
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5220  | https://doi.org/10.1038/s41598-022-09179-9

www.nature.com/scientificreports

Space‑fractional heat transfer 
analysis of hybrid nanofluid 
along a permeable plate 
considering inclined magnetic field
Mehdi Khazayinejad & S. S. Nourazar*

In this study, the Caputo space‑fractional derivatives of energy equation are used to model 
the heat transfer of hybrid nanofluid flow along a plate. The plate is considered permeable and 
affected by an inclined magnetic field. We use the space‑fractional derivative of Fourier’s law to 
communicate between the nonlocal temperature gradient and heat flux. The hybrid nanofluid is 
formed by dispersing graphene oxide and silver nanoparticles in water. The new fractional integro‑
differential boundary layer equations are reduced to ordinary nonlinear equations utilizing suitable 
normalizations and solved via a novel semi‑analytical approach, namely the optimized collocation 
method. The results reveal that the increment of the order of space‑fractional derivatives and the 
magnetic inclination angle increase the Nusselt number. Also, an increase in the order of space‑
fractional derivatives leads to a thicker thermal boundary layer thickness resulting in a higher 
temperature. It is also found that the temperature of the fluid rises by changing the working fluid from 
pure water to single nanofluid and hybrid nanofluid, respectively. What is more, the proposed semi‑
analytical method will be beneficial to future research in fractional boundary layer problems.

Abbreviations
q  Parameter heat flux 

(
W/m2

)

S  Suction/injection
Re  Reynolds number
B  Magnetic field (T)
k  Thermal conductivity 

(
W

/
m2−�K

)

cp  Heat capacity 
(
J/kg K

)

α  Inclination angle of the magnetic field
Ha  Hartmann number
Pr  Prandtl number
X, Y   Cartesian coordinates (m)
U ,V   Velocity components in X  and Y  directions (m/s )
cj  Unfamiliar constants
R  Residual function
Wi  Weight functions
Cf   Skin-friction coefficient
Nu  Nusselt number
G,Q, u  Change of variable
f ′  Non-dimensional velocity

Greek symbols
�  Space-fractional parameter
σ  Electrically conductivity 

(
1
/
�m

)

η  Similarity variable
ψ  Stream function (m2/s )
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θ  Dimensionless temperature
µ  Viscosity (kg

/
ms )

φ  Nanoparticles volume fraction
ρ  Density (kg/m3)

δ  Dirac function
Ŵ  Gamma function

Subscripts
hnf   Hybrid nanofluid
nf   Nanofluid
f   Fluid
np  Nanoparticle
W  Wall
∞  Ambient condition

Recently, energy-saving in heat transfer systems by hybrid nanofluid has attracted attention from  scholars1–4. A 
hybrid nanofluid is a new type of working fluid that consists of two or more nanoparticles. The nanoparticles in a 
hybrid nanofluid interact synergistically and simultaneously instead of a single nanoparticle in the conventional 
fluid. The hybrid nanofluid has a broad range of engineering and industrial applications, such as solar thermal 
systems, cooling of the electronic components, biomedical applications, heat exchangers, machining, heat pipes, 
etc.5–7. At the same heat transfer rate, using hybrid nanofluids lead to a decrease in energy consumption due to 
having a higher cooling capacity compared to single nanofluids and pure fluids. Bahiraei et al.8 examined the 
energy efficiency of graphene-platinum/water hybrid nanofluid flow within a tube that contains single and twin 
twisted tapes. Their results indicated that the hybrid nanofluid heat transport rate is higher compared to pure 
fluid. Rabiei et al.9 numerically showed that shifting the working fluid from water to graphene–platinum–water 
hybrid nanofluid improved the microchannel heat sink efficiency by augmenting the thermal conductivity of the 
base liquid. Newly, Alawi et al.  experimentally10 studied the hybrid nanofluid flow of MWCNT/TiO2/H2O within 
a corrugated channel and have shown that the transport of heat is augmented by 26% when nanoparticles weight 
concentrations is increased by 0.1%. Using hybrid nanofluid (single-walled carbon nanotubes-silver/gasoline 
oil), Muhammad et al.11 numerically investigated the flow within the boundary layer and melting heat transport 
along with the thickness stretch effect. Khashi’ie et al.12 reported the improvement of heat transfer and the delay 
at the boundary layer separation point over a vertical plate due to using the hybrid nanofluid.

Magnetohydrodynamic (MHD) has great potential in industrial applications such as electromagnetic casting, 
MHD generators, fusion reactors, biological systems, pumping, crystal growth process, MHD accelerators, etc. 
Newly, many experimental works have been done on the MHD systems. Bühler et al.13 performed an experi-
mental study on the pressure drop of liquid metal flow in channel inserts that are exposed to a magnetic field. 
Zhao et al.14 experimentally studied a thrust vector system to check the effect of magnetic field on the deflection 
of plasma jet and energy extraction. Most researchers have studied the effects of magnetic fields on fluid flow 
under a constant angle in which the magnetic field is perpendicular to the boundary surfaces. However, the 
fluid flow subject to an inclined magnetic field is a more challenging task. Recently, controlling fluid flow and 
heat transport by applying different magnetic field angles has been received significant attention in practice and 
research. For instance, Atashafrooz et al.15 numerically investigated the nanofluid forced convection in a duct with 
an inclined magnetic field. The coupling of an inclined magnetic field with carbon nanotube-water nanofluid in 
a trapezoidal cavity is investigated numerically by  Sayegh16. Dolgikh and  Pavlinov17 carried out an experimental 
study on the magnetohydrodynamic pump with inclined partitions that are surrounded by ferromagnetic cores. 
Seyyedi et al.18 used the finite element method to simulate the natural convection and entropy analysis inside an 
enclosure under different magnetic field angles. Dadheech et al.19 conducted the analysis of entropy for slip flow of 
Williamson fluid over a stretching sheet by considering the inclined magnetic field and melting effect. Ali et al.20 
studied the mixed convection heat transfer and oriented magnetic field on water-copper oxide nanofluid into a 
grooved channel using the finite element method. The study of the power-law fluid in a curvilinear cavity with 
an inclined magnetic field is numerically conducted using the finite element method by Hussain and  Oztop21. 
Liao et al.22 numerically studied the effects of both inclined magnetic field and natural convection effect on the 
isotherms and streamlines in a square enclosure filled with water.

In recent years, the modeling of the Fourier’s law with spatial fractional derivative has been considered to 
increase the accuracy of modeling physical problems in various field  researches23,24. The classical Fourier’s law 
describing the mechanism of thermal conduction includes the first-order derivative of the temperature that is not 
accurate enough to model the nanofluid behavior. New studies have shown that Fourier’s law with spatial-frac-
tional derivatives can be used to increase the accuracy of nanofluid flow  modeling25,26. In his model, the Fourier’s 
law heat flux relative to the nanofluid is calculated by a fractional order gradient in form of q ∝ ∇�T(X,Y) , where 
� is the non-integer order. The most widely used fractional derivatives are the  Caputo27–29 and Riemann–Liou-
ville (R–L)30 derivatives. Recently, Asjad et al. used time-fractional derivatives for convection flow of nanofluid 
between parallel  plate31 and heat transfer of maxwell fluid over a vertical  surface32–34. Since the terms of space 
derivatives are nonlinear in the transport equations, such as momentum and energy, the boundary conditions 
dominate the results more than the initial conditions. Table 1 reviews recent studies related to boundary layer 
problems that have discussed fractional derivatives through various aspects.

To the best of our knowledge, analyzing the space-fractional heat transport for the boundary layer of the 
hybrid nanofluid through a permeable surface under an external inclined magnetic field is not investigated yet. 
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Here, the classical model of the energy equation is converted into the fractional model using the Caputo space-
fractional derivative operator. Then the governing complex integro-differential equations are solved by a newly 
developed optimized collocation method. Finally, the influences of the different parameters on velocity and 
temperature fields are displayed graphically and discussed in detail.

Physical model and governing equations
Let us consider the boundary layer flow of an electrically conducting hybrid nanofluid with space-fractional heat 
transport along a semi-infinite horizontal plate. The flow is two-dimensional, steady, incompressible, laminar, 
and the effects of thermal radiation and viscous dissipation are neglected. The Lorentz force is included within 
the momentum equation to gain Magnetohydrodynamic flow conditions. The plate is permeable, and no-slip 
conditions are considered. Here nanoparticles of Ag (φnp1) and GO (φnp2) are simultaneously dispersed in the 
H2O that φnp1 + φnp2 denotes the total volume fraction of nanoparticles. We take X-axis along the plate and Y
-axis normal to it. The plate has temperature Tw and injection/suction velocity through the porous plate is 
Vw (X) , while the temperature and velocity at external free stream are T∞ and U∞ . It is also assumed that the 
flow is exposed to an external inclined magnetic field �B = (B cosα

︸ ︷︷ ︸

B
X

, B sinα
︸ ︷︷ ︸

B
Y

) with inclination angle α with respect 

to the X-axis in which α is changed between 0◦ and 90◦ . The physical model for this study is presented in Fig. 1.
In this study, the spatial-fractional model is proposed to modify classical Fourier’s law of thermal conduction:

Table 1.  Summary of fractional boundary layer problems presented in the literature.

Researchers Fluid Type of magnetic field Case study Type of derivative Type of solution

Pan et al.35

Single nanofluid (Water-Cu
Water-Ag
Water-Al2O3
Water-TiO2)

Whitout magnetic field Boundary layer flow in a porous 
media Spatial fractional Numerical (finite difference)

Tassaddiq36 Second-grade fluid Inclined magnetic field Boundary layer flow along an 
inclined heated plate Time fractional Numerical (Laplace along with 

Zakian’s algorithm)

Chen et al.37 Viscoelastic fluid Vertical magnetic field Boundary layer flow over a stretching 
sheet Time fractional Numerical (finite difference)

Yang et al.38 Maxwell fluid Whitout magnetic field stretching sheet with variable thick-
ness Time fractional Numerical (finite difference)

Li et al.39 viscoelastic fluid Whitout magnetic field Boundary layer over a permeable 
surface Spatial fractional Numerical (finite difference)

Shen et al.40 Sisko nanofluid Whitout magnetic field Boundary layer flow over a continu-
ously moving plate Time fractional Numerical (finite difference)

Liu et al.41 Maxwell fluid Whitout magnetic field Boundary layer over a moving plate Time fractional Numerical (finite difference)

Anwar et al.42 Single nanofluid (Water-SWCNTs
Water-MWCNTs) Vertical magnetic field Boundary layer flow induced due to a 

stretching sheet Time fractional Numerical (Joint of finite-difference 
discretization and L1 algorithm)

Raza et al.43 Maxwell fluid Inclined magnetic field Boundary layer flow past an inclined 
accelerated plate Time fractional Numerical (Grave stehfest algorithm)

Figure 1.  Geometry of the problem.
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In which q refers to the generalization of the classical Fourier’s law of thermal conduction, k�hnf  signifies the 
generalized thermal conductivity, and ∇� denotes the � (0 < � < 1) order spatial-fractional derivative that can 
be defined  by44:

here CDα

X
 and CDα

Y
 stand for operators of Caputo’s spatial-fractional derivatives. Applying these operators  from44, 

we have:

Here Ŵ(.) denotes the Gamma function and can be given by:

The interaction between the magnetic field and the fluid flow causes the generation of Lorentz body force:

in which the FL is known as the Lorentz force and B = B0X
−0.5 highlights the intensity magnetic field . Also �J  

denotes current density vector where can be given as:

in which α is the inclination angle of the magnetic field, σhnf  represents the electrical conductivity, �V  signifies the 
velocity vector and (U ,V) refer to the velocity components along the axes (X,Y) , respectively. Thus, the Lorentz 
force can be expressed in the  form45,46:

Using the aforesaid assumptions, the conservation equations for mass, momentum, and spatial-fractional 
derivatives of energy may be formulated  by23,25,47:

with subjected boundary conditions  as48–50:

(1)q = −k�hnf ∇�T(X,Y) = −k�hnf

(

∂
�

T

∂X
�

−→
i + ∂�T

∂Y
�

−→
j

)

.

(2)∇�T(X,Y) = CD
�

X
T(X,Y)

−→
i + CD

�

Y
T(X,Y)

−→
j ,

(3)∇�T(X,Y) =







1

Ŵ(1− �)











X�

0

∂T(ζ ,Y)
∂ζ

(X − ζ )�
dζ






−→
i +






Y�

0

∂T(X,ζ )
∂ζ

(Y − ζ )�
dζ






−→
j




, 0 < � < 1

∂T

∂X

−→
i + ∂T

∂Y

−→
j , � = 1

,

(4)Ŵ(x) =
∞∫

0

e−ppx−1dp.

(5)FL = �J × �B,

(6)�J = σhnf
( �V × �B

)
= σhnf B

(
U sinα − V cosα

)�k,

(7)FL =




σB2V cosα sinα − σB2U sin2α
� �� �

FLX

, σB2U cosα sinα − σB2V cos2α
� �� �

FLY




 .

(8)
∂U

∂X
+ ∂V

∂Y
= 0,

(9)ρhnf

(

U
∂U

∂X
+ V

∂U

∂Y

)

= µhnf

(

∂
2
U

∂X
2 + ∂

2
U

∂Y
2

)

+σhnf B
2V cosα sinα+σhnf B

2
(
U∞ − U

)
sin2α,

(10)ρhnf

(

U
∂V

∂X
+ V

∂V

∂Y

)

= µhnf

(

∂
2
V

∂X
2 + ∂

2
V

∂Y
2

)

+ σB2U cosα sinα − σB2V cos2α,

(11)
�
ρcp

�

hnf

�

U
∂T

∂X
+ V

∂T

∂Y

�

=
k�hnf

Ŵ(1− �)











X�

0

∂2T(ζ ,Y)
∂ζ 2

(X − ζ )�
dζ




 +






Y�

0

∂2T(X,ζ )
∂ζ 2

(Y − ζ )�
dζ









.

(12)U = 0, V = Vw (X), T = Tw at Y = 0,

(13)U → U∞, T → T∞ as Y → ∞,
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In the above equations P is the pressure, � refers to the fractional order and T  indicates the temperature. 
Moreover, the density ρhnf  , heat capacity cphnf  , viscosity µhnf  , thermal conductivity k�hnf  , and electrical conduc-
tivity σhnf  of the hybrid nanofluid are obtained using the following  expressions51,52:

To calculate the thermal conductivity ( k�hnf  ) and the electrical conductivity ( σhnf  ) of the hybrid nanofluid, 
the values of knf  and σnf  must be replaced by kf

knp1+2kf −2φnp1
(
kf −knp1

)

knp1+2kf +φnp1
(
kf −knp1

)  and σf
σnp1(1+2φnp1)+2σf (1−φnp1)
σnp1(1−φnp1)+σf (2+φnp1)

 in Eqs. 
(17) and (18), respectively. The coefficient ω in Eq. (17) balances the dimension of Eq. (1), which ω = 1 is con-
sidered here. Table 2 gives the thermo-physical properties of nanoparticles GO and Ag and fluid phase (H2O).

The governing equations may be simplified by introducing the following similarity transformation 
 variables48,50:

where f  and θ are the dimensionless stream function and temperature. Also, ψ indicates the stream function 
which can be determined as:

The continuity equation Equation (Eq. (8)) is automatically satisfied by defining the stream function. On the 
other hand, based on Eqs. (15) and (16) we can infer:

where prime indicates derivation with respect to η . Applying the above transformations leads to gaining the 
injection/suction velocity:

Using the mentioned similarity transformations, Caputo’s spatial-fractional derivative model, and boundary 
layer approximations, Eqs. (9) and (11) may be written in forms as:

(14)ρhnf =
(
1− φnp2

)((
1− φnp1

)
ρf + φnp1ρnp1

)
+ φnp2ρnp2,

(15)
(
ρcp

)

hnf
=

(
1− φnp2

)((
1− φnp1

)(
ρcp

)

f
+ φnp1

(
ρcp

)

np1

)

+ φnp2
(
ρcp

)

np2
,

(16)µhnf =
µf

(
1− φnp1

)2.5(
1− φnp2

)2.5
,

(17)
k�hnf

knf
= ω

knp2 + 2knf − 2φnp2
(
knf − knp2

)

knp2 + 2knf + φnp2
(
knf − knp2

) ,

(18)
σhnf

σnf
= σnp2

(
1+ 2φnp2

)
+ 2σnf

(
1− φnp2

)

σnp2
(
1− φnp2

)
+ σnf

(
2+ φnp2

) .

(19)η = Y

√

U∞
νf X

, f = −ψ(X,Y)
√

νf X U∞
, θ = T − T∞

Tw − T∞
,

(20)
(
U ,V

)
=

(−∂ψ

∂Y
,
∂ψ

∂X

)

.

(21)U
/

U∞ = f ′(η), V =

√

νf U∞
4X

(
ηf ′(η)− f (η)

)
,

(22)Vw (X) = −f (0)

2

√

νf U∞
X

.

(23)f ′′′(η)+ 1

2

ρhnf

ρf

µf

µhnf
f (η)f ′′(η)+Ha sin2α

σhnf

σf

µf

µhnf

(
1− f ′(η)

)
= 0,

Table 2.  Thermo-physical properties of nanoparticles and fluid  phase53,54.

Properties cp
(

J
/

kg K
)

ρ
(

kg
/

m3
)

µ (kg
/

ms ) σ
(

1
/

�m
)

k
(

W
/

mK
)

Water 4179 997.1 1.003 ×  10–3 0.05 0.613

Graphene oxide 717 1800 – 1.1 ×  10–5 5000

Silver 235 10,500 – 6.30 ×  107 429
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The converted boundary conditions for Eqs. (23) and (24) take the  form50:

where the Ha = σf B
2
0

ρf U∞
 indicates the magnetic parameter (Hartmann number), Pr = νf (ρ cp)f

kf
 shows the Prandtl 

number and S = −2Vw(X)
U∞

Re0.5 signifies the injection/suction parameter which S > 0 and S < 0 are for the mass 
suction and mass injection, respectively.

Two physical parameters that play an important role in engineering processes are the shear stress coefficient 
Cf  and the Nusselt number Nu that are obtained as:

in which τw and qw respectively represent the surface shear stress and heat flux that can be expressed as:

Utilizing Eq. (27) into Eq. (26) and upon substitution of non-dimensional variables, we get:

where Re = U∞X
νf

 signifies the local Reynolds number.

Solution methodology
In the following section, an efficient semi-analytical scheme, optimal collocation method (OCM) is used to 
investigate the problem defined by Eqs. (23) and (27). Khazayinejad et al.47,55 and Nourazar et al.56 proposed this 
method to optimize the collocation method (CM)57,58 and applied it to nonlinear problems involving infinite 
boundary conditions. The proposed method involves seven steps. In the first step, the interval 0 ≤ η < ∞ is 
converted to 0 ≤ η ≤ η∞ , which η∞ changes with different physical parameters. In the second step, the physical 
domain is normalized to a computational domain by:

In the third step, using normalizations G(u) = f (η)
/
η∞ and Q(u) = θ(η)

/
η∞ , the Eqs. (23) and (24) are 

rewritten as:

where primes show differentiation with respect to the u ∈ [0,1]. After applying normalizations G(u) = f (η)
/
η∞ 

and Q(u) = θ(η)
/
η∞ , the corresponding new boundary conditions can be obtained as:

(24)
k�hnf

kf

�

νf X

U∞

� 1−�

2
1

Ŵ(1− �)





η�

0

d2θ(τ )
dτ 2

(η − τ)�
dτ



 + Pr

2

�
ρcp

�

hnf
�
ρcp

�

f

f (η)θ ′(η) = 0.

(25)
f (0) = S, f ′(0) = 0, θ(0) = 1,

f ′ → 1, θ → 0 as η → ∞,

(26)Cf =
τw

1
2ρf U

2
∞
, Nu = Xqw

kf
(
Tw − T∞

) ,

(27)τw = µhnf

(
∂U

∂Y

)

Y=0

, qw = −k�hnf

(

∂
�

T

∂Y
�

)

Y=0

,

(28)Cfr = Cf

√
Re = 2

(
1− φnp1

)2.5(
1− φnp2

)2.5
f ′′(0) ,

(29)Nur =
Nu√
Re

= −
k�hnf

kf

1

Ŵ(1− �)

�

υf X

U∞

� 1−�

2





η�

0

dθ(ζ )
dζ

(η − ζ )�
dζ





η=0

,

(30)0 ≤ η ≤ η∞
u=η/η∞⇒ 0 ≤ u ≤ 1.

(31)
1

η2∞
G′′′(u)+ 1

2

ρhnf

ρf

µf

µhnf
G(u)G′′(u)+Ha sin2α

σhnf

σf

µf

µhnf

(
1− G′(u)

)
= 0,

(32)
1

η�∞

k�hnf

kf

�

νf X

U∞

� 1−�

2
1

Ŵ(1− �)





u�

0

d2Q(ζ )
dζ 2

(u− ζ )�
dζ



 + η∞
Pr

2

�
ρcp

�

hnf
�
ρcp

�

f

G(u)Q′(u) = 0,

(33)
G(0) = S

η∞
, G′(0) = 0, G′(1) = 1, G′′(1) = 0,

Q(0) = 1

η∞
, Q(1) = 0, Q′(1) = 0.
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The idea for choice Q′(1) = 0 and G′′(1) = 0 comes from the asymptotic conditions. In the fourth step, to 
determine a solution for the Eqs. (33) and (34), two trial solutions with unfamiliar coefficients “c” will be selected 
that have the following  form45,59:

The accuracy of the trial solutions increases with the consideration of more terms in the above series. Note 
that the OCM, unlike the CM, gives us a lot of freedom and flexibility to choose trial solutions. Because in this 
method, there is no need for unfamiliar unknowns and weight functions to be equal in number. The weight 
functions corresponding to trial solutions are obtained from the following relation:

In above equation na , nbc , ncj , nWj signify the number of asymptotic boundary conditions, boundary condi-
tions, unfamiliar constants, and weight functions. Using Eq. (35), the new relations can be obtained as:

In the fifth step, the residual functions RG(c0, c1, ..., ck) and RQ
(
c0, c1, ..., cm+k+1

)
 must be calculated. These 

functions can be obtained by placing g and h into Eqs. (33) and (34):

Further, in this method, the sum of weighted residual values must be zero in the problem domain:

which Wi(u) is the weight function and can be selected by:

(34)G(u) = 1

η∞



c0 +
k�

j=1

cj u
j



 = 1

η∞

�

c0 + c1 u+ c2 u
2 + . . .+ ck u

k
�

,

(35)Q(u) = 1

η∞



ck+1 +
m�

j=1

cj+k+1 u
�j



 = 1

η∞

�

ck+1 + ck+2 u
� + ck+3 u

2� + . . .+ cm+k+1 u
m �

�

.

(36)nWj = ncj + 1− na − nbc .

(37)u = 0 ⇒ G = S

η∞
⇒ c0 = S,

(38)u = 0 ⇒ G′ = 0 ⇒ c1 = 0,

(39)u = 1 ⇒ G′ = 1 ⇒ 1

η∞
(c1 + 2c2 + . . .+ kck) = 1,

(40)u = 0 ⇒ Q = 1

η∞
⇒ ck+1 = 1,

(41)u = 1 ⇒ Q = 0 ⇒ ck+1 + ck+2 + ck+3 + . . .+ cm+k+1 = 0,

(42)u = 1 ⇒ G′′ = 0 ⇒ 2c2 + 6c3 + . . .+ k(k − 1)ck = 0,

(43)u = 1 ⇒ Q′ = 0 ⇒ ck+2 + 2ck+3 + . . .+mcm+k+1 = 0.

(44)

RG(c0, c1, ..., ck) =
1

η3∞

d3

du3



c0 +
k�

j=1

cj u
j



+ 1

2η2∞

ρhnf

ρf

µf

µhnf



c0 +
k�

j=1

cj u
j





d2

du2



c0 +
k�

j=1

cj u
j



+Ha sin2α
σhnf

σf

µf

µhnf



1− 1

η∞

d

du



c0 +
k�

j=1

cj u
j







,

(45)
RQ

�
c0, c1, ..., cm+k+1

�
=

k�hnf

η�+1∞ kf Ŵ(1− �)

�

νf X

U∞

� 1−�

2
u�

0

d2
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which δ(u− ui) represents the Dirac delta function. In the sixth step, collocation points are selected that leads 
to the following results:

In the seventh step, the obtained equations from previous steps are solved. Here, Eqs. (39)–(43) and Eqs. 
(48)–(49) leads to a system of k +m+ 3 algebraic equations. Thus, By solving the relevant equations, we can 
easily find the unknown coefficients cj and η∞ . By using these values in Eqs. (34) and (35), the velocity and 
temperature distributions can be computed. for a special case, the results of the approximate solutions for 
GO − Ag −H2O hybrid nanofluid when Ha = 1 , � = 0.94 , α = π

4  , X = 1 , φnp1 = 0.03 , φnp2 = 0.03 , S = 0.3 , 
k = 12 , and m = 12 are presented as:

Code validation
In the following subsections, to ensure the present study’s authenticity, validation with existing literature has 
been done in two parts:

Validation with the previous theoretical works. The first validation is obtained by comparing the 
Nusselt number and skin friction coefficient with the previous theoretical works for several values of the suc-
tion parameter. The comparison is displayed in Table 3 which demonstrates an excellent agreement in all cases.

Validation with the maple package. The second validation is done with the Maple package through 
Fig.  2a,b. Maple is one of the most powerful software packages for solving nonlinear differential equations. 
Maple package uses an assistant with a multiple-step process for solving differential equations using the Runge–
Kutta numerical method to boundary value problems. Runge–Kutta method is one of the best solving algorithms 
in terms of accuracy and speed of solution. So, to justify the validity of the current study, the present results 
(obtained from OCM) for dimensionless stream function are compared with the Runge–Kutta method for spe-
cial case φnp1 = φnp2 = 0.03 , Pr = 6.84 , Ha = 1 and various values suction parameter S (Fig. 2a) and inclination 
angle of the magnetic field α (Fig. 2b). A good agreement is seen between the results for both figures.

A comparative study of absolute error between the present method and Runge–Kutta method for f (η) and 
θ(η) is provided in Table 4. An excellent agreement is observed from the comparison of results.

Results and discussions
In this research, to offer the influences of different parameters on flow and heat transport characteristics, results 
have been shown in terms of streamline contours, skin friction coefficient, nonlocal Nusselt number, and veloc-
ity and temperature distributions. Throughout the study, the parameters default values are taken as φnp1 = 0.03 , 
φnp2 = 0.03 Pr = 6.84 , α = π

/
4 , Ha = 1 , S = 0.3 , and � = 0.94.

Figure 3a,b are sketched to show the velocity and temperature distributions against the suction parameter S . 
As a physical result, using suction, part of the fluid is removed from the boundary layer by forcing it to flow via 
the permeable plate. Therefore, an increase in S decreases both velocity and thermal boundary layer thickness. 
Thus, on growing values of S , the velocity of fluid increases but temperature decreases.

Figure 4a–d display streamline contours for the different suction parameter. For higher S , the suction intensity 
of the plate and consequently the vertical velocity are more strong when compared to smaller S . Therefore, as 
suction increases, the streamlines are drawn towards the plate, and boundary layer thickness decreases.

(47)Wj(u) = δ(u− uj),

(48)
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(52)f (η) = 0.3+ 0.4412537794 η2 − 0.1081092858 η3 + . . .− 0.0000000038 η12,

(51)θ(η) = 1− 1.733723899 η
47
50 + 1.048652335 η

47
25 + . . .+ 0.0000052528 η

282
25 .

Table 3.  Comparison results of  
∣
∣f ′′(0)

∣
∣ and 

∣
∣θ ′(0)

∣
∣ with previous studies when φhnp = 0 , Ha = 0 , and Pr = 0.7

.

Vw

U∞

Re
0.5

∣

∣f ′′(0)
∣

∣

∣

∣θ ′(0)
∣

∣

Bejan60 Schetz61 Schlichting62 Present study Bejan60 Schetz61 Oosthuizen63 Present study

0 0.332 0.332 0.332 0.3321 0.292 0.295 0.293 0.2929

− 0.25 0.523 – – 0.5228 0.429 0.429 – 0.4294

− 0.75 0.945 – – 0.9454 0.722 0.722 – 0.7218
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Figure 2.  Comparison of current analysis with the numerical method at different (a) S  (b) α.

Table 4.  Comparison between the optimal collocation method and Runge–Kutta method when α = π
/

4
φnp1 = φnp2 = 0.03 , Pr = 6.84 , Ha = 1.

η

f (η) θ(η)

Numerical OCM Error Numerical OCM Error

0 0.30000 0.30000 0.00000 1.00000 1.00000 0.00000

0.2 0.31613 0.31611 0.00002 0.75993 0.75797 0.00196

0.4 0.36171 0.36166 0.00005 0.55866 0.55729 0.00137

0.6 0.43293 0.43285 0.00008 0.39405 0.39313 0.00092

0.8 0.52641 0.52631 0.00010 0.26457 0.26398 0.00059

1 0.63915 0.63902 0.00012 0.16780 0.16745 0.00034

2 1.40492 1.40474 0.00018 0.00580 0.00584 0.00007

3 2.34426 2.34406 0.00020 0.00002 0.00005 0.00003

4 3.33370 3.33350 0.00020 0.00000 0.00000 0.00000

5.0 4.33254 4.33234 0.00019

5.79 5.12850 5.12831 0.00019

Figure 3.  Velocity profiles (a) and temperature profiles (b) for various values of S.
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Figure 4.  (a) Streamline contour without suction or injection ( S = 0 ).  (b) Streamline contour for S = 0.6 . (c) 
Streamline contour for S = 0.8 . (d) Streamline contour for strong suction ( S = 1).
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The impact of the inclination angle of the magnetic field α on the velocity and temperature distributions is 
displayed in Fig. 5a,b, respectively. Here, when the magnetic field is perpendicular to the plate, the inclination 
angle of the magnetic field α is equal to π

/
2 . The interaction of the inclined magnetic field with the hybrid 

nanofluid flow produces the Lorentz force, which is a resistive force. As α rises from π /5 to π
/
2 , the Lorentz 

force effect gradually increases. On the other hand, the favorable pressure gradient is amplified to overcome the 
Lorentz force under the Bernoulli principle. So, enhancement in α boosts velocity and decreases temperature. 
As a result, applying an external magnetic field with different inclination angles may be used as a mechanism 
to control the hydrodynamic and thermal behavior of hybrid nanofluid flow to achieve a desired performance.

Figure 6a compares the temperature profile for the spatial-fractional heat transfer model (� = 0.9, 0.94, 0.97) 
and its classical (� = 1) . This figure show that an increase in the order of fractional derivatives increases the 
temperature of the hybrid nanofluid. On the other hand, the model of spatial-fractional has less temperature than 
its classical for describing the heat transfer process. It is to be noted that most research on fractional heat transfer 
has been focused on time-fractional derivatives, and less research has been done on space-fractional derivatives 
due to their complexity. Figure 6b displays the comparison between the temperature profile of the GO-Ag-H2O 
hybrid nanofluid ( φnp1 = 0.06 , φnp2 = 0.06 ) with the Ag-H2O single nanofluid ( φnp1 = 0.12 , φnp2 = 0 ) and 
 H2O pure fluid ( φnp1 = 0 , φnp2 = 0 ). Based on the mentioned figure, the temperature of GO-Ag-H2O hybrid 
nanofluid is higher than both Ag-H2O single nanofluid and  H2O pure fluid at all η values.

Figure 7a,b illustrate the influence of variation the volume fraction of nanoparticles φnp2 on velocity and 
temperature distributions. Here, for GO-Ag-H2O hybrid nanofluid volume fraction of Ag is kept constant 
(i.e. φnp1 = 0.03 ), and in the case of Ag-H2O single nanofluid, the volume fraction of GO is considered zero 
(i.e. φnp2 = 0 ). Physically, when the graphene oxide nanoparticles are added to the silver-water nanofluid, the 

Figure 5.  Velocity profile (a) and temperature distribution (b) for different values of α.

Figure 6.  Temperature distribution for different values � (a) and for different working fluids (b).
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compound’s thermal conductivity and kinematic viscosity increase. In fact, since the thermal conductivity of 
graphene nanoparticles is approximately eleven times that of thermal conductivity nanoparticles of silver and 
eight thousand times that of water ( kGraphene oxide = 5000 , kSilver = 429 and kWater = 0.613 ), the addition of 
graphene nanoparticles to silver-water nanofluid, greatly increases the thermal conductivity of the compound. 
Furthermore, as the thermal conductivity of the compound increases, the diffusion of heat into the fluid flow 
increases (according to the first term of Eq. 24). The increment of heat diffusion in the fluid flow means an 
increase in the thickness of the thermal boundary layer, which results in an increase in the temperature profile. 
Similarly, the increase in volume fraction of graphene oxide nanoparticles raises the kinematic viscosity of the 
compound, leading to a thicker boundary layer and a lower velocity.

The physical quantity of interest, i.e., reduced skin friction coefficient, is calculated in Fig. 8 for several values 
of the inclination angle of the magnetic field α and suction parameter S . Physically, an increase in α and S reduces 
the velocity boundary layer thickness, which will cause the enhancement of the velocity gradient on the plate. 
Thus, the skin friction coefficient decreases when α and S are increased.

Finally, Fig. 9 shows the variations in the magnitude of the Nusselt number for different values of the inclina-
tion angle of the magnetic field α and order of space-fractional derivatives � . An increase in α leads to a thinner 
thermal boundary layer thickness resulting in a higher Nusselt number. Moreover, the value of the Nusselt num-
ber rises as the order of space-fractional derivatives increases. This physically means that the fractional model 
proposes a lower heat transfer rate than the classical model.

Conclusions
In this paper, the space-fractional diffusion model is proposed for hybrid nanofluid heat transfer in the boundary 
layer flow along a permeable plate under an inclined magnetic field. The main points of this study are as follows:

• As an alternative to numerical methods, the optimized collocation method is successfully applied to solve 
the space-fractional boundary layer problems.

Figure 7.  Velocity profile (a) and temperature distribution (b) for different values of φnp2.
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• The addition of GO nanoparticles to the Ag-water single nanofluid increases the temperature of the com-
pound. This is due to the high thermal conductivity of GO.

• Increasing values of the order of space-fractional derivatives lead to a higher temperature and Nusselt number. 
So that, the heat transfer rate is augmented 26% by changing the order of space-fractional derivatives from 
0.9 to 1.

• By increasing the suction parameter from 0 (without suction) to 1 (strong suction), the thickness boundary 
layer decreases, and the streamlines are drawn towards the porous plate.

• Changing the magnetic inclination angle from 36◦ to 90◦ (vertical magnetic field) causes an increase in veloc-
ity of the hybrid nanofluid flow.

Future research will focus on the study of influences of time–space fractional heat transfer and magnetic field 
within the boundary layer flow over a porous cylinder.
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