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Genomic selection signatures 
in autism spectrum disorder 
identifies cognitive genomic 
tradeoff and its relevance 
in paradoxical phenotypes 
of deficits versus potentialities
Anil Prakash1,2 & Moinak Banerjee1*

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized 
by paradoxical phenotypes of deficits as well as gain in brain function. To address this a genomic 
tradeoff hypothesis was tested and followed up with the biological interaction and evolutionary 
significance of positively selected ASD risk genes. SFARI database was used to retrieve the ASD risk 
genes while for population datasets 1000 genome data was used. Common risk SNPs were subjected 
to machine learning as well as independent tests for selection, followed by Bayesian analysis to 
identify the cumulative effect of selection on risk SNPs. Functional implication of these positively 
selected risk SNPs was assessed and subjected to ontology analysis, pertaining to their interaction 
and enrichment of biological and cellular functions. This was followed by comparative analysis with 
the ancient genomes to identify their evolutionary patterns. Our results identified significant positive 
selection signals in 18 ASD risk SNPs. Functional and ontology analysis indicate the role of biological 
and cellular processes associated with various brain functions. The core of the biological interaction 
network constitutes genes for cognition and learning while genes in the periphery of the network had 
direct or indirect impact on brain function. Ancient genome analysis identified de novo and conserved 
evolutionary selection clusters. The de-novo evolutionary cluster represented genes involved in 
cognitive function. Relative enrichment of the ASD risk SNPs from the respective evolutionary cluster 
or biological interaction networks may help in addressing the phenotypic diversity in ASD. This 
cognitive genomic tradeoff signatures impacting the biological networks can explain the paradoxical 
phenotypes in ASD.

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by impairments 
in communication, social interaction, and restricted or repetitive behaviors. While ASD involves reductions in 
verbal skills but on the positive side, it also shows increased focus of  attention1. Overall ASD is characterized 
with below-average Intelligence Quotient (IQ), in contrast it is also discussed as a disorder of high  intelligence2. 
Therefore, on one side it is a result of deficits in brain function resulting in impaired social behavior, communica-
tion and language, while on the other side it also demonstrates gain in brain function as evident from increased 
auditory pitch perception, increased visual-spatial abilities, enhanced synaptic  functions3–8. Some of these gain 
in brain function might influence the capability of ASD individuals towards increased attention to detail, better 
observation skills, focused concentration, ability to absorb and retain facts, (a feature often associated with long 
term memory), better visual imaginative skills (where they think in pictures), greater analytical skills (as they 
can spot patterns and repetitions which are common in subjects such as Science, math and music), unique and 
creative thought processes resulting in innovative solutions, increased tenacity and  resilience9. Evolutionarily, in 
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comparison to apes, the human brain size has tripled, that impacted brain organization and  functions2. Contrast-
ingly increased brain size, rapid brain growth or increased synaptic functions can impact brain function in either 
way depending on where the growth is and how the synapses  interact10–13. How common or rare are these deficits 
or gain in function in ASD is not well understood. But possibly this would largely depend on their genomic 
makeup and early developmental environment that nurtures this gain in functions. It has been demonstrated 
that various phenotypic variables that are a part of ASD such as learning, communication, speech, cognition, 
behavior, neurodevelopment etc. are largely influenced by its  genes14. These phenotypic variables are known to 
be polygenic in nature with multiple alleles with small effect size, which may aggravate or decline depending on 
the nurturing  environment15,16. Therefore, one would wonder can these paradoxical phenotypes of deficits and 
gain in brain function be explained by genomic tradeoff, either at genomic level or genotype phenotype level. 
Do these tradeoff signature has any evolutionary significance.

Ideally a Genomic Trade-off hypothesis states that certain genomic changes may tend to produce disease in 
a subset of individuals but are still retained in the population as they turn out to be beneficial overall. Genomic 
trade-offs can influence specific phenotype and human  adaptations17. It would be interesting to identify which 
genes, or cluster of genes or network of genes underwent positive selection during the course of evolution and 
how they interact among each other. To address this query, we searched for the positive selection in all the com-
mon ASD risk single nucleotide polymorphisms (SNPs). Then went on to search for pattern of clustering or 
interaction of these positively selected risk SNPs, and how they reflect a biological or cellular phenotype. Do these 
functionally relevant positively selected risk alleles signify a genomic tradeoff and if so does it reflect a tradeoff 
between phenotypic traits. What is the evolutionary significance of these positively selected ASD risk alleles? Do 
these evolutionary domains also reflect a functionally impact on phenotypic traits as a part of human evolution?

Results
Identifying selection in ASD risk SNPs. We retrieved 1019 SNPs associated with ASD risk from SFARI 
Human gene database which includes both rare and common variants (Supplementary Table S1). From these 
only 446 common SNPs were having risk allele information and ethnicity data, and these were selected for fur-
ther analysis. These SNPs were extracted from Phase 1 and Phase III data of 1000 genome and were subjected to 
selection tests. Using machine learning based method for Phase I data, only nine significant positive selections 
were detected out of 1338 selection tests (Supplementary Table S2). Using individual tests for positive selection, 
such as Fst, Tajima’s D, DAF, XP-EHH, XP-CLR that summed up to 12,042 selection tests, we identified 185 
significant positive signals (Supplementary Table S3).

While testing for positive selection in Phase III data using PopHuman Genomics Browser we identified 299 
positive tests from 12,042 selection tests (Supplementary Table S4). These 299 positive signals from Phase III data 
not only covers the positive signals from Phase I data but also adds few new selection signals. These selection 
signals in the ASD risk SNPs were further verified in presence of positive and negative control. As expected, all 
positive controls did display positive selection using all approaches. While in negative controls machine learn-
ing approaches did not identify any major positive signals but individual tests did identify few positive selection 
signals in randomly identified negative controls.

Identifying global and individual level selection at ASD risk SNPs. In order to identify maximum 
selection at individual SNPs we performed a Bayesian conjugate beta-binomial analysis as per the criteria men-
tioned in the methods. Minimum one-tailed upper confidence limit was three positive tests, derived from Bayes-
ian conjugate beta-binomial analysis (Fig. 1A). Using this stringency, we identified 61 SNPs out of the 446 SNPs 
that surpassed this threshold limit (Supplementary Fig. S1, Supplementary Table S5). All the positive control 
SNPs also passed this threshold. SNPs in which association and selections were reported in the same population 
and those having the same risk and the selected allele, were retrieved from these 61 SNPs. Thus only 18 SNPs 
were obtained and used for further functional, interaction and evolutionary analysis (Fig. 1B).

In silico functional assessment of the selected SNPs. Majority of the positively selected SNPs were 
identified to have a regulatory role as evident from their Regulome DB rank (Supplementary Table S6). The mis-
sense SNP was identified to have potentially damaging role as evident from its Polyphen score. Gene expression 
analysis of these positively selected SNPs were extracted from GTEX portal. Majority of the SNPs do impact 
gene and tissue specific expression alterations and are also found to impact the brain tissues (Supplementary 
Table S7). Based on these observations we do suggest that these positively selected SNPs can play a significant 
role in altered gene expression.

Subsequently we were keen to identify the biological and cellular processes associated with these positively 
selected ASD risk SNPs and their eQTL genes. Gene Ontology enrichment analysis plots with low FDR cut-off 
(< 0.01) predicted that several of these genes are involved in multiple biological and cellular processes associated 
with brain function (Supplementary Table S8). Several of these genes show enrichment for biological processes 
associated with cognition, behavior, system process, response to abiotic stimulus, cell communication, learning 
or memory, nervous system process and multicellular organismal signaling (Fig. 2A, Supplementary Fig. 2A). 
Various cellular components that are enriched in the Gene Ontology enrichment analysis include neuronal cell 
body, neuron projection, axon, dendrite, perikaryon, postsynapse, dendritic spine, cation channel complex, 
components of plasma membrane, and plasma membrane protein complex (Fig. 2B, Supplementary Fig. 2B). 
Interestingly, biological interaction network using STRING analysis show that some genes strongly interact 
among each other and form the core of the network, while others lie in the periphery with or without interacting 
with the core network. The overall Protein–protein interaction (PPI) enrichment score is statistically significant 
P = 0.038 indicating strong interaction. The genes that form the core of the network include AVPR1B, DRD2, 
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GRIN2B, CNTNAP2, KCND2 and CTNNA3, and these genes are also associated with cognition, learning and 
other higher order brain functions (Fig. 3A). A similar interaction network was observed with eQTL genes too 
but involved addition of TTC12 and ANKK1 joining the core with DRD2 (Fig. 3B) to form a part of the NTAD 
gene cluster (NCAM1-TTC12-ANKK1-DRD2). The PPI enrichment score was statistically highly significant 
P = 5.01 ×  10–7 indicating strong interaction. The genes that did not form the core of the network interacted 
directly or indirectly influenced the cellular and biological processes through peripheral network as evident with 
the interaction of INPP1, ITGA4, SLC25A12 and STK39 (Supplementary Tables S7, S8).

Evolutionary history of risk SNPs. The evolutionary origin of these 18 positively selected ASD risk 
alleles identified two evolutionary domains (Fig. 4, Supplementary Table S9). Interestingly, the risk alleles of 
rs1800498(A)DRD2, rs2268097(G)GRIN2B, rs980365(C)GRIN2B, rs6337(T)NTRK1, rs1807984(G)STK39, 
rs10239799(C)KCND2 and protective alleles of rs1877455(T)TRIM33, rs2959930(G)CELF6 are present only in 
recent modern humans. This allelic selection of positively selected ASD risk SNPs of DRD2, GRIN2B, GRIN2B, 
NTRK1, STK39, KCND2 and protective alleles of TRIM33, CELF6 are referred as Denovo Evolutionary Selection 
Domain as it was not observed in any of the ancestral species, including early modern humans. This Denovo Evo-
lutionary Selection Domain that mostly comprises of genes pertaining to cognition and learning seems to have 
evolved in the last 4500 years, as evident from the variant sites that were found to be missing in the Motaman, 
that dates back to 4500YBP and even Anzick1 which dates back to 13,000YBP. The risk alleles of rs3802890(A) 
AMBRA1, rs1449263(T) ITGA4, rs2710093(C) CNTNAP2 were seen only in recent and early modern human 
suggesting to have evolved in last 45,000 years. In contrast to Denovo Evolutionary Selection Domain, there 
were certain risk alleles in ASD risk genes, rs7923367(G) CTNNA3, rs35369693(G) AVPR1B, rs2292813(C) 
SLC25A12, and rs10951154(T) HOXA1 that were found to be conserved throughout the evolutionary time scale, 
starting from primates to modern humans. This evolutionary selection domain is referred as Conserved Evo-
lutionary Selection Domain. However, few exceptions with interrupted evolution such as rs4656 (G) INPP1 
risk allele and the protective allele of rs7170637(A) CYFIP1 were also found to be conserved throughout the 
evolutionary time scale but with contrasting interruptions. While rs4656(G) INPP1 risk allele was not seen 
in Neanderthals and Denisovans but reemerged in early modern humans in contrast the protective allele of 
rs7170637(A) CYFIP1 was present in primates to Neanderthals and reemerged in modern humans while absent 
in early modern humans. The protective allele of rs10784860(T) PTPRB is conserved in all hominin species with 
exception to Motaman and Denisova3.

Discussion
The present study is one of the most exhaustive evaluation of positive selection in ASD risk SNPs and their 
involvement in biological, cellular and functional implication. In addition, it also predicts its evolutionary sig-
nificance and implication in ASD phenotypes. Earlier studies have just reported positive selection in ASD loci, 
but was limited to GWAS data of Psychiatric Genomics Consortium and restricted to using machine learning 
 tool18. Whereas, the present study extensively utilizes machine learning methods, different individual tests for 
selections using data from Phase I and Phase III and also Bayesian methods to identify positive selection in ASD 
risk SNPs. The study identifies a pattern of selection in ASD risk SNPs that associate with differential implication 
to brain functions, which indicate a cognitive genomic trade-off for ASD phenotypes.

Figure 1.  Bayesian conjugate beta-binomial analysis. (A) Posterior distribution obtained after 10,000 MCMC 
simulations. (B) Positive selection tests that crossed the minimum threshold.
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The in silico functional evaluation of the positively selected ASD risk SNPs, do reflect a regulatory role and 
likely pathogenic as evident from the RegulomeDB score, SIFT and PolyPhen score. Gene ontology enrichment 
analysis for the ASD risk genes and their eQTL genes indicate the involvement of biological processes associated 
with cognition, memory, learning, behavior, neuronal development etc., while the cellular processes also sup-
port the roles of neurons, axons, dendritic spines etc. All these observations clearly indicate that the positively 
selected ASD risk SNP do play a significant role in impacting the higher order brain function such as cognition. 
Interestingly, the genes that support these higher order brain functions also form the core hub of the biological 
interaction network. This is evident with the involvement AVPR1B, DRD2, GRIN2B, CNTNAP2, KCND2 and 
CTNNA3 and the NTAD gene cluster that can jointly impact cognition, behavior, learning, memory and other 
nervous system processes associated with higher order brain function. NTAD cluster genes are known to be 
co-regulated and involved in nervous system development and  neurotransmission19. These biological and cel-
lular functions are known to be altered and their differential presentation in ASD can result in diametrically 
opposite phenotypes. Thus in ASD phenotypes, cognitive genomic trade-offs seems to be a plausible outcome. 
Evolutionary assessment of the risk SNP genes that form the core of the interaction network, indicate that they 
belong to the Denovo Evolutionary Selection Domain, while the genes in the periphery of the network belong 
to the intermediate or Conserved Evolutionary Selection Domains. Considering the time scale of early modern 
humans to recent modern humans used in the study, one can predict that this Denovo Evolutionary Selection 
Domain might have emerged within the last 4000 years. Thus the evolutionary pattern of these genomic tradeoff 
signature genes imply that ASD might been a casualty of higher order brain function. The phenotypic variation 
in gain or loss in cognitive function might also be explained by this cognitive genomic tradeoff for ASD risk 
SNPs, depending on the combination of risk SNPs or environmental variables.

Cognition has been one of the most prominent domains of human brain function which is unique from its 
other hominin species. A possible explanation to trade off hypothesis between health and disease (ASD), can 
be explained by possible mismatch of Evolutionary selection domains (Denovo and Conserved Evolutionary 

Figure 2.  Gene ontology enrichment plots for positively selected SNPs showing (A) biological processes with 
their FDR cut off and gene count ratio (B) cellular processes with their FDR cut off and gene count ratio.
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Selection Domains) or mismatch between the epistatic interaction among the core and peripheral network 
or disadvantageous combinations of allelic preferences either directly or a indirectly, through environmental 
insults. How epistatic or epigenetic interactions influence ASD phenotype has not been thoroughly investigated. 
However, limited studies on epistatic interaction between genes in the RAS/MAPK pathway in ASD have been 
 demonstrated20. Similar epistatic interaction can be expected in these positively selected ASD risk loci, but needs 
precise investigation on how they impact phenotype variation in ASD. The genes in the peripheral network or 

Figure 3.  Protein–protein interaction networks. (A) STRING network showing genes harboring the positively 
selected SNPs (nearby genes for intergenic SNPs). (B) STRING network after including eQTL genes in the input 
list.

Figure 4.  Evolutionary pattern of positively selected ASD risk loci, showing conserved evolutionary selection 
domain (Red), Denovo evolutionary selection domain (Green), Intermediate selection domain (early to recent 
Modern human—yellow).
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the Conserved Evolutionary Selection Domains such as HOXA1 and CYFIP1 have been shown to have increased 
expression, resulting in ASD  phenotype21,22. CYFIP1 is reported to coordinate mRNA translation at  dendrites23. 
Epigenetic studies on ASD risk loci are also very limited although epimutations and DNA methylations have 
been reported in  ASD24–26. Altered methylations have also been reported in these core network genes such as 
DRD2, GRIN2B which are also likely to impact dendritic spine density, altered synaptic function, disruption of 
the glutamatergic/GABAergic  balance27,28. These cellular functions are known to be altered in ASD. It has been 
demonstrated that DRD2 methylation can alter cognitive function and reduced prefrontal dopaminergic activ-
ity has also been reported in ASD  phenotype29,30. Interestingly, several genetic variants and denovo mutations 
in the genes that influence DNA methylations such as DNMT3A, TET2, MECP2, MBD5 have been reported to 
be associated with  ASD31,32. These observations might clearly indicate a possible role of epigenetic modifying 
enzymes, resulting in epigenetic dysfunction. A complex interplay of genetic networks and allelic selection of 
genes involved in cognition might have been critical in developing higher order thinking processes in humans. 
Allelic imbalances in these genetic networks might also drive the human species into a functional state of the 
brain which may not seem to be normal. Therefore, determining the epistatic or epigenetic interactions may 
demonstrate the direction of the function, whether gain or loss of function in ASD phenotype. A precise under-
standing of this cognitive trade-off might therefore, help in understanding the phenotypic variations in behavior 
spectrum of ASD patients.

Evolutionary benefit of genetic variants due to selection advantage resulted in evolution of the human brain. 
But in a few individuals these resulted in cognitive  disorders33. The Denovo Evolutionary Selection Domain, 
while on one side reflects the positive side of human evolution, more importantly cognition; contrastingly it also 
reflects its involvement with ASD. Similarly, ASD is also characterized by impaired social skills, communication 
problems, and repetitive behaviors and contrastingly, certain cognitive abilities such as music, mathematics, 
or memory are greatly enhanced in ASD individuals and can greatly surpass the overall level of functioning of 
modern  humans2,34,35. These traits are more associated with enhanced analytical capabilities. These enhanced 
analytical capabilities might be linked with increased dendritic spine density, activity and synaptic  plasticity36,37 
which are reported to be altered in  ASD3,34,35. Interestingly, these traits are also associated with the genetic 
variants that imply the role of Denovo Evolutionary Selection Domain. Common genetic risk variants for ASD 
were reported to be positively associated with general cognitive ability, vocabulary, verbal fluency and logical 
 memory38. It has been reported that highly duplicated Olduvai sequences are beneficial in cognitive development, 
but differences in gene dosage can result in either ASD or  Schizophrenia33,39. Many of these cognitive functions 
that are associated with ASD are also likely to be influenced by educational  attainment40. Increased educational 
attainments have been linked to enhanced cognitive skills in ASD. This increased educational attainment reflects 
either training of genes to their maximal potential or through epigenetic modification thus reflecting that Denovo 
Evolutionary Selection Domain has the potential to undergo modification. Repetitive behavior is also one of 
the prominent features of ASD and this feature is also evident in  primates41,42. SLC25A12 has been reported 
to be associated with restricted repetitive behavior  traits43 and interestingly the risk variant is also conserved 
throughout the evolution indicating its support to conserved evolutionary domain of brain function. A precise 
understanding of genetic variants in different evolutionary selection domains and their relationship with various 
phenotypes might provide deeper insights into the phenotypic variation in ASD. Determining the enrichment 
of the evolutionary selection domain might also indicate how evolution of higher order brain function turned 
out to be a casualty resulting in ASD.

Genomic trade-offs signature in ASD indicate cognitive genomic trade-offs, reflecting on either gain or deficits 
in brain function. This cognitive genomic trade-off seems to be a plausible outcome of human evolution which 
is dominated by the denovo evolutionary selection domain. Denovo Evolutionary Selection Domain might have 
emerged within the last 4000 years. The trade-off between health and disease and phenotype will depend on the 
ordered or disordered combination of genes, either through epistatic or epigenetic interaction within or between 
the biological networks (core/peripheral), or within or between the evolutionary selection domains (denovo/
conserved). Identifying the enrichment of the SNPs in the biological network or the evolutionary selection 
domain can provide critical clues on the ASD phenotype diversity. Since ASD is characterized by both deficits 
and gain in brain function, therefore, understanding the pattern of cognitive genomic tradeoff signature may 
explain the paradoxical phenotypes in ASD. Enrichment of genomic variants associated with enhanced cogni-
tive function or core biological network or denovo evolutionary selection domain, can result in gain in brain 
function. In contrast when the enrichment of the risk SNPs of the genes of peripheral biological network or in 
the conserved evolutionary selection domain, may reflect on deficits in brain function associated with impaired 
social behavior, communication and language.

Methods
To investigate the positive selection in ASD associated genes, SFARI database was used for mining the ASD risk 
genes and checked for common  variants31. SFARI dataset were defined for ASD as per the diagnostic tools and 
exclusion and inclusion criteria elaborated in the link (sfari. org/ ssc- instr uments) Subsequently, various selec-
tion tests using individual and global approaches were used to identify whether these common risk variants are 
positively selected in the general population. The entire methodology is presented in a flowchart (Fig. 5).

Data mining of ASD related genes. Complete gene lists of 1019 SNPs that were reported to be associated 
with ASD were retrieved from the SFARI Human gene database (gene. sfari. org/ datab ase/ human- gene/). As per 
the SFARI dataset classification only the common SNPs were filtered and variant type and identification of the 
SNPs were determined using Ensembl (www. ensem bl. org/ index. html). Ethnicities of samples used in each study 
and risk allele status of each SNPs were identified by manual inspection of the respective publications. Therefore, 

https://www.sfari.org/ssc-instruments
https://gene.sfari.org/database/human-gene/
http://www.ensembl.org/index.html
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based on the selection criteria of common SNPs and ethnicity of the risk allele, 446 SNPs were selected for fur-
ther analysis (Supplementary Table S1).

Selection tests. For the curated ASD risk SNP various selection tests were performed in Phase I and III 
data of 1000 genome database. For the Phase 1 data (www. inter natio nalge nome. org/ categ ory/ phase-1/), 1000 
Genomes selection browser 1.0 available at hsb. upf. edu/ was  used44. Analysis was carried out in three Metap-
opulations: CEU (Utah residents with Northern and Western European ancestry from the CEPH collection), 
YRI (Yoruba in Ibadan, Nigeria) and CHB (Han Chinese in Beijing, China) using a ‘Hierarchical Boosting’ 
machine-learning algorithm that combines multiple tests to give an overall view of selection. Hierarchical Boost-
ing method implemented in 1000 genome selection browser uses a supervised boosting algorithm for classifying 
genomic regions based on positive  selection45. Summary statistics of individual selection tests are used as input 
variables for the boosting regression functions. Some selection tests which are correlated and unsuitable for the 

Figure 5.  Flowchart of step-wise methodology followed in the present study.

http://www.internationalgenome.org/category/phase-1/
http://hsb.upf.edu/
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framework are removed to avoid over-fitting. Each algorithm was trained 1000 times with a 90% re-sampling of 
input data and the positive selection scores are validated by comparing with empirical genome-wide data. The 
above stated positive selection dataset was used for determining the selection signature of ASD risk and control 
SNPs. In addition, various individual tests for selection implemented in 1000 Genomes selection browser 1.0 
were also performed using Fixation index (Wright’s FST)46, Tajima’s  D47, difference of derived allele frequency 
(DDAF)48, cross-population extended haplotype homozygosity (XPEHH)49, cross-population composite likeli-
hood ratio (XPCLR)50 and integrated haplotype score (iHS)51 (window size varies according to the test). For all 
the selection tests for Phase I data, positive selection signals were considered significant at a 1% false discovery 
rate (FDR) with a ranking score.

For 1000 genome phase III data (www. inter natio nalge nome. org/ categ ory/ phase-3/) the selection test was car-
ried out using PopHuman genomics  browser52 available at pophu man. uab. cat/. Fst and XPEHH (10 kb window 
size) were carried out in the same three Metapopulations: CEU, CHB and YRI. While iHS (10 kb) was carried out 
in several sub-populations excluding admixed American  populations53. For all the selection tests for Phase III 
data, positive selection signals were considered significant at a 1% false discovery rate (FDR) and the significance 
threshold was set at ± 2 SD from the genome-wide mean.

Selection of positive and negative control SNPs. To evaluate the efficiency, correctness and signifi-
cance of our selection tests we used established Positive controls and some random negative  controls54. The 
positive control SNPs were selected from genes already reported to be under positive selection in various popu-
lations compiled in 1000 Genomes selection browser 1.0. From here nine such SNPs were considered as posi-
tive controls. Similarly for negative controls 446 SNPs were selected based on similar ancestral allele frequency, 
recombination rate, and which has not been reported to be associated with ASD. Ancestral allele frequency of 
the SNPs in 1000 genome phase 3 sub-populations were retrieved using Ensembl REST  API55 followed by arcsine 
transformation and two-sample t tests. The selection tests were repeated for the positive and negative controls 
and Chi-square test was done using frequency of positive tests in control and ASD SNPs.

Determining the threshold of positive selection at individual SNPs. We further tested the thresh-
old of selection at each individual SNPs, for this we considered all the selection tests that demonstrated selection 
at individual SNPs. Bayesian conjugate beta-binomial analysis was carried out using WinBUGS  program56 to 
determine the threshold value for positive selection for each individual ASD risk SNPs. The parameters of the 
prior distribution were decided using negative control data (‘a’ = 1 to 3.8, ‘b’ varies according to mean probability 
of success = 0.0227 and n = 57 for binomial likelihood function). Markov Chain Monte Carlo simulations were 
carried out for each posterior distribution. Minimum one-tailed upper confidence limit was selected as thresh-
old for positive selection in ASD risk SNPs.

Next, we wanted to identify the direction of selection for ASD risk SNPs. As the positive selection can occur 
either in the risk or protective alleles. To resolve this, we considered all the positively selected risk alleles and 
verified all those SNPs in which association and selection were reported in the same population using statistical 
tests data and allele frequency. For associations reported in mixed ethnicities, the ethnicity contributing majorly 
in the sample was considered, and for subpopulations absent in 1000 genome data, metapopulations with similar 
ethnicity and allele frequency were considered.

Functional implication of the positively selected SNPs. To find the functional implications of the 
positively selected ASD risk SNPs, we performed a comprehensive analysis of the functional impact of these 
genes using publicly available computational prediction tools such as RegulomeDB rank (regul omedb. org)57. 
The missense SNPs were further assessed for their functional and pathological role using sequence homology-
based tool (SIFT) (SIFT- sift- dna. org)58 and a structural homology-based method (PolyPhen-2) (PolyP hen-2- 
genet ics. bwh. harva rd. edu/ pph2/)59. Functional significance of these SNPs was further assessed for their expres-
sion profile based on eQTL data retrieved from GTEx portal V8 (gtexp ortal. org)60. The change in expression of 
the eQTL genes for the positively selected risk SNPs were noted in different tissue types.

Interaction networks. Genes belonging to positively selected SNPs present in the intronic, exonic or UTR 
region or in the intergenic region of a nearby gene or their eQTL genes, were subjected to STRING analysis 
(string- db. org/) to identify their direct (physical) or indirect (functional)  interactions61. The STRING database 
interaction records are extracted from KEGG, Reactome, BioCyc, Gene Ontology and BioCarta and restricted 
our search for human interactions only. STRING combines probability scores from seven independent evidence 
channels to obtain protein–protein interaction score. This includes three genomic context (neighborhood, fusion, 
gene co-occurrence) prediction channels and one each for co-expression, text-mining, biochemical/genetic data 
and previously curated databases. Protein–protein interaction network is constructed from interaction scores 
above medium confidence threshold (0.4). In addition to protein interactions, STRING v11 also provides Gene 
Ontology enrichment analysis using classification systems implemented in Gene Ontology and KEGG, to under-
stand the biological processes, cellular components and molecular functions involved. Functional enrichment 
of the positively selected SNP and their corresponding genes or eQTL genes in various biological and cellular 
processes are plotted using the ggplot2 package in  R62. For each biological and cellular function, the proportion 
of genes with FDRs less than 0.01 for the corresponding genes and less than 0.05 for eQTL genes was calculated, 
which was used to evaluate the strength of the associations.

Ancient genome analysis. To understand the evolutionary trajectory of these positively selected risk 
SNPs we extracted data from 21 ancestral genomes consisting of 14 ancient hominins belonging to Denisovans, 

http://www.internationalgenome.org/category/phase-3/
https://pophuman.uab.cat/
https://www.regulomedb.org
https://SIFT-sift-dna.org
http://PolyPhen-2-genetics.bwh.harvard.edu/pph2/
http://PolyPhen-2-genetics.bwh.harvard.edu/pph2/
https://gtexportal.org
https://string-db.org/
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Neanderthals and four early modern humans dating 2000–45,000 YBP and three primate genomes. Ancient 
genomes consisted of Neanderthal genomes such as Altai  Neanderthal63, Vindija Neanderthal genomes: Vi33.16, 
Vi33.25, Vi33.2664, and Vi 33.1965, additional Neanderthal genomes: Feld1, Mez1,  Sid125363, late Neanderthal 
genomes: Goyet Q56-1, Les Cottes Z4-1514, Mezmaiskaya2 and Spy  94a66, Denisovan  genome67 and a Nean-
derthal-denisovan hybrid named  Denisova1168. These genomes span over 750,000 to 55,000 years before pre-
sent (YBP). The early modern humans considered for the study span around 45,000 to 2000 YBP. Early mod-
ern human genomes were Ust’-Ishim, Europe (45,000)69, Oase1, Europe (35,000)70, MA-1, Europe (24,000)71, 
Anzick1, USA (13,000)72, Motaman Africa (4500)73, and VN41, Asia (2000)74. Early modern human genomes 
were selected from different geographical regions to represent different ethnicities during those times. Deniso-
van genome and other low coverage Neanderthal genomes (Vi33.16, Vi33.25, Vi33.26, Feld1, Mez1 and Sid1253) 
were available as tracks in UCSC genome browser (hg19) (genome. ucsc. edu/ Neand ertal/). For others, BAM 
files were downloaded and analysed using GATK4 (gatk.broadinstitute.org)75 and visualized using Integrative 
Genomics Viewer (igv.org). For Chimpanzee, Gorilla and Orangutan genomes, Cons 46-way track from UCSC 
genome browser (genome.ucsc.edu) was used. Data is presented wherever available for all these with the most 
common/ancestral SNP.
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