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Critical fluctuations in epidemic 
models explain COVID‑19 
post‑lockdown dynamics
Maíra Aguiar1,2,7*, Joseba Bidaurrazaga Van‑Dierdonck3, Javier Mar4,5,6, Nicole Cusimano1, 
Damián Knopoff1, Vizda Anam1 & Nico Stollenwerk1,2

As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and 
very influential to understand the epidemiological dynamics of disease spreading. The momentary 
reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of 
the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control 
measures over time. Here we investigate critical fluctuations around the epidemiological threshold, 
resembling new waves, even when the community disease transmission rate β is not significantly 
changing. Without loss of generality, we use simple models that can be treated analytically and 
results are applied to more complex models describing COVID-19 epidemics. Our analysis shows that, 
rather than the supercritical regime (infectivity larger than a critical value, β > β

c
 ) leading to new 

exponential growth of infection, the subcritical regime (infectivity smaller than a critical value, β < β
c
 ) 

with small import is able to explain the dynamic behaviour of COVID-19 spreading after a lockdown 
lifting, with r(t) ≈ 1 hovering around its threshold value.

To assist public health managers and governments during COVID-19 responses, mathematical models were 
developed within countries’ task forces, first to describe the epidemic in terms of disease spreading and control, 
giving projections on the national health system necessity during the increased population demand on hospi-
tal admissions, for example, based on the available data1,2. Valid modeling frameworks continued monitoring 
disease transmission when the country lockdown was gradually lifted towards the so-called “new normality” 
and thereafter.

The momentary reproduction ratio r(t) of an epidemic, defined as the average number of secondary infected 
cases per infected case in a population in the current state, including both susceptible and non-susceptible hosts, 
are estimated by simple mathematical models as a function of the community disease transmission rate β , and 
controls the transition between a subcritical regime (below the epidemic threshold) and a supercritical regime 
(above the epidemic threshold).

The evolution of r(t) is the reasoning behind tightening and relaxing control measures over time, with the 
transition between subcritical threshold regime ( r(t) < 1 ) and a supercritical threshold regime ( r(t) > 1 ) 
observed in many European countries during lockdowns implementation and lifting3. While in subcritical 
regimes, an index infected case will cause an outbreak that will die out sooner or later, the supercritical regimes 
lead to an exponential growth of infection. The super- or subcritical regimes of an outbreak are often not distin-
guished when close to the epidemic threshold, where large fluctuations are observed. Identifying the outbreak 
regime is of major importance to understand the course of an epidemic, improving science-driven policies for 
disease prevention and control programs in the current epidemiological scenario.

In a basic Susceptible-Infected-Recovered (SIR) epidemiological models with infectivity β and recovery 
rate γ we observe in a susceptible population N the extinction or the exponential growth of infections when the 
community transmission β if respectively below or above a certain threshold, the so-called critical infectivity βc . 
These behaviours are explained by the fact that, during a given time period, infected individuals are recovering 
from infection respectively faster or slower than susceptible individuals are becoming infected.
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It is long known that around the epidemiological threshold all realistic stochastic models with extinction 
versus growth to non-zero infection levels display large fluctuations around the epidemic threshold, resembling 
second epidemic waves, even when the community disease transmission rate β is in the subcritical threshold 
and not significantly changing. These fluctuations, rather than details of the infection process, dominate the 
dynamical behaviour of the system and no matter how complex models are, they fall into so-called universality 
classes with power law behaviour and preserved exponents4–9.

In this manuscript we investigate these critical fluctuations’ behaviour using basic epidemiological models 
for disease spreading dynamics, to explore possible features of the course of COVID-19 epidemic in the Basque 
Country in summer and autumn 2020, after the first lockdown lifting. To characterize the dynamics of large 
fluctuations during an epidemic, we first describe the interplay between critical fluctuations and import in simple 
SIR type models (modeling analyses are shown in full detail in10), taking into account previous results on directed 
percolation4,5 and dynamical percolation6,7. The results described for a simple SIR model with import are then 
generalized to the current stochastic SHARUCD modeling framework1,2,11 developed within the Basque Modeling 
Task Force (BMTF). Our analysis is based on the development of severe cases, i.e. hospitalizations, intensive 
care unit (ICU) admissions and deceased cases, while the variation of total number of positive COVID-19 cases 
is largely due to changes in testing capacities. With real data supporting the theory, we show that the subcritical 
regime β < βc can explain the dynamic behaviour of COVID-19 epidemic in the Basque country and in many 
other European regions, after the lockdown was lifted in summer 2020. Our study also demonstrates that the 
momentary reproduction ratio r(t) hovers around its threshold value due to the import, which is usually over-
looked in the interpretation of r(t) and its relation to the community spreading β.

Results
The role of import in epidemiological systems close to the epidemic threshold.  The SIR model 
with import around the critical threshold.  Basic epidemiological systems which capture many important issues 
of disease spreading dynamics can be phrased as SIR-type models, with a population of N individuals divided 
into susceptible individuals S to an infectious disease under consideration, infected individuals I which are 
capable of infecting susceptible individuals, and recovered individuals R which are either immune against the 
disease during their entire life, or return to become susceptible again, after a gradual waning immunity period.

In the studied population N, besides considering that infected individuals transmit the disease to a susceptible 
individuals, which then turns to be infected as well, we also consider an import factor which refers to the pos-
sibility of susceptible individuals inside the studied population becoming infected by an undetected infection 
chain started outside the studied population. The imported case is most likely a mobile asymptomatic infected 
individual, either a foreigner visiting the region or a local returning to the country without being detected by 
the current testing strategy, similarly of what one expects when country lockdowns are completely lifted and 
mobility has returned to normal.

The qualitative behaviour of the stochastic SIR type model with import is shown in Fig. 1 where we investigate 
the transition between a subcritical epidemic threshold regime and a supercritical threshold regime. We show 
the stochastic realizations for infected cases in yellow, the mean field solution (in blue) agreeing well with the 
mean of the stochastic realizations in black, and the variance dynamics of two standard deviations in red above 
and below the mean curve, which covers roughly 95% in a Gaussian distribution.

Using the basic SIR epidemiological model, we investigate first the case of still controlled community trans-
mission β < βc , i.e the subcritical regime. Here, a single index case can generate more new cases before recover-
ing, but on average the newly infected also recover faster than they generate new cases, so that the system would 
end up with no infected left, after a smaller or larger outbreak.

Nevertheless, with a small import ̺  , new index cases can enter the system and cause again similar new isolated 
outbreaks, no matter how large the import of index cases is. Hence the mean number of infected 〈I〉 tends not to 
converge to zero but to a non-trivial endemic state �I�∗ which in its simplest form is proportional to the import 

 ̺and inversely proportional to distance to criticality, namely

.
The effect of this scenario is shown in Fig. 1a where we observe, within 200 stochastic realizations (yellow 

curves), many small outbreaks and occasionally large excursions of the stochastic realizations exceeding occa-
sionally two standard deviations above the mean, even though the system is still in the subcritical regime. The 
closer to the the critical threshold, β � βc , the larger are the observed fluctuations of infected cases.

The limiting case of community spreading at criticality β = βc is shown in Fig. 1b, exhibiting linear growth of 
infections whereas an exponential increase of cases can be only observed for supercritical community spreading 
β > βc (Fig. 1c). In the later case, large fluctuations going below two standard deviations from the mean, indicate 
that the system is still close to the critical threshold.

Subcritical fluctuations and momentary reproduction ratio.  For better orientation we show in Fig. 2a a single 
stochastic realization of infected cases from the ensamble of stochastic realizations shwon in Fig. 1a. The mean 
and two standard deviation lines are also shown for orientation.

The present realization shown in Fig. 2a is not atypical since it lies most of the time in the 95% confidence 
interval and does not even show the often observed large deviations seen in Fig. 1a. However, here we can see 
that the stochastic realization is oscillating, occasionally in the upper level and occasionally in the lower level 
the 95% confidence interval.

(1)�I�∗ = ̺ ·
β

βc − β
· N
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The data set from this example of an SIR model with import in the subcritical regime is then used to analyze 
the momentary reproduction ratio r(t) as described in detail in3. The momentary reproduction ratio r(t) of an 
epidemic is often used as a public health guiding tool to evaluate the course of an epidemic, assuming that the 
threshold behaviour of r(t) reflects that of the threshold behaviour of community spreading β . However, those 
measures are only correlated when import is unimportant, i.e, in the exponential growth phase of an epidemic.

In Fig. 2b we observe the momentary reproduction ratio hovering around the epidemic threshold (of decrease 
to extinction versus exponential growths), even when the infection rate β (in green) is constant below the 
epidemic threshold and as a result the theoretical value of r in a system without import (i.e. r = β

γ
 ). From this 

observation follows clearly that for any epidemiological system with community spreading just below the criti-
cal threshold ( β > βc ) it is difficult to estimate the reproduction ratio since this would hover above and below 
threshold due to purely stochastic fluctuations, which are most pronounced around the critical threshold.

The SHARUCD model update to include analysis of isolated outbreaks after lockdown lift‑
ing in the Basque Country.  The stochastic SHARUCD modeling framework developed within the Basque 
Modeling Task Force (BMTF) is an extension of the basic epidemiological Susceptible-Infected-Recovered 

Figure 1.   Stochastic realizations, in yellow, and the analytic mean field solution, blue line, for infected in the 
SIR model. The mean of these stochastic realizations is shown in black and it is in agreement with the mean field 
solution. With N = 2 · 106 , γ = 0.05 d−1 and import ̺ = e−12 , infection rate β varies from sub - to super-
critical regimes. In (a) β = 0.9 · γ , in (b) β = βc = γ and in c) β = 1.1 · γ.
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(SIR-type) models, with infected individuals now distinguishing between severe/hospitalized cases H and mild/
asymptomatic A, including additional classes for intensive care unit admissions U and deceased D.

The model was able to describe the COVID-19 epidemic in terms of disease spreading and control, see Fig. 3, 
and it is currently used to monitor COVID-19 transmission in the Basque Country, see Fig. 3a for hospitaliza-
tions, Fig. 3b for ICU admissions, Fig. 3c for deceased cases and Fig. 3d for detected positive cases. Note that 
as testing capacity increased, the detection rate was adjusted. The system is able to provide accurate projections 
on the national health system’s necessities during the first wave of the pandemic and beyond, and the complete 
analysis of the modeling framework is described in detail in1,2).

The SHARUCD model was refined to analyze isolated outbreaks, including now import to asymptomatic 
infection, after lifting lockdown restrictions, and increased detection of asymptomatic due to increasing test-
ing capacity. The deterministic approach described below is obtained via the mean field approximation of the 
stochastic system, see1,3,11. The dynamical system is given by

Figure 2.   (a) Single stochastic realization of the subcritical SIR model with import and constant infection 
rate β < βc . Here β = 0.9 · γ , and the other parameters are as in Fig. 1b The momentary reproduction ratio 
r(t) calculated from the stochastic realization in Fig. 2a, hovering around the epidemiological threshold 
of rc = 1 , even though the theoretical value for a simple SIR model without import is the fixed quantity 
r = β/γ = 0.9 < 1 (green line).
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with time dependent infection rate β , increased import ̺ = 0, 0006 and increased detection of asymptomatic 
cases ξ ∈ 0.05, 0.9 . Further parameters of the SHARUCD models are available in1,3,11.

The role of large fluctuations close to the epidemiological threshold in simple models described above is now 
used to evaluate disease dynamics after the summer lockdown lifting in the Basque Country. Note that the con-
cepts described here still hold even for the period following the second lockdown of November 2020 and further 

(2)

d

dt
S = −β

S

N
(H + φA+ (1− η)̺N)

d

dt
H = η(1− ν)β

S

N
(H + φA)− (γ + µ)H

d

dt
A = (1− η)β

S

N
(H + φA+ ̺N)− γA

d
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d

dt
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d
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d
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Figure 3.   Ensemble of stochastic realizations of the refined SHARUCD-model with import. Starting in March 
4, 2020, in (a) cumulative hospitalized cases CH(t), in (b) cumulative ICU admissions CU(t), in (c) cumulative 
deceases cases D(t) and in (d) cumulative positive cases Icum(t). The mean of 500 stochastic realizations is 
plotted in blue.
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mobility restrictions as of April 2021. Without loss of generality, these results can be applied to more complex 
models used to describe the COVID-19 epidemics1–3,11, where this same dynamical behaviour is observed.

COVID‑19 epidemiological dynamics in the Basque Country: from the initial phase up to after the summer lock‑
down lifting.  The first cases of COVID-19 in the Basque Country, an autonomous community in northern 
Spain with 2.2 million inhabitants, were notified on March 4, 2020. A careful data inspection has shown the end 
of the exponential phase of the epidemic to be around March 26, 2020, allowing us to infer that the partial lock-
down was effective and enough to decrease disease transmission in the Basque Country during the first phase 
of the epidemic. The plan for lifting the restrictions imposed during the state of alarm took place over 4 phases 
with a “gradual, flexible and adaptive” de-escalation to “a new normality”, starting on May 4, 2020, lasting eight 
weeks, until the end of June 2020.

The lifting of the lockdown in summer 2020 led to an increase of the infection rate with momentary reproduc-
tion ratio hovering around the epidemic threshold. An import factor was included in the model dynamics after 
the full lockdown lifting in July to describe the opening up of the study area to external influences.

Although this factor was not important during the exponential growths phase in March, 2020, undetected 
imported infections play a major role during the stochastic pre/post exponential phases, where only small number 
of infections are detected. The term “import” refers to infected individuals (most likely asymptomatic) com-
ing from outside the studied population (either an infected foreigner visiting the region or an infected Basque 
returning to the region) that are not detected by the current testing strategy. Note that when the community 
transmission is under control (social distancing, masks and hygienic measures), the import factor does not 
contribute significantly to the epidemic, only starting isolated outbreaks.

(variable sizes reflected in the momentary reproduction ratio even under constant community infection rate), 
but not driving the current epidemic into a new exponential growths phase.

The observed dynamics in incidences of severe cases, i.e., hospitalized and ICU admissions (Fig. 4a and b 
respectively) as well as of the deceased cases (Fig. 4c) increased during the initial exponential growth in March 

Figure 4.   COVID-19 incidences in the Basque Country, from March 4 to October 27, 2020. In (a) hospital 
admissions, in (b) Intensive Care Units (ICU) admissions, in (c) deceased cases and in (d) detected positive 
cases via PCR tests). Data are plotted as black lines. The mean of 200 stochastic realizations for the SHARUCD 
model are plotted as a blue line, from March 4 to November 21, 2020, showing a stationarity behavior of the 
incidences. The 95% confidence intervals are obtained empirically from the stochastic realizations and are 
plotted as purple shadow.
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2020 and decreased significantly during the first lockdown, i.e. the controlled phase from April to the end of 
July 2020.

From the beginning of August onwards, after the complete lockdown lifting, a slight increase in cases is 
observed, specially the overall detected positive cases (see Fig. 4d), leveling off to stationarity with a number of 
cases fluctuating around a constant mean. Nevertheless, the number of cases are in the range of the predicted 
95% confidence intervals (CI) of the stochastic SHARUCD model, which are themselves subject to fluctuations 
since the CI are calculated directly from the ensembles of stochastic realizations.

This qualitative behaviour of a slight increase followed by settling into a fluctuating stationary state is observed 
and holds for a long time, from August to end of October 2020, when the new lockdown was implemented, in 
very good agreement with the critical behaviour in the simple SIR system under the influence of a conjugate field 
of import5. A final word has to be given to the rather atypical behaviour of the positive detected cases shown in 
Figs. 3d and 4d. While the predicted qualitative behaviour is consistent with the subcritical regime solution of 
stationarity, the SHARUCD model has been adjusted to changing testing capacities in order to describe quanti-
tatively the substantial increase of detected positive cases. The observed differences between model predictions 
and empirical incidence data for the detected positive cases shown in Figs. 3d and 4d can be explained by the 
significant variance on testing capacity and testing strategies for either population screening or contact tracing 
over time. Nevertheless, we assume that most of those cases were mild or even asymptomatic cases since this 
increase did not reflect on notified severe cases, namely hospitalizations, ICUs and deceased.

Further data supporting the present analysis: Spanish data and other European countries.  In Figs. 5 and 6 we 
plot histograms of weekly new positive cases (yellow), hospital admissions (red), ICU admissions (purple), and 
deaths (black) associated to COVID-19 for different European regions for which the complete data for all four 
variables was publicly available.

In Fig. 5 we show the weekly positive cases, hospitalizations, ICU cases, and deaths in various Spanish autono-
mous communities (in (a) Andalucia, in (b) Cantábria, in (c) Cataluñia, in (d) Extremadura, in (e) Navarra and 
in (d) País Vasco) until the end of epidemiological week 44 (October 31) of 2020. The cumulative daily values 
were obtained via the online daily reports given by the Spanish Ministry on Health, Consumer Affairs and 
Social Welfare18. In Fig. 6 we show the weekly positive cases, hospitalizations, ICU cases, and deaths in a) Spain, 
b) Belgium, c) the Netherlands, and d) France until the end of epidemiological week 44 (October 31) of 2020. 
Data were collected from the website of the European Centre for Disease Prevention and Control (ECDC)19. 
Hospital and ICU admissions were reported “per 100,000 people” and were here rescaled according to the total 
population of each corresponding country (as of the end of 2019) as reported in the ECDC data spreadsheets.

The first epidemiological week of 2020 for which data was available varied between countries (hospitaliza-
tions: week 5 Spain, week 11 Belgium and France, week 7 Netherlands; ICU admissions: week 5 Spain, week 22 
Belgium, week 9 Netherlands, week 11 France) while the last considered week in this work for all countries was 
week 44 (ending on October 31st 2020).

For the European regions investigated here we observe that although the detected infected cases have 
increased significantly after the lockdowns were lifted in summer 2020, the severe cases did not follow the same 
trend but rather remained at much lower level and seemed to approach stationarity, similarly to the described 
behaviour of subcritical SIR model with import. The increased testing capacities over time were able to detected 
mainly mild or asymptomatic cases, which were unnoticed during the first epidemic wave in 2020, consequently 
decreasing case fatality ratios in the various countries, eventually converging to similar magnitudes reflecting 
biological universality of this measure20.

Discussion
As a continuation of the COVID-19 Basque Modeling Task Force efforts, we investigate the role of critical fluc-
tuations and import in basic epidemiological models on disease spreading dynamics. Without loss of generality, 
these simple models can be treated analytically and, when considering the mean field approximation of more 
complex underlying stochastic and eventually spatially extended or generalized network processes, results can 
be applied to more complex models used to describe the COVID-19 epidemics, where the critical threshold βc 
is highly non-trivial and not any more simply βc = γ.

The lifting of the lockdown restrictions in summer 2020 led to an increase of the community transmission 
β , with respect to the lockdown phase, but β remained below critical threshold due to safety measures still in 
place, such as mask wearing in public places, avoidance of large crowd gatherings etc. However, lifting of travel 
restrictions causes the re-opening of systems prone to small import of index cases, which can then spark small or 
larger isolated outbreaks, as described for the simple SIR system with import, with growth factors and momentary 
reproduction ratios hovering around the epidemic threshold.

A dynamical behaviour analogously to that observed analytically in the simplest SIR-type models with import 
close to the critical threshold, but still in the subcritical regime, was found in many European regions, with 
“severe” disease incidences leveling off to relatively low, but stable values, after the lockdown lifting. With real 
data supporting the theory, we show that after the lockdown lifting in the summer 2020, community transmission 
was kept below critical threshold rather than transitioning into the supercritical regime, where a new exponential 
growth phase would be expected to occur. Sub-threshold community spreading leads to a decline in number of 
disease cases, but a small import factor is able to ignite isolated outbreaks, occasionally of large sizes, which can 
lead to a stationary number of new cases in mean field approximation, even when large fluctuations around it 
are observed. These fluctuations are larger when closer to the epidemic threshold and such increased numbers 
of cases are treated by many people as “second waves” and inaccurately compared with the first exponential 
phase in March and April, 2020, where community spreading was definitely well above the critical value. Here, 
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we reserve the term “second wave” to a new exponential growths phase expected in a supercritical community 
spreading regime, where the number of cases are significantly larger than the actual cases referring to subcritical 
dynamics with import. Such a new phase of supercritical and hence exponential growth could be expected due 
to seasonality in respiratory diseases, but observation of more recent data shows that this scenario is likely to 
have been suppressed by the lockdown measures implemented in November 2020.

Our considerations are based on the observation of empirical data and the analysis of our models assuming 
that herd immunity caused by natural infection was not reached yet in the Basque Country. Our work differs 
from other exercises evaluating these critical fluctuations in epidemiological systems as the latter assume low 
number of susceptible individuals in the system. This assumption would eventually be accurate when large por-
tions of the population will be finally vaccinated.

Figure 5.   Weekly positive cases, hospitalizations, ICU cases, and deaths in various Spanish autonomous 
communities until the end of epidemiological week 44 (October 31) of 2020.
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Here, the assumption of abundance of susceptible individuals gives good results and research questions 
remain as to which extend vaccines against COVID-1912–14 will be needed for effective disease control, with 
initially reported high vaccine efficacies compared to vaccines for different diseases which were developed over 
decades15–17.

From our analysis we conclude that the way to decrease disease spreading impact in our society, until reaching 
the herd immunity threshold by vaccination strategies12,13, is to implement mild control strategies to keep the 
system sufficiently below threshold, avoiding large critical fluctuations, but allowing a smooth economic recovery 
and better planning of necessary long term maintenance activities in many areas of life. The proposed result is 
able explain the COVID-19 epidemic behaviour in many other European regions and it is of great importance 
for the upcoming decisions for vaccination programmes implementation and future social distancing restric-
tions implementation, especially now that “third” and subsequent “new waves” are discussed while the control 
measures are intermittently relaxed and tightened over and over again.

Methods
The basis for the present study is the stochastic SIR system, in which susceptible individuals S can become 
infected I by meeting already infected individuals with infection rate β , or by meeting external infected indi-
viduals in proportion  ̺(measured as for infected in units of population size N). Infected then can became 
recovered R with recovery rate γ , to become recovered R. The dynamics of the recovered R can be inferred from 
the variables S and I in case of constant population size N, hence R = N − S − I , and do not need to enter in the 
probability of state p(S, I, t) at any time t. Recovered could become susceptible again due to waning immunity 
or eventually due to new variants (mutating strains of the pathogens). Here we assume this waning immunity 
rate α as unimportant yet, since complete waning of immunity normally happen after some years. In stochastic 
processes, infected, susceptible and recovered take integer values.

The dynamics of the stochastic process is then given by the rate of change of probabilities of states

Figure 6.   Weekly positive cases, hospitalizations, ICU cases, and deaths in (a) Spain, (b) Belgium, (c) the 
Netherlands, and (d) France until the end of epidemiological week 44 (October 31) of 2020. Only the European 
Countries where the complete information was available are shown. However, when looking at hospitalizations 
and deceased cases only, similar behaviour was also found for Germany, Portugal, Sweden, Denmark and 
Greece.
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and can be numerically evaluated e.g. by the Gillespie algorithm to obtain stochastic realizations of the process.
For the dynamics of mean values �I� :=

∑N
I=0 I p(I , t) , with similar definitions for 〈S〉 and 〈R〉 , we then obtain 

in mean field approximation (see8 for further details) the well known ordinary differential equation system of 
the SIR model with import

which is widely studied in mathematical epidemiology, see e.g.23 and references therein. In the case of very fast 
waning immunity α → ∞ we obtain the SIS epidemic model by bypassing the recovered class. The SIS case is 
often easier to treat analytically, especially in respect to the here considered import ̺  . Spatially extended versions 
of the stochastic process, including any network structure of connectivities, can easily be formulated as well, 
see8,21,22 and further references there.

At the beginning of an epidemic there is an abundance of susceptible individuals, hence S/N ≈ 1 , and waning 
immunity can be considered negligible, thus reducing (2) to the following simpler form:

which can be treated analytically to calculate e.g. mean value 〈I〉 and variance. The analytic expression for the 
mean number of infected, when starting exactly with e.g. I(t0) infected, is given by

and plotted along the stochastic realizations in the figures discussed in Section 2. For the analytic calculation of 
the variance, we obtain a lengthy but straightforward analytic expression, see10. For the special case when the 
infection rate β is equal to its critical value βc (here coinciding with the recovery rate γ ), we obtain the result

which is linear in time t, as well as in import ratio ̺ .
For such spreading into an environment of abundant numbers of susceptible individuals, already without 

import, one observes the asymptotic behaviour around criticality given by

with critical power law exponents η̂ and ν̂ , and universal scaling function F (see e.g.7 and Eq. (15) therein), holding 
for small ε → 0 and long times t → ∞ . The well established values of these critical exponents in 2-dimensional 
spatially extended stochastic systems ( d = 2 ) and in mean field approximation (m.f.) are respectively

and

see7 and their Figures 16 and 19. For the scaling with import no such results are established, but mean field 
exponents can be read off from our analytical expression, Eq. (6), giving also here n exponent of 1. The scaling 
with import, however, has been well studied in the SIS case, and the exponents there are already in mean field 
approximation more non-trivial, deviating from 0 or 1. For more details on the SIS type model, see10.

Data availibility
Epidemiological data used in this study are provided by the Basque Health Department and the Basque Health 
Service (Osakidetza), continuously collected with specific inclusion and exclusion criteria, and For the present 
analysis, the last update was on October 31, 2020. COVID-19 case counts for different European countries are 
from publicly available datasets: The Spanish Ministry on Health, Consumer Affairs and Social Welfare (e.g., 
https : //www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/home.htm) and the European 

(3)

d

dt
p(S, I , t) = β

S + 1

N
((I − 1)+ ̺N) p(S + 1, I − 1, t)

+ γ (I + 1) p(S, I + 1, t)+ α(N − (S − 1)− I)p(S − 1, I , t)

−

(

β
S

N
(I + ̺N)+ γ I + α(N − S − I)

)

p(S, I , t)

(4)

d

dt
�S� = α�R� − β

�S�

N
(�I� + ̺N)

d

dt
�I� = β

�S�

N
(�I� + ̺N)− γ �I�

d

dt
�R� = γ �I� − α�R�

(5)
d

dt
p(I , t) = β(I − 1) p(I − 1, t)+ β̺N p(I − 1, t)+ γ (I + 1) p(I + 1, t)

− (βI + β̺N + γ I) p(I , t)

(6)�I�(t) = I(t0) · e
−(γ−β)(t−t0) +

β̺N

γ − β

(

1− e−(γ−β)(t−t0)
)

(7)�I�c(t) = I(t0)+ βc̺N · (t − t0)

(8)�I�(t, ε) ≈ t η̂ · F(εt1/ν̂ )

(9)η̂d=2 = 0.5844, η̂m.f . = 0

(10)ν̂d=2 = 1.5078, ν̂m.f . = 1
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Centre for Disease Prevention and Control, ECDC COVID-19 data sets (https://www.ecdc.europa.eu/en/
covid-19/data).
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