by microarray analysis. GO function and KEGG pathway enrichment analyses

were conducted using the Search Tool for the Retrieval of Interacting Genes database.

Then, the Cytoscape software was used to visualize regulatory interaction networks of

IUGR-related genes. The results were further verified via quantitative reverse transcriptase

PCR analysis.

Results: In this study, 815 genes were found to be markedly differentially expressed

(fold-change >1.5, p < 0.05) between IUGR and AGA, with 347 genes elevated and

468 suppressed in IUGR, relative to AGA. Enrichment and protein–protein interaction

network analyses of target genes revealed that core genes including Ppargc1a, Prkaa2,

Slc2a1, Rxrg, and Gcgr, and pathways, including the PPAR signaling pathway and FoxO

signaling pathway, had a potential association with metabolic syndrome development in

IUGR. We also confirmed that at the mRNA level, five genes involved in glycometabolism

were differentially expressed between IUGR and AGA.

Conclusion: Our findings elucidate on differential gene expression profiles in IUGR

and AGA. Moreover, they elucidate on the pathogenesis of IUGR-associated metabolic

syndromes. The suggested candidates are potential biomarkers and eventually intended

to treat them appropriately.
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INTRODUCTION

Intrauterine growth restriction (IUGR) is highly associated with
fetal as well as neonatal morbidity and mortality (1). IUGR
is defined as a fetus who does not achieve the expected in
utero growth potential with a fetal weight <10th percentile
(2). IUGR can be caused by various genetic and environment
reasons. Studies have reported that IUGR can alter physiological
processes and not only is related with elevated risk of short-term
complications but also with high risk for developing metabolic
syndromes and adverse sequelae in later life, including type 2
diabetes (T2D), insulin resistance, obesity, hypertension, fatty
liver disease, short stature, and impaired neurodevelopmental
outcomes (3–6). Therefore, IUGR is correlated with an increased
risk for adult-onset diseases and is an example of “fetal origins
of adult disease hypothesis” by Dr. Barker. The adaptation of
the fetus to a deprived intrauterine milieu results in persistent
alterations in cellular biology as well as systemic physiology (7).
Using several IUGR animal models, the relationship between a
high risk of metabolic diseases and fetal growth restriction has
been verified (8–10). However, the specific mechanism between
IUGR and metabolic syndrome in adult life remains unclear.
Clarifying these mechanisms and seeking possible strategies
to prevent long-term metabolic effects in IUGR offspring is
important for relieving related social–economic burden.

Themicroarray technology has been widely used to investigate
new molecular diagnostic markers, therapeutic targets, and gene
functions and evaluate the biochemical pathways to elucidate
on disease pathogenesis. This technique is significant in the
identification of genes that are vital in the pathogenesis of
multifactorial diseases and provides an approach to examine
gene expression profiles. Combined with this method, pathway
analysis can map gene expression data into appropriate pathway
maps based on their molecular associations and functional
annotations. By now, a limited number of studies have focused
on gene expression patterns in IUGR (11–13). Therefore, we used
Affymetrix Gene Chip to evaluate differential gene expression
profiling by comparing IUGR newborn rats liver with control. To
identify key metabolic syndrome-associated genes, we analyzed
their biological roles and associations and lastly illuminated the
potential pathogenesis of metabolic disease caused by IUGR.

MATERIALS AND METHODS

Animal Model
Animal assays were conducted at the Laboratory Animal
Center of Zhejiang University (Hangzhou, China) in accordance
with guidelines in the Guide for the Care and Use of
Laboratory Animals of the National Animal Research Center.
The Committee on Ethics of Animal Experiments of the Zhejiang
University permitted this study (No. ZJU20160215). Prior to
surgery, animals were anestheticized using sodium pentobarbital.
A total of 25 Sprague–Dawley (SD) rats (17 females and 8
males; weight 250–450 g) were procured from the Laboratory
Animal Center of Zhejiang University and housed under normal
conditions (room temperature: 18–22◦C; circadian rhythm: 12 h
light and 12 h dark; humidity: 40–60%). After a week of adaptive

feeding, the rats were permitted to mate in a ratio of one male to
two females. The beginning of pregnancy was established based
on the existence of spermatozoa in the vaginal smears. Twelve
rats eventually became pregnant. Rats were fed ad libitum with
standard SPF Rodent Diet (Shoobree, Nanjing, China), made
up of 22% protein, 55% carbohydrates, 4.4% fat as well as 4.1%
fiber and could drink ad libitum before pregnancy. Pregnant rats
were kept in separate cages and randomized into two groups: six
pregnant rats as the control group (with initial weights of 273,
270, 268, 293, 252, and 267 g) could still eat and drink ad libitum;
another six pregnant rats as the IUGR group (with initial weights
of 261, 251, 266, 280, 279, and 260 g) could drink ad libitum
but were restricted to eat and provided with 50% of their typical
daily intake from the first day of pregnancy to parturition. After
delivery, the weighing of control group neonatal rats was done
to calculate the mean values and standard deviations (SDs). AGA
was defined if the birth weight of the neonatal rat was between the
10 and 90th percentiles for normal gestational ages. Compared
with the AGA group, IUGR rats were identified as those animals
with birth weights <2 SDs. The data of the pregnant rats and
the corresponding neonatal rats in the control as well as IUGR
group are shown in Supplementary Table 1. The pregnant rats
delivered spontaneously, and litter sizes were randomly culled to
eight per mother at birth, to guarantee the uniformity of litter
sizes between control and IUGR litters. Offsprings that did not
meet the control and IUGR criteria were culled. Both groups were
given plenty of food.

Tissue Preservation and Total RNA
Extraction
We randomly selected five male pups from five pairs of parents
in each group. Five offspring in each group came from five
different sets of parents. At 1 day of age, these rats were killed
with an overdose of sodium pentobarbital. After washing with
normal saline, liver tissue samples were harvested and snap—
frozen in liquid nitrogen, after which they were stored at −80◦C
for subsequent uses. Sampling was conducted in the morning,
and the interval time was about 10 min.

The total RNA of five IUGR and five AGA rats were
extracted from liver tissues using the TRIzol reagent (Invitrogen;
Thermo Fisher Scientific, Inc., USA), as instructed by the
manufacturer (14). The quality and integrity of RNA were
assessed by electrophoresis through 1% agarose gels stained
with ethidium bromide. The electrophoretogram of each
sample revealed distinct bands corresponding to 18 and 28S
ribosomal RNAs. The total RNA from every sample was intact,
non-degraded, and adequate for the successive microarray
experiments (Supplementary Figure 1). RNA concentrations
were spectrophotometrically evaluated on A260 and A280 using
NanoDrop 2000 (Thermo Fisher Scientific, Inc., USA). We
obtained the A260/A280 ratios of 2.0–2.1 for each sample, which
verified the purity of the RNA. Isolated RNAwas stored at−80◦C
for subsequent processing.

Microarray Analysis
In this assay, the five collected liver tissues from newborn
rats with IUGR and five AGA liver tissue samples from rats
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with normal weights were used as test samples. The total RNA
from liver tissues was analyzed using the commercial Affymetrix
GeneChip Rat Gene 1.0 ST Array spotted with 27,342 probe
sets (Affymetrix, Santa Clara, CA, USA). Affymetrix GeneChip
processing and microarray hybridization were performed as
previously described (15). In brief, total RNAwere converted into
double-stranded cDNA using the T7 RNA polymerase (Promega,
Madison, WI, USA). After double-strand cDNA generation
from first-strand cDNA, the synthesis of biotinylated cRNA was
performed by in vitro transcription using a BioArray High Yield
RNA Transcript Labeling Kit (Enzo Diagnostics, Farmingdale,
NY, USA). After the purification of labeled cRNA on RNeasy
columns (Qiagen, Hilden, Germany), they were fragmented and
thereafter hybridized to the Affymetrix Rat Gene 1.0 Chip (16).
This was followed by the hybridization, washing, and staining
of the chips. Then, the Affymetrix GeneChip Operating Software
(GCOS) was used to generate signal intensities that corresponded
to gene expressions. Affymetrix’s Expression Console was used
for data analysis. Expression values for all samples were obtained
by Pathway-level information extractor (PLIER) normalization.
Then, the expression values were transformed by log-based two.
There might be negative values in the background-adjusted chip
data, as well as some single abnormally large (or small) peak
(valley) signals (random noise). We excluded negative values and
noise signals. The common empirical data- discarding methods
included: A: Standard value or singular value discarding method;
B: Coefficient of variation method; foreground value <200;
Outlook—average/outlook—median <80%, etc. By this way, the
elimination of these probe sets reduced the number of false-
positive tests. Even though some true-positive values may have
been lost via this approach, these outcomes were outweighed by
eliminations of false positives. IUGR was compared with AGA,
and an FDR-corrected p < 0.05 was filtered to produce a series
of differentially expressed genes (DEGs). Principal component
analysis was conducted to evaluate similarities between AGA and
IUGR samples (17). Average values were compared to standard
values of same samples via fold-change filtering. If the value
of IUGR group was 1.5 times higher or lower than the control
groups’ standard value, it was defined as markedly different from
the control.

GO and the KEGG Analyses of the DEGs
The differentially expressed genes (DEGs) list was subjected
to gene ontology (GO) terms (http://www.geneontology.org/)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg/) analysis using the Database for
Annotation, Visualization and Integrated Discovery (DAVID)
tools (version 6.7; https://david-d.ncifcrf.gov/) to identify GO
categories and pathway categories that were overrepresented
(18, 19). GO analysis predicted the functions of DEGs in
molecular functions (MFs), biological processes (BPs), as well
as cellular components (CCs). KEGG was a repository for
gene function systematic analysis, linking genomic data with
high-level systemic functions from annotation, visualization,
and integrated discovery. Finally, in KEGG pathway analyses,
overrepresented pathways with p < 0.05 were defined as
statistically significant.

Construction of the Protein–Protein
Interaction Network
The Search Tool for the Retrieval of Interacting Genes
database (version 10.5; http://string-db.org/), which can provide
experimental and predicted interaction information (20), was
used for the analysis of PPI for DEGs by calculating the combined
score. Then, the PPI network of elevated and suppressed DEGs
was generated via Cytoscape (version 3.2.0; http://cytoscape.
org/) (21).

Verification of Microarray Results by
RT-QPCR
To confirm the microarray gene expression data, we performed
RT-qPCR to verify the mRNA expressions of six genes. To
eliminate possible bias from the sample collection, 16 rat liver
tissue samples (eight IUGR and eight AGA) were obtained
for RT-qPCR assays. The genes identified for the verification
of microarray findings include genes with a potential role in
glycometabolism. These genes included peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha (Ppargc1a), AMP-
activated, member 1 (Slc2a1), solute carrier family 2 (facilitated
glucose transporter), protein kinase, alpha 2 catalytic subunit
(Prkaa2) (22), retinoid X receptor gamma (Rxrg) (23), glucagon
receptor (Gcgr) (24), and acyl-CoA synthetase long-chain
family member 4 (Acsl4). Gene-specific primers were designed
based on cDNA sequences using the Primer3 software (http://
frodo.wi.mit.edu/primer3/), and their sequences are shown
in Supplementary Table 2. The extraction of total RNA was
performed as mentioned earlier, after which the synthesis of
double-stranded cDNA was done using a GoScript Reverse
Transcription System (Promega Co, Madison, Wisconsin, USA),
as instructed by the manufacturer. RT-qPCR was conducted
using the Go Taq qPCR SYBR Green Master Mix (Promega
Co, USA) on the ABI StepOne Plus Sequence Detection System
(Applied Biosystems; Thermo Fisher Scientific, Inc., Waltham,
MA, USA). We performed RT-qPCR experiments with three
replicate wells for each sample to enhance the reliability of the
findings. Finally, in analysis and graphing, the three replicate
wells of each sample were taken as the mean value for statistical
calculations. All mRNA expressions were normalized to beta-
actin (Actb) mRNA levels. The relative expressions for each gene
were evaluated via the 2−11CT method.

Statistical Analysis
Microarray analysis: The normalization of the microarray data
was performed using the R/Bioconductor Limma package (25).
Microarray gene profiles obtained from five IUGR and five
AGA liver samples were analyzed using group comparisons. An
empirical Bayes model was used for between-group comparisons
of DEGs. Significance was set at p < 0.05 and genes with 1.5-
fold or greater difference between two groups were obtained
for subsequent analyses. We used GO, KEGG, and PPI analyses
to assess various features of upregulated and/or downregulated
genes from the liver tissue of IUGR rats: the biological processes
analysis, biological functional exploration of gene-encoded
proteins, and pathway network analysis.
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FIGURE 1 | The body weight of 85 AGA (6.49 ± 0.35) and 80 IUGR (4.55 ±

0.42) rats at 1 day (**P < 0.01).

RT-qPCR data analysis: Differences in expression among
groups were assessed with Student’s t-test using SPSS 18.0
software (SPSS, Inc, Chicago, IL, USA). The cut-off for
significance was P < 0.05.

RESULTS

Body Weight Parameters
Birth weights at day 1 showed a decrease in average weight
by about 30% in the IUGR group, relative to the AGA group
(P < 0.001) (Figure 1).

Differential Gene Expression Patterns
Between IUGR and AGA
Compared to AGA liver samples, in IUGR liver samples,
there were 815 significantly DEGs (P < 0.05); among which,
347 genes were elevated while 468 genes were suppressed
from the microarray gene analysis. Unsupervised hierarchical
clustering of “expressed” genes defined the AGA and IUGR
samples (Figure 2A). The volcano plot as well as partial
list DEGs were, respectively, presented in Figure 2B and
Table 1. Since the analyses were conducted without a
priori identification of gene groups, it described the real
differences in global gene expression patterns, rather than a
selection result.

GO Terms of DEGs
The DEGs in IUGR and AGA were correlated with 30
GO terms in BPs, 4 in CCs, and 46 in MFs. Among the
BPs, DEGs were significantly enriched in small molecule

metabolic process (59 genes), fatty acid metabolic processes (21
genes), monocarboxylic acid metabolic processes (26 genes),
lipid metabolic processes (39 genes), organic acid metabolic
processes (34 genes), etc. (Figure 3A; Table 2A), implying
that differential expressions of metabolism-associated genes
might be involved with development of IUGR-caused metabolic
syndrome. With regards to MFs, DEGs were significantly
enriched in organic anion transmembrane transporter activity
(14 genes), anion transmembrane transporter activity (16
genes), amino acid transmembrane transporter activity (8
genes), organic acid transmembrane transporter activity (11
genes), carboxylic acid transmembrane transporter activity
(11 genes), etc. (Figure 3B; Table 2B). The results indicated
that transmembrane transporter might be essential for the
development of IUGR-caused metabolic syndrome. Moreover,
GO CC analysis revealed that the DEGs were markedly enriched
in the peroxisome (10 genes), microbody (10 genes), glycerol-3-
phosphate dehydrogenase complex (2 genes), and lipid droplet
(5 genes) (Figure 3C; Table 2C). The results indicated that
cytoplasmic region is involved in the occurrence of IUGR-caused
metabolic syndrome.

KEGG Pathway Analysis of DEGs
KEGG pathway analyses revealed that, in comparison with
controls, target genes were enriched in 21 pathways, including
PPAR (19 genes), FoxO (9 genes), autophagy—animal (9 genes),
ErbB (7 genes), adipocytokine (6 genes), JAK-STAT (8 genes),
and glucagon (8 genes) signaling pathways among others. The
top 10 pathways are presented in Figure 4. These core pathways
and their related genes are shown in Table 3.

In the PPAR signaling pathway, FABP family (elevated
Fabp4 and suppressed Fabp1, Fabp2, and Fabp7), ACSL
family (upregulated Acsl4 and downregulated Acsl1) (Figure 5),
and adipocytokine signaling (upregulated Npy, Slc2a1, Nfkbia,

Prkaa2, and Ppargc1a and downregulated Rxrg) showed obvious
differential expression. The findings indicate that the PPAR
signaling pathway might be the most significant pathway in the
occurrence of IUGR-caused metabolic syndrome.

These significantly enriched pathways indicated that six
directly interacting genes with the glycometabolism signaling
pathway were selected from multiple networks in KEGG
pathways (Table 4). Finally, integrated bioinformatics pipeline
related to study curation, GeneRIF as well as publications
under “Related Articles” in PubMed showed that six genes
associated with glycometabolism signaling pathways should be
investigated further.

DEGs and Core Genes in the Interaction
Network
According to data from the STRING database, the gene
interaction network had 750 edges and 694 nodes (Figure 6). The
nodes denoted DEGs, while edges denoted interactions among
DEGs. These genes were analyzed using Network Analyzer in
Cytoscape software, after which core genes were ranked based
on projected scores. Ehhadh, Gk, Slc2a1, Casp3, Fabp2, Fabp1,
Npy, Prkaa2, Rxrg, Pfkb3, Sgk1, Gadd45b, Nr1h4, Galm, Gale,
Hao1, Gcgr, Btg2, Nr1i3, and Egfr were among the top 20
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FIGURE 2 | Microarray gene analysis. (A) Hierarchical cluster analyses of DEGs. Each probe set is denoted by a single row of colored bars. Red: upregulated; green:

downregulated; black: no change. Every line denotes a liver sample from control (n = 5) and IUGR (n = 5) newborn rats. (B) The volcano plot analysis of DEGs. Green

color denotes upregulation; Red color represents downregulation. Genes with a significant change of more/<1.5-fold were selected.

high-degree hub nodes. Among these, Prkaa2, Slc2a1, Rxrg, Gcgr,
Fabp1, Fabp2, Gk, and Sgk1 are associated with glycometabolism
development as well as progression. This result suggested that the
changes at glycometabolism levels contained in IUGR liver might
affect metabolic syndrome.

Gene Expression Validation by RT-QPCR
Because IUGR had been considered as an important source
of metabolic syndrome, we identified six glycometabolism-
associated genes from microarray assays for validation (Table 4).
They were Ppargc1a, Prkaa2, Slc2a1, Acsl4, Rxrg, and Gcgr,
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TABLE 1 | The top 10 regulated differentially expressed genes between IUGR and AGA.

Gene symbol Genbank ID Gene name Fold change P-value

Upregulated

Fam134b NM_001034912 Family with sequence similarity 134, member B 12.66 5.00E-07

Upp2 NM_001106481 Uridine phosphorylase 2 6.10 9.30E-04

Aspa NM_024399 Aspartoacylase 5.22 2.06E-04

Gadd45b NM_001008321 Growth arrest and DNA-damage-inducible, beta 3.49 1.56E-05

Prkaa2 NM_023991 Protein kinase AMP-activated catalytic subunit alpha 2 3.47 4.79E-05

Hbe1 NM_001008890 Hemoglobin subunit epsilon 1 3.35 2.81E-03

Ctxn3 NM_001134696 Cortexin 3 3.27 4.66E-03

Nr1d1 NM_001113422 Nuclear receptor subfamily 1, group D, member 1 3.13 1.00E-06

Gabarapl1 NM_001044294 GABA type A receptor associated 3.04 4.11E-05

Cyp2c13 NM_138514 Cytochrome P450, family 2, subfamily c, polypeptide 13 3.00 1.73E-02

Downregulated

Inhbe NM_031815 Inhibin beta E subunit 0.075 2.99E-05

Slc34a2 NM_053380 Solute carrier family 34 member 2 0.077 1.10E-06

Acot1 NM_031315 Acyl-CoA thioesterase 1 0.16 1.51E-02

Cldn2 NM_001106846 Claudin 2 0.17 1.31E-04

Cyp4a1 NM_175837 Cytochrome P450, family 4, subfamily a, polypeptide 1 0.21 1.35E-04

G0s2 NM_001009632 G0/G1switch 2 0.21 3.85E-05

Paqr7 NM_001034081 Progestin and adipoQ receptor family member VII 0.22 4.95E-04

Ifi47 NM_172019 Interferon gamma inducible protein 47 0.22 1.30E-06

Fam82a1 NM_001037200 Regulator of microtubule dynamics 2 0.22 1.00E-07

Paqr9 NM_001271152 Progestin and adipoQ receptor family member IX 0.23 1.43E-05

associated with different signaling pathways. As presented in
Figure 7, expression levels of Prkaa2, Ppargc1a, and Slc2a1
were markedly higher in IUGR than AGA (P = 0.030, 0.016,
and 0.006). Levels of Rxrg and Gcgr were markedly lower in
IUGR than AGA (P = 0.000003 and 0.018). Acsl4 expression
levels were elevated in IUGR than AGA, but without marked
differences (P = 0.122). Our RT-qPCR findings were in
agreement with microarray findings, confirming the reliability of
the microarray data.

DISCUSSION

The inner molecular mechanism of adult metabolic syndrome
caused by IUGR is poorly understood. The applications of gene
expression microarrays in disease research are attributed to
transcriptional changes that provide a sensitive and robust way
for understanding disease mechanisms and their complications.
Previously, microarray analyses were used to evaluate the
underlying mechanisms of hypertension (26), glioblastomas
(27), pulmonary hypertension (28), and so on in patients
or animal models. Therefore, performing transcriptional
microarray analyses through rat liver to identify variations in
gene expression signatures of IUGR is important. In our study,
we used gene microarray to identify different gene expressions
between IUGR and AGA rat livers. We found 815 DEGs, among
which 347 genes were elevated while 468 were suppressed.
These results elucidate on the metabolic syndrome caused
by IUGR.

Genes such as Fam134b, Upp2, Aspa, Gadd45b, and Prkaa2
were significantly upregulated and Paqr9, Fam82a1, Ifi47, Paqr7,
G0s2, and Cyp4a1 were markedly suppressed in IUGR, relative
to AGA. Remarkably, a wide range of significant DEGs in IUGR
were related to lipid metabolism and glycometabolism. This
finding supported our view that the change of lipid metabolism
and glycometabolism in IUGR liver played critical roles in
the metabolic syndrome. RT-qPCR analysis further verified our
results. The results showed that among the six glycometabolism-
related genes, three were upregulated, two were downregulated,
and one tended to upregulate in IUGR compared with AGA,
which were correlated with those obtained by microarray
data. The DEGs between IUGR and AGA, particularly those
of lipid metabolism- and glycometabolism-associated genes,
further supported a special significance of IUGR in metabolic
syndrome pathogenesis.

Similar bioinformatics analysis in other tissues of IUGR
model revealed that many metabolism-related genes were
expressed differently. Using microarray profiling, Zhang and
Chen et al. (29) found that DEGs, such as FoxO1, Pdx1,
and MafA, might be potential targets for the development
of diabetes mellitus of IUGR. Through three gene expression
profiling datasets and the verification of RT-qPCR, Madeleneau
et al. (30) found that Lep, Igfbp1, and Rbp4 might play
important roles in energy production and metabolism. Freije
et al. (31) reported that the DEGs were Ccrn4lb, Per1,
Per2, Per3, Nr1d1, Npas2, Arntl, Igfals, Nrep, Apol3, Got1,
and so on in IUGR liver compared to AGA at 21 days
of age. Our study found Igfbp1 was upregulated, and Per1,
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FIGURE 3 | Results of GO analysis. (A) Top 10 GO biological processes, (B) Top 10 GO MF, and (C) Top 4 GO CC in IUGR compared with AGA.
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TABLE 2 | The GO terms analysis for DEGs between IUGR and AGA.

Term Description P-value N Genes

(A) TOP 10 GO TERMS FOR THE BIOLOGICAL PROCESS

GO:0044281 Small molecule metabolic process 6.62E-15 59 Ehhadh, Hao1, Elovl5, Galm, Rgn, Gucy2c, Gldc, Oat, acl1, Abhd1……

GO:0006631 Fatty acid metabolic process 5.11E-09 21 Ehhadh, Hao1, Elovl5, Hacl1, Abhd1, Acsm5, Acot5, Acot4, Acot3,

Fabp1……

GO:0032787 Monocarboxylic acid metabolic process 5.53E-09 26 Ehhadh, Hao1, Elovl5, Hacl1, Abhd1, Acsm5, Acot5, Acot4, Acot3,

Fabp1……

GO:0006629 Lipid metabolic process 5.60E-09 39 Ehhadh, Hao1, Elovl5, Nrih4, Pnpla2, Hacl1, Agmo, Abhd1, Acsm5,

Acot5 ……

GO:0006082 Organic acid metabolic process 7.90E-09 34 Ehhadh, Hao1, Elovl5, Rgn, Gldc, Oat, Hacl1, Abhd1, Acsm5, Acot5

……

GO:0019752 Carboxylic acid metabolic process 7.90E-09 33 Ehhadh, Hao1, Elovl5, Rgn, Gldc, Oat, Hacl1, Abhd1, Acsm5, Acot5

……

GO:0043436 Oxoacid metabolic process 1.70E-08 33 Ehhadh, Hao1, Elovl5, Rgn, Gldc, Oat, Hacl1, Abhd1, Acsm5, Acot5

……

GO:0051186 Cofactor metabolic process 1.51E-07 23 Rgn, Hbe1, Hbg1, Acsm5, Acot5, Acot4, Acot3, Gpd1, Elovl5,

Aldh1l2……

GO:0015936 Coenzyme metabolic process 1.30E-06 18 Rgn, Acsm5, Acot5, Acot4, Acot3, Gpd1, Elovl5, Aldh1l2 Acot2,

Pank1……

GO:0055086 Nucleobase-containing small molecule metabolic process 1.73E-06 25 Gucy2c, Acsm5, Acot5, Acot4, Acot3, Dpys, Nt5c3a, Gpd1,

Ppargc1a, Upp2……

(B) TOP 10 GO TERMS FOR THE MF

GO:0008514 Organic anion transmembrane transporter activity 1.96E-06 14 Slc25a32, Slc7a2, Slc13a4, Slc25a15, Slc17a2, Slc17a4, Ctns,

Slc25a42, Slc25a23, Slc2a1……

GO:0008509 Anion transmembrane transporter activity 7.52E-06 16 Slc25a32, Slc7a2, Slc13a4, Slc25a15, Slc17a2, Slc17a4, Ttyh2, Ctns,

Slco1b2, Slc25a23……

GO:0015171 Amino acid transmembrane transporter activity 8.63E-06 8 Ctns, Slc7a11, Slc16a10, Slc38a2, Slc7a2, Slc25a15, Slc7a1,

Slc25a29

GO:0005342 Organic acid transmembrane transporter activity 1.06E-05 11 Slc25a32, Slc7a2, Slc13a4, Slc25a15, Slc17a2, Slc17a4, Ctns,

Slco1b2, Slc26a1, Slc16a10……

GO:0046943 Carboxylic acid transmembrane transporter activity 1.06E-05 11 Slc25a32, Slc7a2, Slc13a4, Slc25a15, Slc17a2, Slc17a4, Ctns,

Slco1b2, Slc26a1, Slc16a10……

GO:0015179 L-amino acid transmembrane transporter activity 1.21E-05 7 Ctns, Slc7a11, Slc38a2, Slc7a2, Slc25a15, Slc7a1, Slc25a29

GO:0031625 Ubiquitin protein ligase binding 2.68E-05 15 Gabarapl1, Fzd5, Erbb2, Per1, Ppargc1a, Cdkn1a, Map1lc3b, Cbs,

Myc, Usp2……

GO:0044389 Ubiquitin-like protein ligase binding 4.65E-05 15 Gabarapl1, Fzd5, Erbb2, Per1, Ppargc1a, Cdkn1a, Map1lc3b, Cbs,

Myc, Usp2……

GO:0048037 Cofactor binding 6.40E-05 20 Hao1, Gldc, Oat, Hacl1, Hbe1, Hbg1, Gpd1, Gstm2, Maob, Fmo3……

GO:0020037 Heme binding 1.03E-04 10 Hbe1, Nr1d1, Cyp2c13, Hbg1, Cyp3a9, Cbs, Hbz, Cyp2j10, Cyp2c22,

Cyp21a1

(C) Top 4 GO terms for the CC

GO:0005777 Peroxisome 3.52E-05 10 Ehhadh, Hao1, rat, Hacl1, Acot4, Fabp1, Acsl1, Pxmp4, Hsdl2, Amacr

GO:0042579 Microbody 3.52E-05 10 Ehhadh, Hao1, rat, Hacl1, Acot4, Fabp1, Acsl1, Pxmp4, Hsdl2, Amacr

GO:0009331 Glycerol-3-phosphate dehydrogenase complex 2.20E-02 2 Gpd2, Gpd1

GO:0005811 Lipid droplet 2.71E-02 5 Cidec, Pnpla2, Plin2, Hsd3b7, Nsdhl

Per2, Igfals, Nrep, Got1, and Apol3 expression were changed
in IUGR.

In this study, GO analysis revealed that the DEGs were highly
involved in the biological process related to small molecule
metabolic process, fatty acid metabolic process, monocarboxylic
acid metabolic processes, and lipid metabolic process. These
findings indicated a pathophysiologic link between IUGR
and fatty metabolism. Notably, many genes in the PPAR
signaling pathway, such as upregulated Fabp4 and Acsl4 and

downregulated Fabp1, Gk, Angptl4, Ehhadh, and Acsl1, were
related to metabolism. Angptl4 is a kind of adipokine involved
in lipid metabolism, because of its wide expression in liver and
adipose tissue (32). But recent studies indicated that Angptl4 has
a role in various metabolic as well as non-metabolic disorders
and is particularly important in several energy homoeostasis
aspects (33). At the same time, accumulating evidence associated
Angptl4 directly with the risk of atherosclerosis and T2D (34).
Herrera et al. (35) found that maternal plasma Angptl4 was
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FIGURE 4 | Results of KEGG analysis: Top 10 KEGG pathways in IUGR compared with AGA.

TABLE 3 | The core pathways analysis for DEGs between IUGR and AGA.

Term KEGG pathway P-value N Genes

rno03320 PPAR signaling pathway 9.00E-06 19 Aqp7, Gk, Rxrg, Fabp1, Fabp2, Fabp4, Fabp7, Slc27a5, Angptl4, Plin2……

rno04068 FoxO signaling pathway 2.43E-04 9 Cdkn1a, Egfr, Egf, Il10, Sgk1, Gadd45b, Gabarapl1, Prkaa2, Bnip3

rno04140 Autophagy—animal 3.95E-04 9 Ddit4, Bcl2l1, Dapk1, Uvrag, Rb1cc1, Prap1, Gabarapl1, Prkaa2, Bnip3

rno04012 ErbB signaling pathway 4.58E-04 7 Nrg1, Cdkn1a, Cblb, Egfr, Erbb2, Myc, Egf

rno00591 Linoleic acid metabolism 4.84E-04 5 Cyp3a9, Cyp2c22, Cyp2c13, Cyp2j10, Pla2g12a

rno04920 Adipocytokine signaling pathway 1.06E-03 7 Acsl4, Npy, Slc2a1, Nfkbia, Prkaa2, Ppargc1a, rxrg

rno04066 HIF-1 signaling pathway 2.33E-03 7 Cdkn1a, Ifngr1, Pfkfb3, Egfr, Erbb2, Slc2a1, Egf

rno04630 JAK-STAT signaling pathway 3.08E-03 8 Cdkn1a, Ifngr1, Egfr, Myc, Bcl2l1, Il6st, Egf, Il10

rno04060 Cytokine–cytokine receptor interaction 3.45E-03 11 Cxcl2, Ifngr1, Il1r2, Il6st, Il10, Il18, Tnfrsf12a, Il17rb, Relt, Il1rn……

rno04922 Glucagon signaling pathway 4.50E-03 8 Sik1, Ppargc1a, Prkaa2, Pde3b, Slc2a1, Fbp1, Ldha, Gcgr

decreased in gestational diabetes mellitus (GDM), which was
consistent with our findings in our IUGR model. Recent studies
also reported that the variation in the Ehhadh was related to not
only non-alcoholic fatty liver disease (NAFLD) but also to T2D,
central obesity, and WHO-defined metabolic syndrome (36).
Thus, DEGs in small molecule metabolic process in IUGR might
be the main molecular event that caused metabolic syndrome.
Expecting DEGs in fatty acid metabolic as well as lipid metabolic
processes, our microarray results revealed that DEGs were
also involved in the biological function such as the coenzyme
metabolic process (Pfkfb3, Ppargc1a, Pdxk, Rgn) and nucleobase-
containing small molecule metabolic process (Gucy2c, Elovl5,
Slc25a33, Acot5). As an example, in our study Ppargc1a, a major
transcription factor in the regulation of metabolism as well as
energy homeostasis, was markedly elevated in the IUGR liver.
Ppargc1a played a vital role in glucose transport in skeletal
muscle (37) and pancreatic beta cells (38) and coactivated

the cholesterol 7-α-hydroxylase (Cyp7a1) gene that encoded
an enzyme vitally needed for cholesterol metabolism (39, 40).
Accordingly, molecular events related to the coenzymemetabolic
process might be vital biological processes during the metabolic
syndrome caused by IUGR.

In this study, GO CC analysis revealed that DEGs were
highly enriched in peroxisome, microbody, glycerol-3-phosphate
dehydrogenase complex, and lipid droplet. As an example, Crat,
a mitochondrial matrix enzyme that promoted glucose disposal,
was significantly decreased in the IUGR liver. Crat was reported
to be significantly reduced in humans with T2D. In addition,
CratM−/− mice fed a low-fat diet gained total body weight and
fat pad mass at similar rates as control littermates (Cratfl/fl);
however, when changed to a high-fat diet, CratM−/− mice had
a greater body weight and fat mass than the control group.
Interestingly, despite normal body weight when feeding on the
low-fat diet, blood glucose levels were higher in the CratM−/−
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FIGURE 5 | Downregulation of the PPAR signaling pathway in IUGR. We obtained the original Figure 5 from the KEGG website (https://www.kegg.jp/kegg-bin/show_

pathway?map03320), and we made some modifications.

TABLE 4 | 6 DEGs associated with glycometabolism signaling pathway in IUGR.

Gene symbol Gene description P-value

Ppargc1a Peroxisome proliferator-activated receptor gamma,

coactivator 1 alpha

1.71E-03

Prkaa2 Protein kinase, AMP-activated, alpha 2 catalytic

subunit

4.79E-05

Slc2a1 Solute carrier family 2 (facilitated glucose

transporter), member 1

6.83E-04

Acsl4 Acyl-CoA synthetase long-chain family member 4 6.87E-03

Rxrg Retinoid X receptor gamma 4.85E-05

Gcgr Glucagon receptor 4.24E-03

both at baseline and throughout an intraperitoneal glucose
tolerance test. High-fat feeding further exacerbated the glucose
intolerant phenotype of CratM−/− mice (41). Whether Crat
played an indispensable role in defending whole body glucose

homeostasis and how it mediated IUGR-induced metabolic
syndrome needed further investigation.

IUGR might come from reduced placental nutrient transfer
or insufficient maternal nutrient supply, causing suppressed
placental as well as fetal growth; therefore, the need for
investigating the nutrient transporters was necessary. Glucose
transporters were vital for maintaining glucose supply (42).
Recent studies have shown that the glucose transporter GLUT1
levels are increased in smooth muscle cell (SMC) in proximity
to atherosclerotic lesions. Cytokines, including TNF-α, secreted
by lesioned arteries, promote Glut1 levels in SMCs, thereby
increasing the levels of CCL2 by enhancing glycolysis and
the polyol pathway. In addition, Glut1 overexpressions in
SMCs, but not in myeloid cells, accelerated the development of
larger, more advanced lesions in a mouse model of metabolic
syndrome (43). In this study, the analysis of GO MF revealed
that DEGs mainly enriched in organic anion transmembrane
transporter activity such as upregulated Ctns, Slc2a1, Slc25a32,
Slc7a11, Slc16a10, Slc38a2, Slc7a2, Slc25a15, Slc7a1, and Slc25a29
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FIGURE 6 | PPI network analysis of DEGs in IUGR. The dots indicate individual differentially expressed genes, and the lines between any nodes represent the

interrelations of those proteins. The PPI network was established using cut-off values of confidence score >0.7 using default online parameter settings. We visualized

the PPI network analysis of DEGs from the STRING database (version 10.5; http://string-db.org/).
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FIGURE 7 | Validation of DEGs by RT-qPCR analysis. β-actin as an internal control. Prkaa2 (IUGR: 3.81 ± 0.97; AGA: 1.86 ± 0.84), Ppargc1a (IUGR: 8.72 ± 3.74;

AGA: 4.21 ± 1.89), Gcgr (IUGR: 1.47 ± 0.39; AGA: 2.74 ± 1.55), Slc2a1 (IUGR: 1.84 ± 0.42;AGA: 1.38 ± 0.24), Rxrg (IUGR: 1.26 ± 0.15; AGA: 2.39 ± 0.56) and

Acsl4 (IUGR: 5.18 ± 3.75; AGA: 3.50 ± 1.33) mRNA levels were analyzed in samples of IUGR, compared with AGA. Data indicate relative expression following

normalization (*P<0.05, **P<0.01).
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and downregulated Slc13a4, Slc17a2, Slc17a4, Slc26a1, Slc16a7,
Slc25a42, and Slc25a23. The findings indicated that the change of
transmembrane transporter-related regulatory genes might be an
important event in the metabolic syndrome induced by IUGR.

KEGG analysis revealed that the DEGs participated in more
than 25 pathways. Some of these well-known pathways, such
as the PPAR, FoxO, adipocytokine, and glucagon signaling
pathways, were found to play essential roles in metabolic
syndrome. The results also showed that DEGs were mainly
involved in the PPAR signaling pathway, including FABP family
genes (elevated Fabp4 and suppressed Fabp1, Fabp2, and Fabp7)
and the ACSL family gene (elevated Acsl4 and suppressed
Acsl1). FABPs, a family of lipid chaperones, were correlated with
metabolic syndromes, obesity, and atherosclerosis. Studies on
FABPs revealed that the plasma levels of Fabp4 were elevated in
metabolic syndrome patients (44, 45) and the Fabp1 null mice
showed sex- and age-dependent weight gain as well as increased
fat tissue mass (46). In line with previous studies, we found an
altered FABP family gene in IUGR. Except for the FABP family
gene, ACSLs also play a vital role in fatty acid metabolism. Acsl4
was reported to be upregulated in patients with NAFLD (47).
Here, Acsl4 significantly increased in the IUGR compared with
AGA, which indicated that upregulated Acsl4 might be involved
in the development of metabolic syndrome. Thus, the PPAR
signaling pathway might be an important pathway during the
IUGR-induced metabolic syndrome.

In conclusion, we identified 815 DEGs between IUGR and
AGA, including 347 upregulated DEGs and 468 downregulated
DEGs. It provided some associated key genes and pathways
to understand the molecular mechanisms in IUGR-induced
metabolic syndrome from GO and KEGG pathway analyses such
as Angptl4, Ehhadh, Ppargc1a, Crat, Slc2a1, Fabps, Acsls, and
so on, as well as the PPAR signaling pathway, which had an
essential role in IUGR. Thus, our results might help to clarify
the pathogenesis of metabolic syndrome caused by IUGR at the
molecular level and provide new insight into early metabolic
syndrome prevention as well as treatment. However, due to

limitations of this study, additional experiments were needed
to elucidate on the molecular mechanisms in IUGR-induced
metabolic syndrome.
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