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ABSTRACT

Transposable elements (TEs) are interspersed repeat
sequences that make up much of the human genome.
Their expression has been implicated in develop-
ment and disease. However, TE-derived RNA-seq
reads are difficult to quantify. Past approaches have
excluded these reads or aggregated RNA expression
to subfamilies shared by similar TE copies, sacri-
ficing quantitative accuracy or the genomic context
necessary to understand the basis of TE transcrip-
tion. As a result, the effects of TEs on gene ex-
pression and associated phenotypes are not well
understood. Here, we present Software for Quanti-
fying Interspersed Repeat Expression (SQuIRE), the
first RNA-seq analysis pipeline that provides a quan-
titative and locus-specific picture of TE expression
(https://github.com/wyang17/SQuIRE). SQuIRE is an
accurate and user-friendly tool that can be used for
a variety of species. We applied SQuIRE to RNA-seq
from normal mouse tissues and a Drosophila model
of amyotrophic lateral sclerosis. In both model organ-
isms, we recapitulated previously reported TE sub-
family expression levels and revealed locus-specific
TE expression. We also identified differences in
TE transcription patterns relating to transcript type,
gene expression and RNA splicing that would be lost
with other approaches using subfamily-level anal-
yses. Altogether, our findings illustrate the impor-
tance of studying TE transcription with locus-level
resolution.

INTRODUCTION

Transposable elements (TEs) are self-propagating mobile
genetic elements. Their insertions have resulted in a com-

plex distribution of interspersed repeats comprising almost
half of the human genome (1,2). However, most TEs have
lost the capacity for generating new insertions over their
evolutionary history and are now fixed in the human pop-
ulation. Nevertheless, even elements that have lost the po-
tential to retrotranspose can still be transcribed from their
locations in the genome. TEs are significant contributors of
promoters (3–5) and cis-regulatory elements (6–14). Tran-
scription of TEs has been implicated in physiological pro-
cesses in development and early embryonic pluripotency
(15,16). Conversely, TE expression can also be subject to
transcriptional silencing (17–21). Loss of these regulatory
mechanisms resulting in aberrant TE expression has been
associated with cancer (22–24), neurodegenerative diseases
(25–29), and infertility (30–33). However, a deeper under-
standing of how TE transcription impacts these biological
processes has been limited by difficulties analyzing TE tran-
scription in RNA sequencing (RNA-seq) data.

TEs propagate using either DNA (‘transposons’) or
RNA intermediates (‘retrotransposons’) (34,35). Retro-
transposons are further classified into Orders, namely
long terminal repeats (LTR), long interspersed elements
(LINEs), and short interspersed elements (SINEs) (36).
Most elements in animal genomes have accumulated nu-
cleotide substitutions over millions of years. However, a
subset remain retrotranspositionally active and generate
new polymorphic insertions (37,38). The lack of unique se-
quence, particularly in newer TE insertions, has presented
a problem for short-read RNA sequencing (39). Due to
the repetitive nature of TEs, RNA-seq reads that originate
from one locus can ambiguously align to many TEs shar-
ing similar sequence dispersed throughout the genome. Be-
cause of these barriers, conventional RNA-seq analyses of
TEs have either discarded multi-mapping alignments (10)
or combined TE expression to the subfamily level (40–42).
Other groups have studied active LINE-1s using tailored
pipelines, leveraging internal sequence variation and 3′ tran-

*To whom correspondence should be addressed. Tel: +1 410 502 7214; Email: lindsaypayer@jhmi.edu,kburns@jhmi.edu
†Shared senior authorship.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-7015-8407
https://github.com/wyang17/SQuIRE


e27 Nucleic Acids Research, 2019, Vol. 47, No. 5 PAGE 2 OF 16

scription extensions into unique sequence (43–45). How-
ever, these targeted approaches do not provide a global pic-
ture of expression from all classes of TEs. TE studies done at
the subfamily level are unable to distinguish TE-intrinsic ex-
pression via TE-derived regulatory sequences from TE-
extrinsic expression due to TE inclusion in a longer tran-
script. Conversely, RNA-seq pipelines that rely solely on
uniquely aligning reads can miss differential expression of
highly repetitive TEs. There is thus a need for locus-specific
analyses of TE expression to understand their regulation in
normal and disease states.

To analyze global TE expression in conventional RNA-
seq experiments, we have developed the Software for Quan-
tifying Interspersed Repeat Expression (SQuIRE). SQuIRE
provides a suite of tools to ensure the pipeline is user-
friendly, reproducible, and broadly applicable. Like previ-
ous TE expression software, SQuIRE quantifies expression
at the subfamily level and performs differential expression
analyses on TEs and genes. Unlike past approaches how-
ever, SQuIRE quantifies TE expression at the locus level.
We benchmarked this pipeline using both simulated and ex-
perimental datasets and compared its performance against
other software to quantify TE expression (40–42). We ap-
plied SQuIRE to mouse tissue RNA-seq data and iden-
tified examples of locus-specific differential expression in
testis compared to somatic tissues. SQuIRE enabled us to
assess the physical context of expressed TEs (i.e. the location
of these TEs in the genome and within potentially larger
RNA transcripts). This revealed many examples of extrin-
sic regulation of TE expression as part of long transcripts,
which subfamily-level analyses would otherwise miss. We
also identify specific differentially expressed endogenous
retroviral Gypsy loci in a Drosophila model of amyotrophic
lateral sclerosis (ALS) (46). Our findings confirm that locus-
specific analysis, attainable with SQuIRE, is essential to get
a true picture of the TE transcriptome.

MATERIALS AND METHODS

Software and implementation

SQuIRE was written in Python 2 and tested with the fol-
lowing specific versions of software: STAR 2.5.3a (47),
BEDtools 2.25.0 (48), SAMtools 1.8 (49), StringTie 1.3.3b
(50), DESeq2 1.16.1 (51), R 3.4.1 (52) and Python 2.7.9.
SQuIRE was developed for UNIX environments. Briefly,
the SQuIRE pipeline includes Fetch to obtain reference an-
notation files, Map to align RNA-seq data, Count to quan-
tify gene and TE expression, and Call to perform differen-
tial analysis. The algorithm for quantifying TE expression
is exclusive to SQuIRE and described below. Details of the
software parameters implemented in the SQuIRE pipeline
are described in Supplementary Methods. We provide step-
by-step instructions on our README to use the package
manager Conda (conda.io) to download the correct ver-
sions of prerequisite software for SQuIRE (e.g. Python,
R (52), STAR, BEDTools, StringTie, SAMtools, DESeq2).
The README also instructs users how to create a non-
reference table with the exogenous or polymorphic TE se-
quences and coordinates that they would like to add to
the reference genome. Bash scripts to run each tool in the
SQuIRE pipeline are also available on the website. Users

can fill in crucial experiment information (raw data, read
length, paired, strandedness, genome build, sample name
and experimental design) into the ‘arguments.sh’ file, which
the other scripts reference to run each step with the correct
parameters.

Quantification algorithm

To quantify TE expression, Count first identifies reads that
map to TEs. If a TE-mapping read aligns to a single lo-
cus after a genome-wide scan, it is labeled as a ‘unique
read’; if the read maps to multiple locations, it is labeled as
a ‘multi-mapped read’. Count allows for 50% of the read
to map to flanking sequence to increase the detection of
uniquely aligning reads. For paired-end reads, each individ-
ual end is first assessed for unique alignment before identi-
fying their mates. If one multi-mapping end is paired with
a uniquely aligning mate, the pair is considered ‘unique’
and other alignments of the multi-mapping mate are dis-
carded. If the RNA-seq data is stranded, the sense and anti-
sense direction of a TE are treated as separate transcripts
to which a read can align. Second, Count assigns fractions
of a read to each TE as a function of the probability that
the TE gave rise to that read. Uniquely aligning reads are
considered certain (i.e. probability = 100%, count = 1).
Count initially assigns fractions of multi-mapping reads to
TEs in proportion to their relative expression as indicated
by unique read alignments. In doing so, Count also con-
siders that TEs have varying uniquely alignable sequence
lengths. To mitigate bias against the n number of TEs with-
out uniquely aligning reads, these TEs receive fractions in-
versely proportional to the number of loci (N) to which each
read aligned. Then Count assigns the remainder (1 − n

N ) to
the TEs with unique reads. If both mates of a read pair
are multi-mapping, but only map concordantly to a single
TE location, the discordant alignments are discarded. The
read pair contributes a full read count to the TE, but they
are not considered ‘unique’ and their positions do not con-
tribute to the TE’s uniquely alignable length. To account
for TEs that have fewer unique counts due to having less
unique sequence, Count normalizes each unique count (CU)
to the number of individual unique read start positions, or
each TE’s uniquely alignable length (LU). Among all TEs to
which a multi-mapping read aligned, the TEs with unique
reads (s ∈ T) are compared with each other. A fraction of a
read is assigned to each TE in proportion to the contribu-
tion of the normalized unique count ( CU

LU
) to the combined

normalized unique count of all of the TEs being compared
(
∑
s∈T

Cs
Ls

) (Equation 1). Thus, the sum of unique counts and

multi-mapped read fractions for each TE provides an initial
estimate of TE read abundance based on empirically ob-
tained unique read counts and uniquely alignable sequence.

f r
TE =

CU
LU∑

s∈T
Cs
Ls

×
(

1 − n
N

)
(1)

At this point, multi-mapping reads are assigned to TEs
with no unique reads based only on the numbers of valid
alignments for each read. This can result in over- or under-
estimations of TE expression. To combat this issue, Count
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next refines this initial assignment by redistributing multi-
mapping read fractions in proportion to estimated TE ex-
pression with an expectation-maximization algorithm. To
estimate expression, Count uses the a TE’s total read count
(CTE = unique read counts + multi-mapped fractions from
the previous step) normalized by the effective transcript
length (lTE): CTE

lTE
. The effective transcript length lTE is cal-

culated as the estimated transcript length LTE subtracted
by the average fragment length aligned to that TE + 1,
(lTE = LTE − lavg + 1), as described previously (53). All of
the TEs to which a multi-mapping read aligned (s ∈ T) are
compared with each other. A fraction of a read is assigned
to each TE in proportion to the relative normalized total
count ( CTE

lTE
) compared to the combined normalized total

count of all of the TEs being compared (
∑
s∈T

Ts
ls

), as shown

in Equation (2). Count assumes this value is proportional to
the probability that the TE gave rise to the multi-mapping
read, and assigns that fraction of a read count to the TE.
Because TEs with a count fraction of less than 1 have a low
probability of giving rise to any read, those TEs are assigned
a count fraction of 0.

f r
TE =

CTE
lTE∑
s∈T

Ts
ls

(2)

After the total counts (unique and multi-mapped) of
each TE are re-calculated, multi-mapped reads can be re-
assigned in subsequent iterations of expectation (assign-
ing multi-mapped read fractions to TEs) and maximization
(summation of unique and multi-mapped fraction counts).
These iterations can be repeated until a given iteration num-
ber set by the user or until the TE counts converge (‘auto’,
when all of the TEs with ≥10 counts change by <1%).

TEs with few uniquely aligning reads may be prone to
misrepresentation. Users who want to identify TEs that are
more likely to be false positives can examine a ‘score’ value
provided in the Count output. The score is defined as CTE

RTE
×

100, where RTE represents the number of all reads aligned to
the locus (unique and multi-mapping), and CTE represents
the final read count from SQuIRE. A low score indicates
that relatively more reads assigned to the TE are potentially
derived from other loci, while a high score conveys greater
certainty in the read count.

An example of Count output is provided in Supplemen-
tary Table S1. Further details of the Count algorithm are in
Supplemental Methods.

RNA-seq simulation

To evaluate SQuIRE with known TE expression levels, we
tested SQuIRE with simulated RNA-seq data. We ran-
domly selected 100 000 TEs from the GRCh38/hg38 (hg38)
Repeatmasker annotation downloaded by Fetch. We limited
our list of potential TEs to those included in TEtranscripts
(41) and RepEnrich (40) to enable comparisons between
these different programs. Using the selected TE coordinates
we generated a BED file using Clean and obtained FASTA
sequences using Seek. To mimic intrinsically regulated ex-
pression which can be more difficult to detect, we did not

include flanking sequence in the TE coordinates for simula-
tion. From these TE sequences, we used the Polyester pack-
age from Bioconductor (R version 3.4.1; (54)) to simulate
100 bp, paired-end, stranded RNA-seq reads with normally
distributed fragment lengths around a mean of 250 bp. We
simulated a uniformly distributed sequencing error rate of
0.5%. TEs were simulated with a mean read coverage of
20×, with 250 TEs deviating from that mean between 2-
and 100-fold.

HEK293T cell culture, transfection and sequencing

To evaluate SQuIRE with induced TE expression, we trans-
fected a LINE-1 (L1, L1RP) expressing plasmid into a cell
line and used SQuIRE to evaluate L1 expression. LINE
expression constructs were cloned into the pCEP4 back-
bone (Thermo Fisher Scientific, Waltham, MA) modified
to confer puromycin resistance. Plasmids encoded either
L1RP (MT302) or had no insert (55). Tet-On HEK293TLD
(293T) cells (55) were grown at 37◦C, 5% CO2 in DMEM
with 10% Tet-Free FBS (Takara, Mountain View, CA) and
passaged every 3–5 days as needed with regular tests for my-
coplasma contamination. For transfection, 300 000 293T
cells were plated in 2 ml volume. 24 h later, cells were trans-
fected using a cocktail of 2 �g plasmid DNA and 6 �l Fu-
gene HD (Promega), and puromycin was added 24 h later
for a total of 3 days of selection. 500 000 cells were then
plated in three wells each, and doxycycline was added 2 h
later (final concentration of 1 ug/ml) to induce L1 expres-
sion. RNA was collected after 72 h of L1 expression us-
ing the Zymo Quick-RNA MiniPrep kit (Zymo Research,
Tustin, CA, USA). The RNA libraries of transfected 293T
cells were prepared using the Illumina TruSeq Stranded To-
tal Library Prep Kit with Ribo-Zero Gold (San Diego, CA,
USA) to provide stranded, ribosomal RNA depleted RNA.
The libraries were sequenced on an Illumina HiSeq 2500,
using six samples per lane across eight lanes with paired-end
100 bp reads. We generated a mean of 263 127 067 paired
reads per sample. The raw sequencing data were deposited
to the NCBI Genome Expression Omnibus (GEO) with ac-
cession number GSE113960.

HEK293T cell RNA-seq analysis and in silico spike-in exper-
iment

We ran SQuIRE on HEK293T cells transfected with an
L1RP expression construct (DA1) and an empty vector
(DA5). To incorporate the L1RP vector into the alignment,
the vector sequence was added to a custom table and refer-
enced using the ‘––extra’ option in Map. We used SAMtools
(49) to identify reads that align to the construct (Supple-
mentary Table S2). To test the effect of ectopic L1RP ex-
pression on the false positive rate of endogenous L1 expres-
sion estimation, we took L1RP-aligning reads from sample
DA1 for in silico ‘spike-in’ to sample DA5. To downsam-
ple these L1RP-aligning reads, we used the SAMtools ‘-s
<INT.FRAC> ’ option. We used values of 0.01, 1.001 and
3.0004 as inputs, resulting in expression levels of 0.43,
0.78 and 7.90 fpkm. [The integer before the decimal indi-
cates the seed value and the number after the decimal in-
dicates the fraction of total alignments desired for subsam-
pling.] We used the SAMtools ‘merge’ tool to combine these
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L1RP-aligning reads with one lane equivalent (29.8 million
reads) from the empty vector (DA5) sample.

Mouse data

Mouse RNA-seq data were obtained from GEO with ac-
cession number GSE30352. This study included biological
replicates of brain, heart, kidney, liver and testis tissue from
adult C57BL/6 mice (56). The RNA-seq data was paired-
end, unstranded, with 76 bp length reads.

TE RNA-seq tool comparison

Because SQuIRE is the first to quantify TE expression
at the locus level, we restricted comparisons of SQuIRE’s
performance with other TE analysis software to subfam-
ily level analyses. All pipelines were run on a server with
a maximum of 128 GB memory available and 8 threads
(-p setting). For SQuIRE, we used the Fetch tool to obtain
hg38 and GRCm38/mm10 (mm10, based on the C56BL/6
strain) genome FASTA sequences and RepeatMasker an-
notation from UCSC and generate a STAR alignment in-
dex. We ran Map, Count and Call with default settings,
specifying the –build, –read length and –strandedness pa-
rameters for the simulated human and mouse datasets.
For RepEnrich (40), we obtained the hg38 annotation
for RepeatMasker from the RepEnrich GitHub website
and mm10 RepeatMasker (57) annotation from the Re-
peatMasker website. We mapped the RNA-seq data us-
ing Bowtie 1 (58) according to RepEnrich’s instructions.
The alignments were then used for the RepEnrich soft-
ware with the ‘–pairedend TRUE’ parameter for simu-
lated human data, and ‘–pairedend FALSE’ for mouse
data. For TETools, we generated rosette files for hg38
and mm10 by taking the Repeatmasker annotation from
Clean for the first column and the repeat taxonomy
for the second column (subfamily:family:superfamily). We
used the BED file from Clean with Seek to obtain TE
FASTA sequences for generation of a pseudogenome for
TETools. TETools was run with the ‘-bowtie2’, ‘–RNApair’
and ‘–insert 250’ parameters for simulated human data
and ‘-bowtie2’, ‘-insert 76’ for mouse data. For TEtran-
scripts, we obtained hg38 and mm10 GTF annotation
from the TEtranscripts website. We aligned the data to
the genome with STAR using ‘–winAnchorMultimapNmax
100’, ‘–outFilterMultimapNmax 100’ parameters for multi-
mapping. We then ran TEtranscripts with the ‘–mode multi’
setting to utilize its expectation-maximization algorithm
for assigning multi-reads for the resulting SAM file. Since
TEtranscripts analyzes TE and gene expression together,
we used refGene annotation obtained by SQuIRE Fetch
for the required GTF file. We used the parameters ‘–format
SAM’, ‘–mode multi’, ‘–stranded yes’ for simulated human
data, and ‘–format SAM’, ‘–mode multi’, ‘–stranded no’ for
mouse data.

Aligner comparison

To compare aligners used by TE analysis tools on their
ability to correctly identify uniquely mapping reads, we
ran the aligners Bowtie1 (58), Bowtie2 (59), and STAR

(47) on the simulated TE RNA-seq data described above.
We set each aligner to output a maximum of two valid
alignments to quickly identify uniquely aligning reads with
the parameter ‘-m2’ for Bowtie 1, ‘-k2’ for Bowtie 2 and
‘–outSAMmultNmax 2’ for STAR. We also ran STAR
with the parameters ‘–outFilterScoreMinOverLread 0.4
–outFilterMatchNminOverLread 0.4 –chimSegmentMin
100’ to allow for discordant alignments, which STAR ex-
cludes by default. Bowtie2 reports discordant alignments by
default, while Bowtie 1 can only report paired alignments.
We used BEDTools (48) to intersect the BAM outputs to
RepeatMasker annotation to identify the TEs to which the
aligners mapped the reads. Reads that only appeared once
were labeled as ‘uniquely aligning’. We assessed whether the
mapped TE matched the templating TE for the simulated
read to determine if the uniquely aligning reads mapped to
the correct location.

Drosophila data

Drosophila RNA-seq data were obtained from GEO (ac-
cession number GSE85398). This study included biological
replicates of transgenic Drosophila expressing human TDP-
43 protein (hTDP43). Expression of hTDP43 was activated
by a pan-neuronal enhancer (Elav) or a pan-glial enhancer
(Repo) (60). RNA-seq was performed on paired-end, un-
stranded, total RNA libraries with 101 bp long reads. We
ran SQuIRE on the resultant data using the dm6 genome
assembly, with default settings specifying the –build, –
read length and –strandedness. We performed differen-
tial expression using Call comparing hTDP43-expressing
Drosophila lines (Elav/TDP43 and Repo/TDP43) with con-
trol (TDP43/2U).

The study that had previously analyzed this dataset used
TEtranscripts to analyze TE RNA expression and further
aggregated their subfamily level findings to the family level
(46). They confirmed findings at the subfamily level by
qRT-PCR, protein immunolabeling, and RNAi silencing
studies based on the Gypsy consensus sequence (GenBank:
M12927.1) (61). The RepeatMasker track includes >9500
loci and 45 different subfamilies belonging to the Gypsy
family (57,62). To corroborate past findings of Gypsy ex-
pression in this dataset, we focused our analysis on the sub-
set of Gypsy loci that correspond with the Gypsy consensus
sequence used in previous studies (61,63). We used BLAT
to determine all consensus sequence-aligning loci belonging
to ‘Gypsy I’ subfamily annotations in the RepeatMasker
track (57,63,64). Because the subfamily-level analyses on
hTDP43-mediated Gypsy upregulation focused on Gypsy
coding sequences, we used SQuIRE’s output for sequences
corresponding to Gypsy-I’s internal sequence (‘Gypsy I-
int’), and excluded long terminal repeat entries which do
not contain open reading frames (‘Gypsy I-LTR’).

Statistical analysis

Differential expression analysis of gene and TE expression
was performed using DESeq2 (51) via the SQuIRE Call
tool (see Supplemental Methods). P-values were adjusted
for multiple-comparisons with an FDR cutoff of 0.1. To de-
termine if loci belonging to a TE subfamily was more likely
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Figure 1. Schematic overview of the SQuIRE pipeline. Green boxes with
bold text represent SQuIRE tools, with the pipeline stage (Preparation,
Quantification, Analysis and Follow-up) indicated above. Yellow repre-
sents inputs to SQuIRE. Blue represents SQuIRE outputs.

to be differentially expressed in testis compared to other
TE subfamily loci, a Fisher’s exact test was performed. The
Fisher’s exact test was chosen due to the small percentage
of TE loci that are expressed.

RESULTS

SQuIRE overview

SQuIRE provides a suite of tools for analyzing transpos-
able element (TE) expression in RNA-seq data (Figure 1).
SQuIRE’s tools can be organized into four stages: (i) Prepa-
ration, (ii) Quantification, (iii) Analysis and (iv) Follow-up.
In the Preparation stage, Fetch downloads requisite annota-
tion files for any species with assembled genomes available
on University of California Santa Cruz (UCSC) Genome
Browser (63). These annotation files include RefSeq (65)
gene information in BED and GTF format, and Repeat-
Masker (57) TE information in a custom format. Fetch also
creates an index for the aligner STAR (47) from chromo-
some FASTA files. Clean reformats TE annotation informa-
tion from RepeatMasker into a BED file for downstream
analyses. The tools in the Preparation stage only need to
be run once per genome build. The Quantification stage in-
cludes the alignment step Map and RNA-seq quantifica-
tion step Count. Map aligns RNA-seq data using the STAR
aligner with parameters tailored to TEs that allow for multi-
mapping reads and discordant alignments. It produces a
BAM file. Count quantifies TE expression using a SQuIRE-
specific algorithm that incorporates both unique and multi-
mapping reads. It outputs read counts and fragments per
kilobase transcript per million reads (fpkm) for each TE lo-
cus, and aggregates TE counts and fpkm for TE subfamilies
into a separate file. Count also quantifies annotated RefSeq
gene expression with the transcript assembler StringTie (50)
to output annotated gene expression as fpkm in a GTF file,
and as counts in a count table file. In the Analysis stage, Call
performs differential expression analysis for TEs and Ref-
Seq genes with the Bioconductor package DESeq2 (51,54).

To allow users to visualize alignments to TEs of interest vi-
sualized by the Integrative Genomics Viewer (IGV) (66) or
UCSC Genome Browser, the Follow-up stage tool Draw cre-
ates bedgraphs for each sample. Seek retrieves sequences for
genomic coordinates supplied by the user in FASTA format.
We describe further details of the SQuIRE pipeline in Sup-
plemental Methods.

Count algorithm

SQuIRE’s Count algorithm addresses a fundamental issue
with quantifying reads mapping to TEs: shared sequence
identity between TEs from the same subfamily and even
superfamily. When a read fragment originating from these
non-unique regions is aligned back to the genome, the
read may ambiguously map to multiple loci (‘multi-mapped
reads’). This is not a major problem for older elements that
have acquired relatively many nucleotide substitutions, and
thus give rise to primarily uniquely aligning reads (‘unique
reads’). However, TEs from recent genomic insertions that
have high sequence similarity to other loci may have few dis-
tinguishing nucleotides. Among elements of approximately
the same age, relatively shorter TEs also have fewer se-
quences unique to a locus. Thus, discarding or misattribut-
ing multi-mapped reads can result in underestimation of TE
expression.

Previous TE RNA-seq analysis pipelines have been able
to quantify TE expression at subfamily-level resolution.
The software RepEnrich (40) ‘rescued’ multi-mapping reads
by re-aligning them to pseudogenome assemblies of TE
loci and assigning a fraction of a read inversely propor-
tional to the number of subfamilies to which each read
aligned. These multi-mapped fractions were combined with
counts of unique reads aligned to each subfamily. This ap-
proach was an advance in that it used information from
multi-mapped reads. However, this method results in as-
signing fractions that are proportional to the number of
subfamilies that share the multi-mapped read’s sequence,
rather than each subfamily’s approximate expression level.
TEtranscripts (41) expanded on this rescue method by as-
signing an initial fractional value inversely proportional
to the number of TE loci (not subfamilies) to which each
read aligned. This initial fractional value was then used
in an expectation-maximization (EM) algorithm, which it-
eratively re-distributes fractions of a multi-mapping read
among loci (E-step) in proportion to their relative multi-
mapped read abundance estimated from a previous step (M-
step). The total of multi-mapped reads and unique reads
for each loci are then summed by subfamily. However, in
excluding unique reads from the EM algorithm, TEtran-
scripts does not incorporate empirical high-confidence data
to infer TE expression levels from unique TE alignments.
Furthermore, in calculating the relative expression level of
multi-mapped reads, TEtranscripts normalizes read counts
based on annotated coordinates from RepeatMasker. This
underestimates TE expression levels for transcripts shorter
than the annotated genomic length. TEtranscripts then
sums the unique and multi-mapping counts for each sub-
family.

In order to accurately quantify TE RNA expression at
locus resolution, Count builds on these previous methods
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by leveraging unique read alignments to each TE to as-
sign fractions of multi-mapping reads (Figure 2) and then
iteratively improving those assignments. First, Count dis-
tinguishes reads that uniquely map to particular TE loci
(‘unique reads’) from reads that ambiguously map to multi-
ple locations (‘multi-mapped reads’). Second, the count of
a multi-mapped read is divided into fractions allocated to
different TE loci in proportion to each TE’s unique read
count, normalized to uniquely alignable length. Third, the
unique reads and multi-mapped read fractions are summed
and normalized to each TE’s transcribed length. Finally, the
normalized total read counts are used in an expectation-
maximization (EM) loop to reallocate multi-mapped read
fractions. SQuIRE Count is the only TE RNA-seq anal-
ysis tool to output the length and strandedness of each
TE transcript based on aligned read positions. The out-
comes of using only unique reads, ignoring unique reads
in multi-mapping read assignment, or relying on annotated
TE lengths are illustrated in Supplementary Figure S1. In
using the empirically derived uniquely alignable length and
transcribed length to normalize TE counts, SQuIRE im-
proves multi-mapping read assignment to allow TE RNA
quantification at the locus level.

Assessing Count accuracy in simulated data

To test the performance of SQuIRE Count, we simulated
RNA-seq data from 100 000 randomly selected TEs from
the human GRCh38/hg38 (hg38) RepeatMasker annota-
tion. To mimic intrinsically regulated TE expression with
a wide range of expression levels, TEs were simulated with
read coverages ranging from 2× to 4000× and simulated
counts ranging from 2 to 4588. We first evaluated accuracy
by how closely SQuIRE Count output corresponded to the
simulated read counts (i.e. % Observed/Expected). How-
ever, using this calculation is not meaningful for TEs with
low simulated counts: a TE with 0 counts gives an infinite
value, and a reported count of 1 for a TE with two simu-
lated reads gives a low 50% Observed/Expected. Thus, we
were primarily interested in ‘expressed’ simulated TEs, con-
sidering only the 99 567 TEs with at least 10 simulated reads.
Second, we evaluated SQuIRE by how often it correctly de-
tected simulated TE expression (i.e. true positives) or mis-
reported unexpressed TEs (i.e. false positives).

To test how well SQuIRE performed leveraging only
uniquely aligning read information, we first evaluated the
% Observed/Expected of TE counts with 0 EM itera-
tions. We found that SQuIRE accurately assigned read
counts to most TEs, with a mean % Observed/Expected
of 98.79% (Supplementary Figure S2). A subset of evo-
lutionarily young subfamilies from the LINE-1 super-
family (i.e. L1PA1 or L1HS) (67), the SINE Alu su-
perfamily (e.g. AluYa5, AluYa8, AluYb8, AluYb9) (68),
as well as composite SVA (SINE-variable number tan-
dem repeat (VNTR)-Alu) elements (69) remain retrotrans-
positionally active in the human genome and generate
new polymorphic insertions (37,38). These new inser-
tions share sequence from their parent copy. We expected
that SQuIRE’s accuracy would be lower for younger TEs

with less uniquely alignable sequence. Indeed, SQuIRE
was less accurate for elements with less than 10% diver-
gence (mean of 77.35% Observed/Expected). The most
frequently retrotranspositionally active TEs (i.e. AluYa5,
AluYa8, AluYb8, AluYb9 and L1HS) had counts ranging
from 48% to 70% Observed/Expected, with a range of 79–
92% Observed/Expected at the subfamily level (Supplemen-
tary Table S3). This illustrates that even without the EM-
algorithm, SQuIRE can distinguish expression from highly
homologous TEs at the subfamily level.

Given the low recovery of simulated counts for younger
elements when relying solely on uniquely aligning reads,
we next evaluated how much adding the EM-algorithm im-
proved Count’s performance. We anticipated that the counts
for most TEs would not change, but that younger ele-
ments with less divergence would have improved recovery of
simulated reads. Indeed, the overall % Observed/Expected
counts of TE loci increased only slightly by 0.14% to a total
of 98.93%. However, the change in % Observed/Expected
of TEs was much greater for the most homologous active
elements, improving by 20.47% for young Alu elements and
by 21.1% for L1HS loci (Figure 3). At the subfamily level,
the % Observed/Expected of active TEs was improved by
8.1% for young Alu elements and by 2.2% for L1HS (Sup-
plementary Table S3). Using updated transcript informa-
tion in the EM-algorithm is thus particularly useful for TE
biologists interested in younger elements that have previ-
ously been problematic to quantify by RNA-seq.

We also wanted to evaluate SQuIRE’s ability to distin-
guish whether a TE is expressed or not expressed. To ex-
amine how well Count detected expressed TEs, we calcu-
lated the true positive rate (TPR) as the percentage of TEs
with at least 10 simulated reads that SQuIRE also reported
to have ≥10 counts. Conversely, we evaluated how often
SQuIRE falsely reports TE expression by calculating the
positive predictive value (PPV) as the percentage of TEs
with ≥10 reported counts that were in fact simulated to have
≥10 reads. The true negative rate, or how often SQuIRE
correctly reports that a TE is not expressed, is less informa-
tive for evaluating TE estimation accuracy because the num-
ber of TEs in the hg38 genome is so high (>4 million TEs)
that the true negative value would outweigh the false pos-
itive value (70). Overall, SQuIRE had both a high TPR of
98.5% and high PPV of 99.4%. These values were lower for
frequently retrotranspositionally active Alu elements (TPR
= 68.75–83.33%, PPV = 64.29–100%) and L1HS elements
(TPR = 100%, PPV = 62.86%) using only unique reads for
TE expression estimation (Supplementary Table S4). How-
ever, using the EM algorithm improved the TPR for Alu
loci (TPR = 85.22–100%) by reducing false negative reports,
and improved the PPV for L1HS loci (PPV = 78.57%) by
reducing false positives. The inclusion of false positives in
analysis can be further reduced by imposing a score thresh-
old. A low score indicates that multi-mapping reads con-
tribute significantly to the read count. When we plotted the
TPR and PPV using various score thresholds, we found that
using a score threshold of at least 50% maximized the com-
bination of TPR and PPV for TEs in the hg38 genome build
(Supplementary Figure S3).
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Figure 2. Schematic representation of the SQuIRE Count algorithm. This example illustrates the quantification of RNA-seq reads (paired boxes joined by
a line) from three hypothetical TE transcripts (ribbons) with various expression levels and transcript lengths. (A) RNA transcripts are sequenced, producing
paired-end reads. In this example, the lengths of TE transcripts vary such that TE A > TE B > TE C. (B) Identification of reads that align to TE loci in
the genome. The annotated lengths of TE A, TE B, and TE C are the same; TE A is transcribed beyond the boundaries of the TE annotation, and TE C is
partially transcribed such that the transcript is shorter than the annotated TE. Count labels reads as unique (colored boxes) or multi-mapping (grey boxes).
Uniquely mapping reads map to a single TE at a unique sequence in the genome (asterisks), whereas multi-mapping reads map to similar sequence shared
by the three TEs. (C) Next, Count assigns fractions of multi-mapping reads in proportion to the normalized unique read expression of each TE. TEs without
uniquely aligning reads are assessed first. Because TE C has no uniquely aligning reads, it receives a fraction equal to 1/3, which is inversely proportional
to the number of loci to which the multi-mapping read aligned. The remaining 2/3 fraction is apportioned to TE A and TE B relative to their unique read
counts, normalized by the number of unique read positions (TE A: 4 unique reads

2 unique posi tions = 2; TE B: 1 unique read
1 unique posi tion = 1). TE A thus receives a read fraction of

2
3 × 2

2+1 = 4
9 , while TE B receives a read fraction of 2

3 × 1
2+1 = 2

9 for each of the four multi-mapping reads. (D) The multi-mapping fractions are summed
with the unique reads to give an initial total read count estimation. E) Count runs an expectation-maximization loop that reassigns multi-mapping read
fractions for each TE (E-step), and re-estimates total read counts (M-step) until convergence. Multi-mapping read fractions are assigned using the previous
iteration’s total read counts normalized to transcript length, not the annotated length of the TE.

LINE-1 detection with Count in vitro

To evaluate how Count handles expression from young TEs,
we transfected HEK293T cells with a plasmid containing
an L1HS known as L1RP (71,72). Like endogenous TEs,
RNA expression from the L1RP plasmid includes unique
5′ and 3′ sequence flanking the L1HS sequence. SQuIRE
readily detected the ectopic transcript, which was 686-fold
more highly expressed than the highest L1HS locus in con-
trol cells (301.97 fpkm versus 0.44 fpkm).

To evaluate whether Count would favor the L1RP over
endogenous loci due to its unique flanking sequence, we
‘spiked in’ L1RP plasmid-aligning reads to the RNA-seq
alignment files of HEK293T cells transfected with empty
plasmid. We used randomly downsampled reads at levels
approximating 1×, 2× and 20× the highest expressing en-
dogenous locus level. We then looked at the read counts of
endogenous L1HS loci before and after ‘spike-in’. Before
‘spike-in’, 22 L1HS loci were detected with >10 counts, 5 of
which initiated transcription at the L1HS promoter (Sup-
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Figure 3. EM algorithm improves % Observed/Expected for young TEs.
Running EM iterations improves the % Observed/Expected for SQuIRE
Count for the frequently retrotranspositionally active Alu (AluYa5,
AluYa8, AluYb8, AluYb9) and L1 (L1HS) subfamilies compared to no
EM iterations (i = 0), and does not degrade with increasing iterations (i =
100). By default (i = ‘auto’), SQuIRE Count continues the EM-algorithm
until each TE with >10 reported read counts changes by <1%.

plementary Figure S4). At all simulated L1RP expression
levels, there were no L1HS loci with decreased read counts
after L1RP spike in. This suggests that Count appropri-
ately normalizes for each transcript’s uniquely alignable se-
quence.

Conversely, because L1RP has 99.9% sequence identity
to the consensus sequence of all L1HS copies, we wanted
to assess if ‘spiking-in’ multi-mapping L1RP reads would
result in misattributed reads to low-expressing L1 loci. Of
the L1RP-aligning reads that were spiked in, only 46–50%
contributed to the total read count of the L1RP locus. To
assess if the remaining reads affect estimates of expression
at other L1 loci, we calculated the number of false positive
L1 loci that became ‘expressed’ with >10 counts after the
in silico ‘spike-in’ and how this affected the PPV. We fo-
cused on the three youngest L1 subfamilies that share the
greatest homology with the L1RP sequence (i.e. L1HS or
L1PA1, L1PA2 and L1PA3) (73–75) and compared their
false positive rates to older L1 loci (Figure 4). We found that
‘spiking-in’ L1RP-derived reads only resulted in 1 false pos-
itive L1HS locus for a PPV of 95.6%, while the older sub-
families had PPVs of 99.6–100% (Figure 4). The PPVs did
not change with increasing L1RP expression. Thus, there is
negligible misattribution of reads.

Because some L1HS loci remain retrotranspositionally
active, they can generate insertions that are polymorphic
or novel compared to the reference human RepeatMasker
annotation. To assess how expression from a novel L1HS
locus can impact the quantitation of reference L1 loci, we
removed the L1RP annotation from the Map alignment and
re-ran Count on the ‘spiked-in’ data. We found that Count

was still able to detect 21 out of 22 L1HS loci (95.4%). There
was an increase in false positively reported loci, decreasing
the PPV from 95.4% to 84.0% with increasing L1RP ex-
pression from 1× to 20× the highest expressing endogenous
L1HS locus (Figure 4). The PPV remained high for the older
L1 subfamilies, ranging from 97.5% to 100%. When we set a
score threshold of >50, the PPV of L1HS returned to 95.2%
for all ‘spike-in’ levels, with only 1 false positive L1HS locus
reported. Using a score of >50 did not drastically reduce
the detection of expressed L1HS loci, with 20 of 22 (90.9%)
still meeting the threshold. Thus, while estimated expression
of young L1HS elements may be affected by transcription
from polymorphic insertions, accuracy can be improved by
adding TE annotation or using a score threshold.

Comparison to other software

Currently published TE analysis software include RepEn-
rich, TEtranscripts and TETools (40–42). TEtranscripts
has previously illustrated the improvements of using TE-
targeted software for quantifying TE expression com-
pared to conventional pipelines (41). Because none of
these programs is capable of reporting TE locus expres-
sion, we performed comparisons with SQuIRE with ag-
gregated subfamily estimates. We used the simulated hg38
TE data described above to compare the recovery of sim-
ulated reads to the correct subfamily among TE quan-
tification software (i.e., % Observed/Expected). For map-
ping, we ran each software’s recommended aligner: STAR
(used by SQuIRE and TEtranscripts), Bowtie 2 (used by
TETools), and Bowtie 1 (used by RepEnrich). We found
that SQuIRE (99.86 ± 1.46%), TETools (100.14 ± 2.21%),
and TEtranscripts (95.89 ± 16.41%) had comparable %
Observed/Expected rates (Supplementary Figure S5). In
contrast, RepEnrich (108.77 ± 40.67%) was less accurate in
terms of % Observed/Expected. This is likely attributable
to RepEnrich’s recommended settings for Bowtie 1, which
discards discordant reads and limits the number of attempts
to align both paired-end mates to repetitive regions. To sup-
port this, we compared how often each aligner mapped a
uniquely aligning simulated read to the correct location. We
indeed found that Bowtie 1 failed to report unique reads
more often in a paired-end library compared to single-end
(Supplementary Table S5).

To compare SQuIRE to other TE analysis tools with
biological data, we ran each pipeline on publicly avail-
able adult C57Bl/6 mouse tissue RNA-seq data (56) us-
ing GRCm38/mm10 (mm10) TE annotation. We compared
the expression of subfamilies in testis compared to pooled
data from brain, heart, kidney and liver tissues. To inde-
pendently evaluate the fold-changes of TE RNA between
testis and somatic tissues, we also used our previously pub-
lished adult C57Bl/6 mouse Nanostring results (85). Unlike
RNA-seq analysis, which infers transcript levels by count-
ing reads, Nanostring uses uniquely mapping probes to cap-
ture and count RNA molecules. It thus provides an orthog-
onal, alignment-independent approach with which to com-
pare TE RNA-software pipelines. We compared the Nanos-
tring log2 fold changes (log2FC) of TE subfamily expres-
sion in testis and pooled somatic tissue to the log2FC values
found by SQuIRE, RepEnrich, TEtranscripts, and TETools
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loci with ≥10 SQuIRE read counts. The PPV is robust for increasing ‘spike-ins’ equivalent to 1×, 2× and 20× the RNA levels of the most highly expressed
endogenous full-length L1HS locus. ‘Spike-in’ reduces PPV for L1HS modestly in a dose dependent manner (center panel), and this can be mitigated by
adding an annotation for the ‘spiked’ L1HS (left panel) or imposing a score threshold >50 (right panel).

(Supplementary Figure S6). Because the Nanostring probes
were designed against TE consensus sequences, we do not
expect exact correspondence with the RNA-seq analysis
tools. We observe elements for which all TE RNA-seq tools
report results opposing the Nanostring result (MMVL30,
IAPLTR1a Mm, RLTR13A1). Thus in addition to com-
paring each pipeline with Nanostring, we also evaluated
when a result deviated from the other TE RNA-seq analysis
pipelines. RepEnrich failed to detect differential expression
of the L1 mus musculus subfamily (L1 Mm), and reported
a direction of log2FC for the MMETn subfamily that op-
posed Nanostring results. TEtranscripts similarly failed to
detect differential expression of MMERVK10D3 subfam-
ily that Nanostring and the other pipelines reported, and
reported different log2FC from Nanostring, SQuIRE, and
TETools for L1Mm. TETools deviated from Nanostring
and the other RNA-seq pipelines for the MERVL subfam-
ily, reporting decreased expression in testis while the other
methods reported upregulation. Thus, SQuIRE is the only
RNA-seq pipeline producing results that corresponded with
at least two other methods.

Locus-level TE expression analysis

With SQuIRE, we can closely examine the mouse RNA-seq
data at the locus level. For the 16 subfamilies analyzed by
Nanostring and the TE analysis tools, using SQuIRE we
found that the reported subfamily-level expression was due
to expression from fewer than 7% of each subfamily’s loci
(Supplementary Figure S7). While most subfamilies stud-
ied by Nanostring have only 1–4 significantly differentially
expressed loci (log2FC > 1, padj < 0.05), the IAPLTR3
subfamily has 11 loci that are all differentially expressed
in testis compared to somatic tissues (Figure 5A). To test
whether this was an enrichment relative to the representa-
tion of IAPLTR3 in the mouse genome, we performed a
Fisher’s exact test and found that IAPLTR3 loci were 10-
fold more likely than expected to be differentially expressed
in testis (OR: 10.56, 95% CI: 5.25–18.97, P-value < 1.61e–

08). ERVB4-1B, another LTR retrotransposon that exhib-
ited high fold change by Nanostring, was not similarly en-
riched among differentially expressed TE loci. In addition
to a more careful analysis of which loci are transcribed,
SQuIRE enables a closer look at TE transcript structure. In
examining the TE loci with the greatest differential expres-
sion in testis, we found that the transcription of the ERVB4-
1B locus on chr13 did not extend beyond annotations for
that element (Figure 5B), suggesting intrinsically regulated
expression. On the other hand, the IAPLTR3 loci on chr14
(Figure 5C) and chr18 are part of longer transcripts that ini-
tiate outside of the annotated TE. Altogether, this suggests
while a subset of TEs may be regulated by shared TE se-
quence, most differential expression of TEs is locus-specific
with varying transcript structures, a finding that was not ev-
ident until analysis at the locus level using SQuIRE.

To further investigate the interplay between genomic con-
text and TE subfamily, we identified the closest genes to dif-
ferentially expressed TE loci. We found a cluster of three loci
exhibiting broad expression across somatic tissues from the
IAP1, MERVL, and MURVY LTR retrotransposon sub-
families. When we examined the genomic context of these 3
loci, we found that all were located within genes with known
broad tissue expression (Gpbp1, Csnk2a1, Kyat1, respec-
tively) (86), with examples shown in Supplementary Fig-
ure S8. Another locus from the MURVY subfamily is in
a cluster of TEs exhibiting high testis-restricted expression.
In examining the transcript overlapping the MURVY lo-
cus, we see that the transcript initiates outside of the locus
and find that the transcript is an alternative splicing isoform
with splice donors from the third and fourth exons of a gene
∼5 kb away (Figure 5D). The gene, Gm11981, is a long non-
coding RNA (lncRNA) known to exhibit testis-restricted
expression (86). The different MURVY-containing tran-
script types illustrate how TE transcription can vary across
loci from the same subfamily. Altogether, these findings
would be lost without the use of SQuIRE to analyze TE
transcription at the locus level.
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Figure 5. Differentially expressed TEs are transcribed as part of different transcript types. (A) The X-axis represents replicates of somatic and testis tissue
samples from adult C57Bl/6 mouse. The Y-axis represents differentially expressed TE loci. The heatmap colors represent the log2 of total read counts +1
for each TE locus. (B–D) Examples of intergenic TE loci differentially expressed in testis compared to somatic tissues. Tracks from brain, heart, kidney and
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indicated; dark red indicates that that RepeatMasker entry meets significant differential expression thresholds (log2FC > 2, padj < 0.05).

Locus-level analysis of TE expression in transgenic hTDP43
Drosophila model

To further illustrate the importance of locus-level analysis
of TE expression with SQuIRE, we applied the SQuIRE
pipeline to a Drosophila melanogaster model of amy-
otrophic lateral sclerosis (ALS) (46,60). Almost all (97%) of
ALS patients develop cytoplasmic inclusions of the TDP-
43 protein (87). TDP-43 is a DNA- and RNA-binding pro-
tein that is involved in the regulation of RNA splicing,
microRNA biogenesis, transcriptional repression, and cell
stress responses (87–90). Toxicity from cellular aggregation
of TDP-43 has been previously shown to impact both neu-
rons and glial cells (89,91–93). This Drosophila model con-
ditionally expresses human TDP43 protein (hTDP43) in
a Gal4/UAS system activated by Gal4 drivers (60). Over-
expression of hTDP43 in neurons (Elav/TDP43) or glia
(Repo/TDP43) replicates clinical and pathological features
of ALS (46,60,91,92). This dataset had been previously an-
alyzed using TEtranscripts at the family level, which found
upregulation of several TE families with hTDP43 expres-
sion as compared to control samples with no hTDP43 ex-
pression (TDP43/2U) (46). Pan-glial expressing hTDP43
Drosophila brains particularly feature increased TE expres-
sion, with upregulation of 23 among the 29 differentially
expressed families. Among the 23 TE families increased
in Repo/TDP43 Drosophila, Gypsy was of special inter-
est (59). Gypsy is a retrotranspositionally active endoge-
nous retrovirus that has previously been reported to gener-
ate new insertions in aging Drosophila brain (94). Pan-glial,
but not pan-neuronal hTDP43-mediated Gypsy expression
and its associated toxicity was confirmed by subfamily-level
qRT-PCR, protein immunolabeling and RNAi silencing.

Their findings suggested that upregulation of Gypsy in glial
cells contribute to the decreased lifespan of Repo/TDP43
Drosophila.

We investigated how Gypsy upregulation by hTDP43
expression reflected differential expression of individual
Gypsy copies at the locus level. To corroborate previous
subfamily-level findings, we excluded 44 out of 45 Gypsy
subfamilies that did not correspond to the sequence used
for Gypsy qPCR, antibody, and RNAi design (61,95,96).
Because we were focused on examining the previously re-
ported pan-glial hTDP43 mediated Gypsy upregulation, we
excluded 46 Gypsy loci (of the 102) that exhibited nega-
tive log2 fold changes in Repo/TDP43 samples compared
to controls or had infinite fold changes due to low expres-
sion across samples. To gauge the percentage that each re-
maining locus contributed to Gypsy differential upregula-
tion (% DU contribution), we scaled the log2FC values
by the total read count across all samples for each locus
and divided by the sum of all scaled log2FC values. We
identified 3 loci with the greatest (>10%) contribution to
Gypsy differential upregulation in Repo/TDP43 samples
(Figure 6A). All three loci were significantly differentially
expressed in a pairwise comparison between Repo/TDP43
and control samples (chr2R:log2FC 1.31 padj 6.23e–24,
chr3R: log2FC 2.58, padj 1.027e–13, chrX: log2FC 3.76,
padj 1.43e–37). In examining the normalized counts at these
loci, we were surprised to find that two loci located on
chromosomes 3R and X exhibited even greater differential
upregulation with pan-neuronal hTDP43 expression than
with pan-glial hTDP43 expression, a result that was ob-
scured by previous subfamily-level observation (Figure 6B,
left). Only the Gypsy locus on chromosome 2R exhibited
greater glial upregulation in Repo/TDP43 samples as pre-
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Figure 6. TDP43 upregulates the Gypsy endogenous retrovirus at few specific loci. (A) Percent contribution of differential upregulation (% DU contri-
bution) for each Gypsy loci (circle) with positive finite log2FC in Repo/TDP43 samples compared to controls. X-axis: chromosome position, each tick
representing 10Mb. Y-axis: % DU contribution as log2FC scaled by locus expression levels as a percentage of total scaled log2FC for all loci. The loci
colored in red (located on chr2R, chr3R, and chrX), have the greatest contribution to Gypsy differential expression. (B) Gypsy expression patterns for
pan-neuronal (Elav/TDP43), pan-glial (Repo/TDP43), and no (TDP43/2U) TDP43 samples (performed in duplicate). Left: Heatmap of log2 transformed
counts for each Gypsy locus with > 10% DU contribution. Right: Gypsy expression track for the chr2R locus, which had the greatest % DU contribution.
Dark colors represent unique alignments, while pale colors represent multi-mapped alignments. The heights of multi-mapped alignments are inversely
proportional to the number of loci to which the reads aligned. To the right of each track are the % of all alignments to the 2R locus that are uniquely
aligned.

viously reported. However, because the 2R Gypsy locus was
expressed at higher levels, it made a greater contribution
(49.1%) to the total measured Gypsy upregulation observed
by TEtranscripts. Although the Gypsy element is still retro-
transpositionally active and generating new insertions in
the Drosophila genome, the alignments to the 2R locus in-
clude unique reads that are unlikely to come from a non-
reference Gypsy element (Figure 6B, right). Thus, the ex-
pression pattern previously observed at the subfamily level
is largely explained by a single locus. Our results demon-
strate that subfamily-level analyses miss the locus-specific
nature of Gypsy upregulation by hTDP43.

Benchmarking for SQuIRE’s memory usage and running
time

To benchmark SQuIRE’s memory usage and running time
for RNA-seq data of different sequencing depths, we sub-
set the high-depth (mean 263 million reads across eight
lanes) HEK293T cell line RNA-seq data into 1, 2 and 3-
lane libraries with a mean sequencing depth of 32, 65 and
98 million reads. We evaluated the speed and memory per-
formance of each Quantification and Analysis stage tool
for each sequencing depth (Figure 7) using eight parallel

threads and 64 Gb of available memory. We found that se-
quencing depth had the greatest effect on Count, taking 8.6
h to complete the 3-lane library compared to 2.4 h for the
one lane library. The other tools took much less time and
were less affected by sequencing depth. Map took 1–2 h for
the different libraries. Call running time was also indepen-
dent of library size, but it was greater when including all TE
counts (10 min) compared to subfamily counts (2 min). We
found that the memory usage of each tool was largely in-
dependent of sequencing depth, taking between 39–40 Gb
of Memory for Map, 30–32 Gb for Count, and 7–8 Gb for
Call.

Implementation

Our efforts at making SQuIRE easy to use has resulted in
multiple features in addition to its ability to provide locus-
level TE quantification (Table 1). To set up SQuIRE in-
volves a simple installation process in which the user can
copy and paste lines of code, which includes instructions
for setting up prerequisite software. In addition, SQuIRE is
the only program that downloads reference annotation for
assembled genomes available on UCSC, allowing it to be
easily adaptable to a variety of species. For genomes from
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Figure 7. SQuIRE Benchmarking. Usage data for the main modules of
SQuIRE. Time (h) and memory (Gb) for SQuIRE Count, Map and Call.
Mean library sizes for RNA seq data were one lane = 32 912 528 reads,
two lanes = 65 573 850 reads, three lanes = 98 757 439 reads.

non-model organisms or organism strains with high diver-
gence from the reference annotation, SQuIRE can also use
RepeatMasker software output for even wider compatibil-
ity. To ensure that the pipeline is streamlined and that the
outputs are reproducible, SQuIRE also implements align-
ment and differential expression for the user. In making
SQuIRE as user-friendly as possible, we intend to improve
reproducibility of bioinformatics analyses in the TE field.

DISCUSSION

We have developed SQuIRE to characterize TE expres-
sion using RNA-seq data. TEs are highly repeated in the
genome, which can pose challenges for mapping reads un-
ambiguously to specific transcribed loci. SQuIRE is the first
RNA-seq analysis software that provides locus-specific TE
expression quantification while also outputting subfamily-
level expression estimates (Table 1). Our approach incor-
porates unambiguously mapping reads as well as ambigu-
ously mapping reads, optimally adjudicating alignments of
the latter using an EM algorithm. SQuIRE additionally
provides empiric information on the structure of each TE
transcript rather than relying on TE annotations, recogniz-
ing that TE transcripts can be shorter or longer, and sense
or antisense compared to the genomic TE. We have shown
that SQuIRE correctly attributes a high percentage of reads
originating from TEs using simulated data. For older, retro-

transpositionally inactive genomic repeats, SQuIRE very
accurately assesses expression. These older elements rep-
resent the vast majority of TE loci in the human genome
(>96.7%).

Although the detection of reads is lower for fre-
quently retrotranspositionally active, less divergent TEs
(e.g. AluYa5, AluYa8, AluYb8, AluYb9, L1HS), we found
that implementation of the EM algorithm (41,97) improves
accuracy and lowers both false positive and false negative
calls of whether a TE locus is expressed. This finding also
holds in biological settings, where SQuIRE is able to cor-
rectly detect L1HS expression when we express an ectopic
sequence. It maintains a low false positive rate of misat-
tributing these reads to endogenous L1HS loci. The on-
going activity of TEs also results in a significant number
of mobile element insertion variants (MEI) (37,83,98). Nu-
merous commonly occurring structural variants owed to
retrotransposition are missing in reference genome assem-
blies. Although these variants are not included in the default
SQuIRE pipeline, SQuIRE provides users with two op-
tions to query transcription of these repeats. First, SQuIRE
can detect transcription of polymorphic elements at the
subfamily level. Secondly, SQuIRE can directly use se-
quences of known, non-reference TE insertion polymor-
phisms to detect locus-specific expression when these are
supplied as a supplement to the reference build. For ex-
ample, in the human genome, L1HS element sites and se-
quences can be obtained by targeted TE insertion mapping
(76–79) or whole genome sequencing (80–82,84). Polymor-
phic TE insertions have been reported to databases such as
euL1db (99), dbRIP (100) and by large studies like the 1000
Genomes Project (83). Using SQuIRE to detect expression
of user-provided, non-reference TE sequences at these loci
may be a useful feature for understanding functional conse-
quences of these insertion variants (101). This confirms that
SQuIRE can detect the expression of TEs in the reference
genome that have in the past been problematic for global
TE RNA expression analysis. For all TEs, SQuIRE provides
the convenience of differential TE expression analysis with
both locus-specific and subfamily-aggregated outputs.

The SQuIRE algorithm builds on strategies used by pre-
vious TE analysis software (40–42,102,103). SQuIRE res-
cues multi-mapping reads aligned to TEs, which improves
upon pipelines that only utilize uniquely aligning reads.
A similar rescue strategy had been previously applied to
multi-mapping CAGE-seq tags (102). SQuIRE reduces bias
against TEs without unique sequence by first normaliz-
ing to uniquely alignable length. Although expectation-
maximization algorithms have been previously used in
TEtranscripts and the RNA-seq quantification software
RSEM, SQuIRE differs from these by normalizing to tran-
scribed TE length rather than annotated length. Without
transcribed length information, repeated iterations can per-
petuate a ‘poor gets poorer’ cycle in which an underestima-
tion of partially transcribed TE expression levels worsens
with each iteration. Furthermore, because TEs can be tran-
scribed beyond their annotation, TE-analysis strategies that
align to the transcriptome instead of the genome (103) miss
potential unique read alignments to flanking sequence and
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Table 1. Feature comparison of RNA-seq Analysis tools for TEs

SQuIRE RepEnrich TEtranscripts TETools

Provides Locus-level TE RNA
quantification

YES – – –

Provides TE transcript
information

YES – – –

Copy-and-paste installation YES – – –
Provides prerequisite annotation
files for any species

YES – – –

Can incorporate non-reference
TEs

YES – – YES

Performs alignment YES – uses
STAR

Recommends Bowtie 1 Recommends STAR YES – uses Bowtie 1 or
Bowtie 2

Uses genome for alignment YES YES - Genome + TE
pseudogenome

YES –

Provides gene expression
quantification

YES – YES –

Performs differential expression YES – YES YES

fail to capture the genomic context of TE expression. Here,
we show that these additional features in SQuIRE’s Count
algorithm improve on the accuracy of TE quantification,
as assessed using both simulated reads and orthogonal ap-
proaches to measure log2 fold changes in mouse tissue com-
parisons. Our findings suggest that important biologic in-
sights can be gained by examining TE transcription at the
locus level.

To date, locus-specific studies of TE expression and ac-
tivity have mostly focused on identifying transcriptionally
and retrotranspositionally active L1s in the human genome
(43–45,98,104–106). While these targeted methods can en-
rich for expressed TEs, they require tailored approaches
for sequencing library preparation and do not yet have
accompanying software. SQuIRE provides a complemen-
tary tool that supplies a software package applicable to a
broad array of conventional RNA-seq datasets. These fo-
cused studies have shown that rare, individual loci, widely
distributed in the genome generate RNA transcripts. In
applying SQuIRE to study locus-specific TE expression
genome-wide in mouse tissues and a Drosophila disease
model, we can see that this paradigm is not unique to
L1s or humans. It seems a limited subset of TE loci are
transcribed with complex patterns of tissue-specific expres-
sion. Furthermore, we found that the tissue expression pat-
terns of TE loci reflect a variety of transcriptome con-
texts: broadly expressed mRNA transcripts, tissue-specific
lncRNAs, and intrinsically regulated TE transcripts. How
these TEs may affect gene regulation or biological pro-
cesses remain open questions. Genome-wide analyses of
TEs have indicated roles for cis-acting elements on tran-
scriptional regulation (3,7,107,108), transcript splicing, and
RNA function (17,109–111). By providing locus-level TE
transcript estimations, we expect SQuIRE will enable stud-
ies that dissect the impacts of TE expression.
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66. Robinson,J.T., Thorvaldsdóttir,H., Winckler,W., Guttman,M.,
Lander,E.S., Getz,G. and Mesirov,J.P. (2011) Integrative genomics
viewer. Nat. Biotechnol., 29, 24–26.

67. Beck,C.R., Garcia-Perez,J.L., Badge,R.M. and Moran,J. V (2011)
LINE-1 elements in structural variation and disease. Annu. Rev.
Genomics Hum. Genet., 12, 187–215.

68. Deininger,P. (2011) Alu elements: know the SINEs. Genome Biol.,
12, 236.

69. Hancks,D.C. and Kazazian,H.H. Jr2010) SVA retrotransposons:
Evolution and genetic instability. Semin. Cancer Biol., 20, 234–245.

70. Saito,T. and Rehmsmeier,M. (2015) The precision-recall plot is
more informative than the roc plot when evaluating binary classifiers
on imbalanced datasets. PLoS One, 10, e0118432.

71. Schwahn,U., Lenzner,S., Dong,J., Feil,S., Hinzmann,B., van
Duijnhoven,G., Kirschner,R., Hemberger,M., Bergen,A.A.B.,
Rosenberg,T. et al. (1998) Positional cloning of the gene for X-linked
retinitis pigmentosa 2. Nat. Genet., 19, 327–332.

72. Kimberland,M.L., Divoky,V., Prchal,J., Schwahn,U., Berger,W. and
Kazazian,H.H. (1999) Full-Length human L1 insertions retain the
capacity for high frequency retrotransposition in cultured cells.
Hum. Mol. Genet., 8, 1557–1560.
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