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ST08 is a novel curcumin derivative that exhibited apoptotic and anti-migratory activity in
MDA-MB-231, triple-negative breast cancer cells reported earlier. In this study, we further
explored the anticancer properties of ST08. ST08 reduced tumor burden in vivo and
induced apoptosis through the mitochondrial pathway both in vitro and in vivo. ST08
potentiated the effect of cisplatin in vitro and in vivo in mouse EAC breast cancer models
with minimal toxicity. ST08 induced alterations in the gene expression were studied by
parallel analysis of miRNA and mRNA. 74 differentially expressed miRNA regulated 114
mRNA in triple-negative (MDA-MB-231) cancer cells. Pathway related to the ECM was
altered in mesenchymal MDA-MB-231 cells. We constructed a unique miRNA-mRNA
interaction network, and one of the pathways regulated by miRNA was NF-kB. Targets of
NF-kB like MMP1, PTX3, and MMP2 were downregulated in MDA-MB-231 in response to
ST08 treatment. PMA induced cell proliferation was abrogated by ST08 treatment, and no
additional cell cytotoxicity was observed when used in combination with IKK-16 indicating
ST08 regulation of NF-kB pathway in MDA-MB-231 cells.

Keywords: integrated transcriptomic approach, synergistic, tumor regression, Curcumin derivatives, apoptosis
INTRODUCTION

Breast cancer is the second most common gynecological malignancy causing death in women (1). It
is not a single disease but a group of neoplastic disorders with distinct molecular features. Though
surgery, radiation therapy, hormonal therapy, immunotherapy, and targeted therapy are routine
treatments, the mortality rate due to breast cancer metastasis is still high (2). Among many
cytostatic agents used for chemotherapy, platinum analogs are used primarily for patients with
BRCA1 mutations (3). These mutations give rise to defects in the DNA double-strand break repair.
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Thus, platinum analogs like cisplatin, the interstrand cross-
linking agents, lead to apoptotic cell death of dividing cells (4).
At least 70% of TNBC (triple-negative breast cancer) patients
with a germline BRCA1 mutation develop metastatic disease (4).
However, due to adverse side effects and chemo-resistance, the
use of platinum-based chemotherapy is limited. Thus, the
demand for highly potent and effective drugs continues.

Among several reported natural compounds, Curcumin(1,7-
bis(4-hydroxy 3- methoxyphenyl) -1,6-heptadione-3,5-dione or
diferuloylmethane), has exhibited its pleiotropic anticancer
activity profoundly in a wide array of cancer cells like breast
(2, 5), colon (6), lung (7), head and neck (8), leukemia (9),
pancreatic (10); affecting multiple pathways. Though curcumin is
known for its anticancer properties, the primary limitations like
low bioavailability and rapid metabolism (2, 11) open the doors
for exploring its derivatives. One such widely studied group of
curcumin derivatives is DAPs (diarylidenyl-piperidone). DAPs
exhibit properties similar to curcumin, with better potency and
multidrug resistance reverting property (5). ST08 is one such
DAP whose anticancer properties have been explored in greater
detail in this study. Like ST09 (2) and ST06 (12), reported from
our lab, ST08 has exhibited its efficacy in the nanomolar range
(5). We have used in vitro, in vivo, and transcriptomic
approaches to evaluate molecular mechanisms modulated by
ST08 to bring about phenotypic manifestations such as apoptotic
cell death and tumor regression in vivo.

Curcumin and its derivative, like EF24, are known to regulate
the epigenome by micro-RNAs(miRNA) expression (13–15).
miRNAs,~22nt short non-coding RNAs, regulate gene
expression by either blocking mRNA translation or degrading
the mRNA using sequence complementarity (16, 17). In cancer,
dysregulation of miRNAs regulating various biological processes
related to oncogenesis has been studied (18, 19). One of the
common pathways deregulated in cancer-driving oncogenesis is
NF-kB. NF-kBis an inducible transcription factor(TF) that
regulates several cellular processes (20) that drives breast
cancer (21). NF-kBhas a significant role in angiogenic
neovascularization, extracellular matrix(ECM) organization,
the epithelial-mesenchymal transition (EMT), cancer cell
stemness which ultimately leads to cancer cell resistance, early
relapse, and poor survival (21). Curcumin is known to regulate
NF-kB signaling in various cancers like liver (22), cervical cancer
(23), oral cancer (24), renal cancer (25), including breast cancer
(26). Curcumin derivatives like EF24 (27), EF31 (28), MS65 (29)
are also known to target NF-kBwhen used in the micromolar
range. However, this study shows that ST08 mediated the
regulation of NF-kB when used in the nanomolar range.

Integrated RNA-seq and miRNA-seq analysis provide insight
into drug-induced alterations in the transcriptome at different
levels, including quantifying protein-coding and non-coding
gene expression, fusion genes, and alternative splicing. Besides,
mechanistic insights of gene expression regulation by miRNA,
either by translational control or mRNA degradation, can be
assayed. Transcriptomic changes capture common and unique
pathways induced by a drug in different cell lines (30). RNA-seq,
miRNA-seq analysis helps in unbiased detection of both coding
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and non-coding novel transcripts and transcripts with low
abundance (31). As compared to microarrays, NGS sequencing
is more sensitive and accurate due to better discrimination
between highly similar sequences (32).

ST08, a recently reported derivatized curcumin from our lab,
has been shown to curb migration and invasion by targeting
MMP1 (5). Here we further explore the anticancer characteristics
of ST08 and show its effect on cell cycle, apoptosis in breast cancer
cells MCF7 andMDA-MB-231, and the breast tumor mice model.
We show that the combination of ST08 and Cisplatin reduces the
tumor volume drastically with no apparent toxicity in vivo. We
have explored breast cancer cells’ whole transcriptomic response
(mRNA and miRNA) upon ST08 treatment. We have integrated
the miRNA-seq with mRNA-seq and shown miRNA-mediated
regulation of ECM-related pathways in MDA-MB-231 cells.
Network analysis using string revealed NF-kBand its
downstream partners. In the above network, transcription
factors regulating miRNA and miRNA regulating NF-kB were
manually integrated. We further validated NF-kB and its
downstream targets in TNBC MDA-MB-231 cells post ST08
treatment. We correlated the ST08 induced reversal in gene
expression, as observed in normal breast vs. tumor samples
from GEPIA (33).
MATERIALS AND METHODS

Cell Culture
MDA-MB-231 and MCF7 were purchased from the National
Centre of Cell Culture (NCCS), Pune, Maharashtra, India.
MDA-MB-231 cells were grown in Dulbecco’s Modified Eagle’s
Medium (DMEM high glucose with L-glutamine; Lonza) and
MCF7 in Eagle’s Minimum Essential Medium (EMEM; Lonza
supplemented with non-essential amino acids (NEAA) from MP
biomedicals). All media were supplemented with heat-inactivated
10% fetal bovine serum (Gibco), 100 IU mg/mL penicillin/
streptomycin (Gibco) at 37°C in a humidified atmosphere
containing 5% CO2. ST08 was dissolved in DMSO such that all
treatments had equal concentrations of dimethyl sulfoxide
(DMSO) between 0.1–0.2%. Cisplatin(MP biomedicals, Santa
Ana, California, USA) was dissolved in water. Phorbol ester
(phorbol 12- myristate 13-acetate; PMA) and IKK-16 were
purchased from Tocris Bioscience (Bristol, United Kingdom)
and dissolved in DMSO. The structure of ST08 and molecular
signatures of each cell line are tabulated in Table 1 (34).

Cell Cycle Analysis
Cell cycle analysis was performed in MDA-MB-231, MCF7 cells
as described (2, 5, 37). Cells were seeded at a density of 75000
cells/ml and incubated for 24 h at 37°C. After incubation, cells
were treated with ST08(0, 20, 40, 60, 80, 100, 120, 150 nM) for
48 h. Cells were harvested by trypsinization, washed, fixed with
80% cold ethanol overnight at -20°C. Then cells were washed
incubated with RNase A followed by staining with propidium
iodide (PI) (1 mg/ml), incubated at 37°C for 35 min, and readings
were acquired in the flow cytometer (Gallios, Beckman Coulter,
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Miami, FL). A minimum of 10,000 cells/events was acquired per
sample, and data were analyzed using Modfit LT free trial version
3.3 available from Verity software house. Experiments were
repeated three times, and data were represented along with
error bars.

Phosphatidylserine Externalization Assay
Early apoptotic cells, late apoptotic cells, and necrotic cells were
analyzed using Annexin V-FITC/PI staining described earlier (2, 5).
Annexin V-FITC binds to phosphatidylserine, which gets
translocated from the inner side of the cell membrane to the cell
membrane’s outer side during the earlier stage of apoptosis. PI
stains both late apoptotic and necrotic cells. MCF7 cells were treated
with ST08 (0, 20, 60, 100, 120, 150 nM) for 48 h, stained with
Annexin V-FITC for 20 minutes, and PI was added just before
analysis examined by flow cytometry (Gallios, Beckman Coulter,
Miami, FL). A minimum of 10,000 cells/events was acquired per
sample, and data were analyzed. Experiments were repeated a
minimum of three independent times, and data were represented
with error bars. Every sample was pooled from three independent
wells of a 6-well plate.

JC-1 Mitochondrial Membrane Potential
(DYm) Assay
Mitochondrial membrane potential was measured after
treatment with ST08, using JC-1 dye. The assay was carried
out, as described earlier (2). JC-1 (5,5’,6,6 tetrachloro-1,1’,3,3’-
tetraethylbenzimidazol-carbocyanine iodide) is a carbocyanine
dye that selectively enters mitochondria and changes reversibly
its color from red (J -aggregate, emission at 590 nm) to green
(monomeric form, emission at 530 nm) upon a change in
mitochondrial membrane potential, that occurs during
apoptosis. Briefly, cells were treated with ST08 (0, 20, 40, 60,
80, 100, 120, 150 nM), harvested after 48 h, and incubated with
JC-1 dye. The stained cells were then analyzed using a flow
cytometer (Gallios, Beckman Coulter, Miami, FL). Cells treated
with 2,4-Dinitrophenol (2,4-DNP) served as a positive control.
The ratio of cells emitting red to green fluorescence for each
concentration was plotted. A minimum of 10,000 cells/events
was acquired per sample, and data were analyzed. Experiments
were repeated a minimum of three independent times, and data
were represented with error bars.

Immunoblotting
MDA-MB-231, MCF7 cells were incubated with different
concentrations of ST08 (0,20,40,75,80,100 nM) for 48h, and
western blotting was performed as described (2, 5, 34). The tumor
tissues(100mg) from two groups (Control and ST08 treated) were
Frontiers in Oncology | www.frontiersin.org 3
minced using liquid nitrogen. The powdered tissue was sonicated in
RIPA buffer, and the supernatant was collected after centrifugation
at 12000 rpm, 4°C, 15 min. The supernatant containing protein was
quantified using Bradford’s reagent(Biorad), and then
immunoblotting was performed (2, 12). The membrane was
probed with appropriate primary antibodies involved in apoptosis,
such as Apaf1, Cytochrome c,p53 were purchased from Santa Cruz
Biotechnology; Bax, PARP, Caspase 3, and Caspase 9 from Cell
Signaling Technology; PTX3, MMP1, MMP2, Bcl2 from Cloud
clone Corp and NF-kB from Biolegend. The membrane was probed
with HRP-conjugated secondary anti-rabbit, anti-mouse antibody
(Cell Signaling Technology). The blots were developed with
chemiluminescence reagent (Clarity Western ECL blotting
substrate, Biorad), and the blot images were captured by the
Chemidoc-XRS Biorad gel doc system. The protein band images
were quantified using GelQuant.Net, BiochemLab solutions.

Breast Cancer Mice Tumor Model
The approval for the study was obtained from the Institutional
animal ethics committee (Reg. No. 1994/GO/ReBi/S/17/CPCSEA),
and all experiments were performed following institutional and
national guidelines and regulations of the CPCSEA as described
(2, 12). Ehrlich ascites breast adenocarcinoma (EAC) is a
spontaneous breast adenocarcinoma model used to screen
anticancer drugs for over 4 decades. EAC (1 x 106 cells/animal)
was injected to induce solid tumors in the left thigh region of Swiss
albinomice. After animals had developed tumor of size ~200mm3
the animals were segregated in 4 groups: control (n=5) and ST08
treated (n=5), Cisplatin treated (n=5), Cisplatin+ST08 treated
(n=5). The treated group animals were then subjected to 10
doses of 20mg/kg of body weight(bd wt) of ST08, 1mg/kg bd wt
of cisplatin, and ST08 (10mg/kg body weight)+Cisplatin (1 mg/kg
bd wt) intraperitoneally (i.p) every alternate day. The experiment
was repeated twice with five animals each for the control, ST08
group. Changes in the tumor size and body weight were observed
for 20 days from the day of treatment. Tumor volume was
calculated using the formula V = 0.5x a x b2, where V is tumor
volume, a, b are major and minor tumor diameters.

Drug Toxicity and Side Effect Assessment
on ST08, Cisplatin Treatment
EAC tumor-induced tumor mice in the treatment group were
treated with ST08 for 20 days and then were evaluated for drug
toxicity. Blood samples were collected from animals from all the
groups. Serum was separated, following which drug toxicity
biomarkers such as aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and BUN were estimated according to
TABLE 1 | Molecular Signatures of the cell lines in the study.

Structure of ST08 Characteristics MCF7 MDA-MB-231

Breast Cancer Subtype (34, 35) Luminal A Claudin-low triple negative
ER,PR, Her2 status (34, 35) ER+ve,PR+ve,Her2-ve ER-ve,PR-ve,Her2-ve
p53 Status (36) Wild type Mutant (protein variant p.R280K)
BRCA1 status (37) Wild type Wild type
May 202
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the method described by ALT/AST/BUN activity assay kit (Auto
span, Span Diagnostics, Bengaluru, India).

Histological Analysis of Tumor Tissues
Histological evaluation through Haematoxylin-Eosin (HE)
staining was done by fixing 20-day old tumor tissues and
organs from animals following treatment with the drug
treatment in formalin. The tissues were dehydrated, cleared in
xylene, then embedded in paraffin, and processed as previously
described (2).

Drug Combination Study by MTT Assay
MTT assay was performed as described earlier (2, 5). Cells were
seeded (5000 cells/well) in a 96-well plate in triplicates, incubated
for 24 h, and treated with various concentrations of Cisplatin
(0,1,5,10,20,50 µM) and ST08 (30,60nM). Cells were incubated
with MTT reagent, MP Biomedicals (5 mg/ml) after 48h of
incubation of cells with the drugs at 37°C and 5% CO2.
Absorbance was measured at 570 nm, and the results shown
are from 3 different biological replicates. To understand the effect
of the combination of Cisplatin with ST08, the combination
index method (38, 39) was used. The combination index is
calculated as follows:

CI ¼ CAX

ICX,A
+

CBX

ICX,B

where CAX, and CBX are the concentration of drugs A and B used
in combination to achieve x % drugeffect. ICX,A and ICX,B are the
concentrations for single agents to achieve the same effect. CI < 1
implies Synergism, CI = 1 is Additive and CI > 1 is
Antagonistic effect.

RNA Preparation and HiSeq2500
Sequencing
Drug Treatment, RNA isolation, and Library preparation: The
experiment was performed as described (34). Briefly, 0.75 x 10^5
MDA-MB-231 cells were seeded in each well of a 6-well plate and
were treated with 75nM ST08. After 48h of treatment, cells were
trypsinized, and cells from three wells having the same treatment
were pooled together. After two PBS washes, RNA extraction was
done using Trizol Reagent (Ambion) following the manufacturer’s
recommendations. RNA concentration and purity were checked
using Qubit(Invitrogen, Life Technologies, Carlsbad, California,
United States), and its integrity was examined by capillary
electrophoresis (Tapestation, Agilent Technologies, Santa Clara,
California, United States) to ensure RNA integrity number >9, for a
good RNA library preparation. Paired-end RNA-seq libraries were
prepared using Illumina TruSeq RNA Library Prep Kit v2.

mRNA library preparation: As described (34), mRNAs were
separated using oligo-dT beads and fragmented to 200-250 bp
from the total RNA. After synthesizing cDNA, the ends were
repaired for blunt ends, and the 3’ ends were adenylated. To the
adenylated sites, adapters were linked, and subsequently, PCR
amplification of the library was done. After constructing the
libraries, their concentrations and insert sizes were detected
using Qubit and Agilent Tapestation, respectively. High
Frontiers in Oncology | www.frontiersin.org 4
throughput sequencing was performed using Illumina
HiSeq2500 to obtain 100-bp paired-end reads.

miRNA library preparation: RNA isolation was done as
mentioned above (34), and RNA sample was given for library
preparation. miRNA-library preparation was outsourced to
SciGenom Labs, India. In brief, after checking the quality, RIN
of RNA, 3’ and 5’ adapters were ligated to the short mature
miRNA sequences. After adapter ligation, reverse transcription
was done to obtain single stranded cDNAs. The cDNA was then
PCR amplified, and the amplicons were run on 8% native PAGE.
The gel purification was carried out for ~150bp library, and the
libraries’ quality was checked using Tapestation 2200, Agilent.
The libraries were then used for pooling and sequencing in Hiseq
2500, Illumina.

Differential Expression Analysis
mRNA-seq: As described (34), data analysis was carried out,
beginning with filtering raw reads output from Illumina
Hiseq2500 platform. The sequencing depth for each sample
was > 40 million reads. The quality of the reads was checked
using the FastQC tool (40). The reads were aligned with Bowtie2
(41) to the hg38 reference genome. The tool coverage bed from
BEDTools (42) was used to extract the count per transcript per
sample using the annotation files. Differential expression
analyses of drug-treated samples against control samples were
performed using the DESeq R package (43). DE genes were
analyzed using a hypergeometric test and the Benjamini &
Hochberg method. Heatmap and hierarchical clustering were
done to understand the expression profile based on the value of
significantly differentially expressed transcripts.

miRNA-seq: As described (34), data analysis was carried out
in the following steps: filtering was done on raw reads output
from Illumina Hiseq2500 platform. The sequencing depth for
each sample was >10 million reads. The quality of the reads was
checked using the FastQC tool (40), and >90% of reads had a
Phred score(Q) > 30. Trimming was done using trim_galore (44)
to obtain read lengths of 18-25bp. The alignment was performed
using Bowtie2 (41), and differentially expressed miRNA was
obtained, as mentioned above.

Integrated Enrichment and Network
Analysis of mRNA-miRNA
miRtarvis+ (45, 46) and miRmapper (47) tools were used for
studying the interaction between mRNA-miRNA. The
miRmapper output was used to find pathways using
MIENTURNET (48). miRNA-mRNA network was generated
using miRtarvis+ (45, 46). The protein-protein interaction
network was created using the STRING database (49). The
interacting miRNAs were added manually to the network.
However, every miRNA target was verified using TargetScan
(50), mirTarBase (51) and miRDB (52).

Proliferation Study by Lactate
Dehydrogenase Assay
The LDH (Lactate Dehydrogenase) release assay was done as
described (2, 5). For this assay, 5000 cells were seeded in each
May 2022 | Volume 12 | Article 835027
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well of the 96-well plate in triplicates. After 24 h incubation, cells
were induced with 25nM phorbol ester(phorbol 12- myristate
13-acetate; PMA), a known NF-kB activator, for 24h. Treatment
with 50nM of ST08 and 500nM IKK-16 was given to PMA-
induced MDA-MB-231 cells individually and in combination for
48h. IC50 of IKK-16 in MDA-MB-231 was also evaluated using
LDH assay.

Real-time PCR
As described (34), cDNA was synthesized from 1–2 mg RNA
using cDNA synthesis kit from Takara Bio according to the
manufacturer’s instructions. Using StepOnePlus™ real-time
PCR system from Applied Biosystems and iTaq™ Universal
SYBR® Green supermix from Bio-Rad, PCR was set with miR-
708a, RELB, MMP1 primers. The sequences for the primers are
provided in Supplementary Figure 5. The relative level of the
target gene from each sample was determined by normalizing it
to U6 for miR-708a and GAPDH for MMP1, RELB. All
experiments were done in triplicates and repeated at least twice
to duplicate results.
RESULTS

ST08 Treatment Leads to G2/M Arrest in
MCF7 and Induction of Apoptosis
We have previously reported IC50 of ST08 on MCF7 as 121nM
and MDA-MB-231 as 54nM [5]. Flow cytometry analysis was
performed to check whether the decrease in cell proliferation was
due to cell cycle arrest. MCF7 and MDA-MB-231 cells were
treated with increasing concentration of ST08 (20, 40, 80, 100,
120 and 150nM) for 48 h. Both cell lines showed a comparable
increase in the G1, sub-G1 population at 40nM ST08; whereas
MCF-7 cells showed an increase in G2/M with increasing
concentration of ST08 (Figures 1A, B). The increase in the
sub-G1 population in a concentration-dependent manner upon
ST08 treatment indicated cell death. To find out the mechanism
by which cells underwent cell death, we performed Annexin-
FITC/PI double staining. MCF7 cells, like MDA-MB-231 (5),
exhibited an increase in apoptotic cell population in a dose-
dependent manner upon ST08 treatment (Figure 1C). A
negligible population of necrotic cells was observed, suggesting
ST08 induced cell death via apoptosis.

ST08 Disrupts the Mitochondrial
Membrane Potential
JC1, a cationic dye, accumulates in the mitochondria, forming
aggregates exhibiting red fluorescence in healthy cells. In
apoptotic cells, the mitochondrial membrane is leaky, JC1
cannot form aggregates, and exhibits green fluorescence (53).
To check whether a change in mitochondrial membrane
potential mediated the apoptotic cell death, JC-1 staining was
performed. The flow cytometry analysis (Figures 2A, B) showed
an increase in the green population upon ST08 treatment in both
the cell lines in a dose and time-dependent manner
(Supplementary Figure 1), indicating mitochondrial damage.
Frontiers in Oncology | www.frontiersin.org 5
No damage to mitochondria was observed in vehicle control. As
observed in cell cycle analysis, the effects are similar at equitoxic
concentrations in the two cell lines. Thus, the in vitro results
suggest that ST08 induces apoptosis by altering mitochondrial
membrane potential.

ST08 Induces Intrinsic Pathway
of Apoptosis
The mechanism of mitochondrial-mediated apoptosis upon
ST08 treatment was unveiled by performing immunoblotting.
The loss of mitochondrial membrane potential is a characteristic
of the intrinsic apoptotic pathway (54, 55). The concentration-
dependent increase in the intrinsic pathway proteins like Apaf1,
Caspase 9, Caspase 3, cleavage of PARP, Bax, and cytochrome c
(Figures 2C, D) was observed in MCF7 breast cancer cells. A
similar profile was observed for MDA-MB-231 cells (5). Thus,
ST08 induced apoptosis via the intrinsic apoptotic pathway.
Further, we investigated the impact of ST08 on mouse breast
cancer models.

ST08 Induces Tumor Regression in an
EAC Mice Tumor Allograft Model for
Breast Cancer
The impact of ST08 in vivo was studied using EAC mice tumor
allografts. EAC tumor-induced mice were segregated into two
groups (Control, ST08 treatment group) with n=5 animals. Ten
doses of ST08 (20mg/kg body weight) were given intraperitoneally
every alternate day in the treatment group. Throughout the
experiment, body weight and tumor size were monitored. A
significant reduction in the tumor size was observed after ST08
treatment compared to control (Figure 3A). Drug toxicity related
to weight loss was monitored by measuring the weight of all the
experimental animals. No significant decrease in body weight was
observed after the ST08 treatment (Figure 3B). Hematoxylin-
Eosin staining of the sections from ST08 treated tumors showed a
significant reduction in the purple-stained nuclei compared to the
control tumor, indicating a reduction in proliferating cells
(Figure 3C). A large number of proliferating cells in control
tumors were observed compared to treated tumors. Also, the
cells in the treated tumor tissue showed the presence of fragmented
nuclei, indicating apoptosis. To check whether ST08 treatment led
to systemic toxicity, both blood and serum were collected for
analysis. Serum levels of AST, ALT, and BUN showed no
significant difference between the treated and control groups
indicating no adverse effects on liver and kidney functions
(Figure 3D). The hematological parameters, like RBCs and
WBCs, were also counted. RBCs levels were maintained,
whereas an increase in WBCs was observed (Figure 3E). To test
whether any morphological and cellular changes were observed in
the liver, spleen, and kidney tissue, sections were stained with
Haemotoxylin and Eosin. No morphological or cellular changes
were observed in the control vs. treated group, indicating no
noticeable hepatotoxicity or renal toxicity (Figure 3C). Thus, ST08
did not induce any histopathological changes in the animals,
indicating no adverse side effects, although a slight increase in
WBCs was observed.
May 2022 | Volume 12 | Article 835027
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ST08 Activates the Intrinsic Apoptotic
Pathway in vivo
To delineate the mechanism of cell death in vivo, immunoblotting
for apoptotic markers was performed. Western blot analysis of
protein from treated and untreated tumor tissues was performed.
Intrinsic apoptotic markers like Apaf1, Bax, Caspase 3, Caspase 9,
PARP, and cytochrome c (proapoptotic) were assessed. All the
markers showed a significant increase in their levels except Bcl2
(antiapoptotic), significantly downregulated (Figures 3F, G). Also,
Frontiers in Oncology | www.frontiersin.org 6
p53, the genome’s guardian and a known tumor suppressor,
showed elevated levels in the ST08 treated tissue. All the
experiments show that ST08 activates the intrinsic apoptotic
pathway in vivo.

ST08 in Combination With Cisplatin
Exhibits Synergistic Cytotoxic Effect
In the clinic, drugs like Cisplatin, Olaparib, Doxorubicin are used
for treatment. Cisplatin is also known for drug resistance (56),
A

B

C

FIGURE 1 | Evaluation of cell cycle progression and cell death modality in breast cancer cells after ST08 treatment: Cell cycle profile (A) of 48h ST08 treated MCF7, MDA-
MB-231 cells and Quantification of percentage (B) of MCF7 and MDA-MB-231 cells in each phase of the cell cycle is depicted as a bar graph of mean ± SEM after 48h
treatment of ST08. Each experiment was repeated three times and represented as histograms. Two-way ANOVA test was performed and p-value was calculated between
control and ST08 treated groups (*p < 0.05, **p < 0.005, ***p < 0.0001. (C) Phosphatidylserine externalisation assay was performed on MCF7 cells after ST08 treatment. Dot
plot depicting MCF7 cells treated with ST08 (20,60,100,120nM) for 48h followed by double staining with Annexin-FITC/PIand quantification of cells in different stages. Each
experiment was repeated thrice. Two-way ANOVA test was performed and p value was calculated between control and ST08 treated groups (*p < 0.05, **p < 0.005, ***p <
0.0001, ns, not significant).
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FIGURE 2 | Evaluation of mitochondrial membrane potential(MMP) changes induced in breast cancer cells by JC-1 staining and Assessment of apoptotic protein markers in
breast cancer cells treated with ST08: Dot plot depicting 48h treated MCF7, MDA-MB-231 cells by ST08 subjected to JC-1 staining (A). Quantification of high and low MMP
(B) depicted as a bar graph after 48h treatment of ST08 on MCF7, MDA-MB-231 cells. Each experiment was repeated three times and represented as histograms. Two-way
ANOVA test was performed and p-value was calculated between control and ST08 treated groups (*p < 0.05, **p < 0.005, ***p < 0.0001). Western blot analysis of apoptotic
markers was done on ST08 treated MCF7 (C) and MDA-MB-231 (D) cell lysates. Each experiment was done in duplicates, and a representative image is shown for each
marker. Quantification was done for each marker and is represented as a bar graph of mean +/- SEM. One sample t-test and one way ANOVA test was performed, and the
p-value was calculated between control and ST08 treated groups (*: p-value < 0.05, **: p-value < 0.005).
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FIGURE 3 | Evaluation of the effect of ST08 on tumour growth: EAC cells (1 x 106 cells/animal) were injected to induce solid tumours. After the 7th day of injection, i.p injection
with ST08 (20mg/kg bd.wt) was started every alternate day throughout the experiment. (A) % Tumour volume reduction after ST08 treatment. (B) Body weight of animals at
the end of the study. (C) Histopathological analysis of tumour and organs after ST08 treatment. At the end of the study, tumour tissue and organs were collected and used for
histological analysis—representative images of H&E stained sections at 20X magnification of (a) control tumour, (e) ST08 treated tumour (b) control liver, (f) ST08 treated liver (c)
control spleen, (g) ST08 treated Spleen (d) control kidney, (h) ST08 treated kidney. (D) Blood ALT, AST, Urease test results are plotted as bar graphs. Blood was collected at
the end of the study. (E) WBC and RBC counts of experimental animals are plotted as bar graphs. (F) Effect of ST08 on the expression of apoptotic proteins in the tumour
tissue of experimental animals. Tissue lysates were prepared from the dissected tumour samples of post treatments. 40 µg of protein was loaded in SDS-PAGE and checked
for apoptotic protein expression by western blotting. (G) Quantification was done for each marker and is represented as a bar graph of mean +/- SEM. One sample t-test was
performed, and the p-value was calculated between control and ST08 treated groups (*: p-value < 0.05, **: p-value < 0.005, ***: p-value < 0.001, ns, not significant).
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nephrotoxicity (57–59), Olaparib is associated with hematologic
toxicity (60, 61), whereas Doxorubicin is associated with
cardiotoxicity (62, 63). We screened all three drugs to check
whether ST08 sensitizes the breast cancer cells to their lower
dose. IC50 values for each drug on MDA-MB-231, MCF7 cell
proliferation were calculated (Table 2, Figure 4A and
Supplementary Figures 2, 3). For combinatorial analysis,
various concentrations of each drug were used to inhibit cell
proliferation (Supplementary Table 1). The combination index
for MDA-MB-231and MCF7 was calculated using the Chou-
Talalay plot (38, 39) for each drug combination as shown in
Table 3 and Supplementary Figures 2, 3. Cisplatin showed a
synergistic effect with ST08 in both cell lines in a similar
concentration range (Figure 4B). 30nM ST08+2.5µM Cisplatin
for MDA-MB-231 cells and 60nM of ST08+2µM of Cisplatin for
MCF7 cells showed inhibition of cell proliferation compared to
either drug alone. Similarly, 20nM ST08+1µM Olaparib for
MDA-MB-231 cells and 40nM of ST08+5µM of Olaparib for
MCF7 cells showed inhibition of cell proliferation compared to
either drug alone, whereas 20nM ST08+0.5µM Doxorubicin for
MDA-MB-231 cells and 40nM of ST08+10µM Doxorubicin for
MCF7 cells showed inhibition of cell proliferation compared to
either drug alone. It is important to note that the concentrations
used for combination analysis were lower than their respective
IC50 values in cell lines. Thus, ST08 can potentiate the effect of
Cisplatin, Olaparib, and Doxorubicin by reducing its effective
concentration by ~3-fold in both the cell lines.

ST08 Combination With Cisplatin Reduces
Tumor Growth Significantly in an EAC
Mice Tumor Allograft Models for
Breast Cancer
After performing in vitro combination treatment experiments, in
vivo studies were performed. As described (2), once the tumor was
developed ~200mm3, the intraperitoneal alternate drug treatment
of 10 doses was initiated. Animals were segregated into 4 groups
(each group n=5; control, ST08 20mg/kg bd wt, Cisplatin 1mg/kg
bd wt, ST08 (10mg/kg bd wt)+Cisplatin (1mg/kg bd wt).
Bodyweight and tumor volumes were monitored throughout the
experimental time. It can be seen that the combination treatment
gave the best tumor reduction rather than individual drugs in
comparison to the untreated control group (Figure 4C). Also,
there was no significant change in the body weights of all the
groups (Figure 4D), indicating no major side effects.

Combination Treatment Induces Minimal
Side Effects With the Least Toxicity
Although no change in body weight was observed, to check if the
drug had any adverse effect on the liver and kidney, Serum ALT,
Frontiers in Oncology | www.frontiersin.org 9
AST, and BUN assays were performed. As shown in Figures 4E-
G, ALT, AST, and BUN levels were within the normal range in all
the treatment groups, indicating that ST08 can be used with
cisplatin for combination therapy resulting in tumor reduction,
minimal side effects, and least toxicity.

Although the drugs show promising results in animal models,
only a few make it to the clinic. Before taking the drug to the
clinic, it would be necessary to check if it can induce global
cellular changes leading to toxicity or drug resistance. One of the
most widely used tools to investigate drug effects is by measuring
changes in the expression of genes using RNA-seq. We have
performed miRNA and RNA seq of control and ST08.

Transcriptomic Analysis of Breast
Cancer Cells Upon ST08 Treatment
Using RNA-seq
Differential gene expression analysis was performed with MDA-
MB-231 breast cancer cells treated with 75 nM ST08 for 48h. The
gene expression profiling was performed using RNA-seq. The
data used for analysis is from three biological replicates. More
than 20 million reads were generated, with ~80-83% alignment
for all the RNA-seq data using the reference genome(hg38)
(Supplementary Table 2 and Supplementary Figures 4 A, B).
A total of 461 genes in MDA-MB-231 were differentially
expressed(DE) (Log2 Fold Change > 0.75, P-value < 0.05), of
which 42.82% were upregulated, and 57.18% were
downregulated (Supplementary Figure 5).

Further, to analyze the pathways which were altered, DE genes
were subjected to pathway analysis. The pathways altered by ST08
related to immune response were ER-Phagosome pathway, Antigen
processing-Cross presentation Interferon gamma signaling,
Endosomal/Vacuolar pathway, Antigen Presentation: Folding,
assembly and peptide loading of class I MHC pathways. In addition,
the chromatin modifiers HDACs pathway, ECM degradation, and
Collagen degradation were also enriched (Figure 5A).

Since cancer is driven by an imbalance of oncogene and
tumor suppressor gene(TSG) expression, we analyzed the
significant DE genes for TSGs and oncogenes. For TSGs, we
used the TSG database (64)and selected TSGs associated with
breast invasive carcinoma samples, and for oncogenes, we used
the Oncogene database (65). 589 TSGs were found in the TSG
database for breast adenocarcinoma (BRCA) and 803 oncogenes
in the Oncogene database. The percentage of upregulated TSGs
and downregulated oncogenes were calculated using the
significant DE genes. 50% TSGs were upregulated in MDA-
MB-231 cells upon ST08 treatment, whereas 40-46% oncogenes
were downregulated. Heatmaps were plotted for these TSGs and
oncogenes, indicating the regulation of DE TSGs and oncogenes
after ST08 treatment in MDA-MB-231 cells (Figure 5B).
TABLE 2 | IC50 values for Cisplatin, Olaparib, and Doxorubicin in MDA-MB-231, MCF7 cells.

Drug IC59 for MDA-MB-231 (mM) IC50 for MCF7 (mM)

Cisplatin 15.91 8.73
Olaprib 11 11.34
Doxorubicin 0.7 8.8
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TABLE 3 | Combination index(CI) for different drug combinations in MDA-MB-231, MCF7 cells.

ST08+Drug CI for MDA-MB-231 CI for MCF7

Cisplatin Synerism (30nM ST08+2.5 mM) Synergism (60nM ST08+ 2mM)
Olaprib Synerism (20nM ST08+1mM) Synergism (40nM ST08+5 mM)
Doxorubicin Additive (20nM ST08+0.5mM) Additive (40nM ST08+10 mM)
Frontiers in Oncology | www.frontiersin.org
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FIGURE 4 | Drug combination study in vitro and in vivo: Bar graph depicting cell viability upon Cisplatin (A) and Combination(ST08+Cisplatin) treatment (B) of 48h on breast
cancer cell lines as tested by MTT assay. Experiments were performed a minimum of three times, and the bar graph shows mean ± SEM. Two-way ANOVA test was
performed and p-value was calculated between control and treated groups (*p < 0.05, **p < 0.005, ***p < 0.0001). EAC cells (1 x 106 cells/animal) were injected to induce
solid tumours. After the 7th day of injection, i.p injection with ST08 (10mg/kg bd.wt), Cisplatin(1mg/kg bd.wt), and ST08+Cisplatin was started every alternate day throughout
the experiment period. (C) % Tumour volume reduction after ST08, Cisplatin, ST08+Cisplatin treatment. (D) Body weight of animals at the end of the study. Blood ALT (E),
AST (F), Urease (G) test results are plotted as bar graphs. Blood was collected at the end of the study.
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miRNA-seq Analysis of Breast Cancer
Cells Upon ST08 Treatment
The MDA-MB-231 cells were treated with ST08 as mentioned
above, and miRNA-seq was performed. Around 23 million reads
were obtained from biological replicates. 82-97% alignment was
achieved with processed reads using the reference genome(hg38)
(Supplementary Table 2 and Supplementary Figures 4C, D).
Differentially expressed (DE) miRNAs (Log2 Fold Change >
0.75, P-value < 0.05) upon ST08 treatment were identified
(Supplementary Figure 6).

Similar to RNA-seq, a tumor suppressor and oncomiR analysis
were performed for DE miRNAs. A validated list of 39 TS miRs
and 17 oncomiRs specific for breast cancer was adapted from (34)
(Supplementary Table 3). Among them, 35% TS miRNAs (miR-
543, miR-26a, miR-708, miR-26b, miR-340,miR-204,miR-296)
were upregulated and 21% of oncogenic miRNAs (miR-135b,
miR-203,miR-21,miR-24) were downregulated in MDA-MB-231
cells treated with ST08 (Supplementary File 2- List of DE
miRNAs after ST08 treatment). Interestingly, miR-129-2-3p
(66, 67), hsa-miR-223 (68), and miR-372-3p (69), which inhibit
proliferation and biological behavior of TNBC cells, were
significantly upregulated. We also analyzed miRs that regulate
drug resistance in breast cancer (70) miRs like miR-125b, miR-
663, miR-221, and miR-203 were downregulated in MDA-MB-
231 cells upon drug treatment.

Integrated mRNA-miRNA Seq Analysis of
Breast Cancer Cells Upon ST08 Treatment
We have established an effective pipeline for analyzing the whole
transcriptome data. The flowchart (Figure 6A) gives the details of
the software used at each step. The DE miRNAs with log fold
Frontiers in Oncology | www.frontiersin.org 11
change > 1 and mRNA DE genes with log fold change > 1.5, P-
value < 0.05 were given as input for miRTarVis (45, 46)
miRTarVis returned inversely related pairs of miRNA-mRNA,
which was used as input for miRmapper. Using miRmapper, we
obtained the list of miRNAs that regulated the maximum number
of DE genes. A total of 76 miRNAs from MDA-MB-231 were
obtained as output which regulated the DE mRNAs. The top 40
miRNAs have been represented as bar graphs (Figure 6B). As
shown in Figures 6A, B, it can be seen that hsa-miR-340-3p
interacts with a maximum of 2.85% DE genes in MDA-MB-231
treated with ST08. We subjected the output of miRmapper to
pathway analysis using MIENTURNET. The pathways enriched
in ST08 treated MDA-MB-231 were metabolic pathways, signal
transduction, immune system, metabolism of proteins, post-
translational protein modification.

miRNA-mRNA Network Analysis
We built a miRNA-mRNA network for uniquely regulated
pathways by ST08. As observed, ST08 altered miRNA and
mRNA expression, some of which may be regulated by
miRNA. One of the pathways of importance identified was
Extracellular matrix related pathways; this coincided with our
previous observation, migrastatic properties of ST08 in MDA-
MB-231 cells. 23 unique genes were enriched in Extracellular
matrix related pathways of MDA-MB-231. 23 ECM genes and
DE miRNA were given as input for miRTarvis. miRtarvis
generated a miRNA-mRNA network of 106 interactions for
MDA-MB-231 (Figure 6C).

To understand the alteration in ECM genes in the context of
its normal vs. tumour expression in patient samples, we checked
the expression of ECM genes in breast normal and tumor
A B

FIGURE 5 | Transcriptome profile of breast cancer cells upon ST08 treatment: (A) Pathways regulated in MDA-MB-231 TNBC cells upon ST08 treatment.
(B) Heatmap of DE tumor suppressor and oncogenes genes in MDA-MB-231upon ST08 treatment.
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samples using GEPIA (Figure 6D). Interestingly, the ECM genes
upregulated in patient tumor samples were downregulated in
ST08 treated cells and vice-versa. Alterations in ECM are known
to promote cancer metastasis (71, 72), and MDA-MB-231 is a
model cell line to study breast cancer metastasis (2, 5). Most of
the genes in the network restored normal expression (compared
to the tumor) after ST08 treatment, indicating one of the
mechanisms by which ST08 controls cell proliferation and
migration. For example, MDA-MB-231 cells treated with ST08
showed upregulation of genes like DCN and ADAMTS1 and
downregulation of CSTV and FN1, indicating restored normal
expression as in normal breast tissues and favorable outcome
(Figure 6D). Some of the changes in gene expression upon ST08
can be attributed to an alteration in miRNA. As shown in
Figure 6C, Bioinformatic analysis identified miR-15a, miR-
181, miR-497, miR-4262, miR-424, miR-503 that have binding
sites in 3’UTR of ADAMTS1, downregulated in MDA-MB-231
after ST08 treatment, and ADAMTS1, a tumor suppressor
upregulated. Similarly, ASPN, a tumor suppressor, is
upregulated, and miRNA targeting is downregulated. On the
contrary, we observe upregulated oncogene like COL1A1,
COL3A1, and downregulated miRNA, which did not correlate
Frontiers in Oncology | www.frontiersin.org 12
with downregulated collagen in vivo in treated tumour samples
(data not shown).

To validate the results obtained frommiRNA-mRNA analysis
in breast cancer cells, we selected the NF-kB pathway, as it is
known to be overexpressed in breast tumour samples (73) and
TNBC has high NF-kB compared to ER+ve cancers (74). We
validated NF-kB and its targets in TNBC cell line MDA-
MB231 cells.

ST08 Targets NF-kB in Breast Cancer Cells
Integrated miRNA-mRNA analysis of ST08 treated MDA-MB-
231 returned top pathways as altered ECM and metabolism. All
the previous analysis of NF-kB was based on protein expression.
We also had observed downregulation of NF-kB (RElA-p 65) at
the protein level. Therefore, we checked for NF-kB levels at the
transcript. No significant change was observed at the transcript
level (Figure 7E and Supplementary Figure 7). In contrast, a
significant decrease in protein level was observed at a 75nM
concentration of ST08 (Figures 7A, B), suggesting regulation of
translation of NF-kB mRNA. We also checked for the expression
levels of the p50 subunit of NF-kBby RT-PCR. RNA-seq and RT-
PCR showed p50 upregulation in ST08 treated MDA-MB231
A
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D

FIGURE 6 | Integrated analysis of miRNA-mRNA and Network analysis: (A) Flowchart showing the integration of miRNA-mRNA seq data. (B) DE expressed miRNA-
mRNA data from MDA-MB-231 cells after ST08 treatment was integrated using miRmapper. (C) miRNA-mRNA network for ECM organization and degradation,
regulated by ST08 in MDA-MB-231 cells. (D) Drug-induced changes were either upregulated/downregulated for expression in the tumour and reverted to normal
expression post ST08 treatment.
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(Supplementary Figure 7). One of the known translation
regulators is miRNA. To identify miRs against NF-kB, we
utilized TargetScan (75). We identified several miRNAs against
the NF-kB pathway, differentially expressed in ST08 treated
samples. One of the miRs, miR-708a-5p, was significantly
upregulated and may regulate NF-kB. We also obtained
differentially expressed transcription factors that can bind to
the promoter of the miRNA and regulate gene expression. We
found that TFs like ZNF843, ZNF143, EGR2 were upregulated
(Figure 7F), and they most probably regulated miR-708-
5p expression.
Frontiers in Oncology | www.frontiersin.org 13
To understand the regulation of NF-kB and its regulators by
miRNA, we manually introduced the differentially expressed
miRNA to the known NF-kB pathway (76). It is very well
known that NF-kB is bound to IKb, and IKK guides IKb
phosphorylation/ubiquitination (77), leading to NF-kB entry to
the nucleus. Therefore, we cataloged miRNAs that regulate IKK
and IKb using miRNA-seq data (Supplementary File 2-DE
miRNAs in MDA-MB-231 upon ST08 treatment). miR-215-5p
was upregulated upon ST08 treatment, which might block
TRAF6/IRAK1/MyD88 and, therefore, no phosphorylation of its
downstream target IKKa. Similarly, miR-26a/b can bind to the
A B
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D E
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F

FIGURE 7 | NF-kBregulation in MDA-MB-231 cells upon ST08 treatment: (A) Western blot analysis NF-kB protein and its targets was done on ST08 treated MDA-
MB-231 cell lysates. Each experiment was done in duplicates, and a representative image is shown for each marker. Quantification was done for each marker (B)
and is represented as a bar graph of mean +/- SEM. One sample t-test and one way ANOVA test was performed, and the p-value was calculated between control,
and ST08 treated groups (*: p-value < 0.05, **: p-value < 0.005). (C) ST08 induced upregulation of miRs like miR-215-5p,miR-26a/b,miR-451a/b,miR-199a,miR-
708a-5p and miR-514a-3p which directly or indirectly inhibited NF-kB. Whereas miRs like miR-20a, miR-668, miR-30e, miR-210-3p were downregulated, which
upregulated IKB, SOCS1, and indirectly downregulated NF-kB.Bar graph depicting log2 Fold change of miRNA (D) and mRNA (E) involved in NF-kB pathway.
(F) miRNA-mRNA regulatory network of NF-kB pathway upon ST08 treatment in MDA-MB-231 cells. ST08 regulates TFs like ZNF843, ZNF143, and EGF3 to
regulate the expression of miR-708a-5p. miR-708a-5p,miR-514a-3p regulates NF-kB. ST08 also regulates expression of other miRs like miR-411-3p,miR-26b-3p/
5p, miR-205-5p,let-7f-5p, miR-576-5p, miR-148b-3p,miR-125a-5p and miR-202-5p. These miRs regulate the expression of their targets, as shown in the network.
(G) Effect of ST08 and IKK-16 on PMA-induced proliferation in MDA-MB-231 cells as tested by LDH assay. (H) Bar graph depicting cell viability upon IKK-16
treatment for 48h on MDA-MB-231 breast cancer cell line as tested by LDH assay. Experiments were performed a minimum of three times, and the bar graph
shows mean ± SEM. One-way ANOVA test was performed and p-value was calculated between control and treated groups (*p < 0.05, **p < 0.005, ***p < 0.0001,
ns, not significant).
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3’UTR of TAB1 and downregulate/degrade the RNA, leading to
the absence of activity of IKKb. miR-451a/b,miR-199a, which can
also bind to 3’UTR of IKKb, were downregulated, and miR-708a-
5p andmiR-514a-3p that have the binding site in 3’UTR of NF-kB
were upregulated in MDA-MB-231 cells treated with ST08. The
levels of miR-20a, miR-668, miR-30e that target IKBa/b and miR-
210-3p, which can bind to 3’UTR of SOCS1, were downregulated
SOCS1 was upregulated, which blocks IKb phosphorylation in
MDA-MB-231 cells treated with ST08 (Figure 7C). ST08 induced
downregulation of NF-kB protein can be attributed to alterations
in the miRNA levels, targeting different genes in the NF-kB
pathway. (Figures 7C–E).

Integrated miRNA and mRNA analysis of the NF-kB pathway
of MDA-MB231 cells treated with ST08 suggested that ST08
altered miRNA to regulate the NF-kB pathway. Since NF-kB
was downregulated, we checked for the downstream targets of NF-
kB in the DE gene list. We obtained the NKFB target, which
consists of 1667 distinct genes (20). Out of these, 31 targets were
found differentially expressed in the MDA-MB-231 gene list upon
ST08 treatment. Oncogenic NF-kB targets like PTGS2 (78),
CCL28 (79), IL1A (80), FN1 (81),ASPH (82), ST6GAL1 (83),
IL1B (84), MMP1 (2, 85), PTX3 (86–89), Bcl2 (90, 91) were
significantly downregulated in TNBC MDA-MB-231 cells upon
ST08 treatment. One of the targets in this list was MMP2;
however, mRNA levels of MMP2 were significantly upregulated
(Supplementary File 1-DE mRNAs in MDA-MB-231 upon
ST08 treatment). Our previous study showed that ST08 inhibits
migration (5), and hence we checked protein levels. Western
blotting with MMP2 showed significant downregulation of
protein (Figures 7A, B). Interestingly, hsa-miR-708a-5p also
targets MMP2 (92, 93), suggesting miRNA mediated translation
inhibition of MMP2 protein. We also validated the expression of
hsa-miR-708a-5p upregulation in treated cells by RT-PCR
(Supplementary Figure 5).

We also validated some of the DE genes downstream of NF-
kB (20) like MMP1, PTX3, Bcl2, and Bax. We have previously
shown downregulation of MMP1 protein in MDA-MB231 cells
(5). We show here by RT-PCR of MMP1 (Supplementary
Figure 7C) its downregulation and by western blotting PTX3,
Bcl2 (Figure 2D) downregulation, whereas Bax (Figure 2D)
upregulation upon ST08 treatment.

We have generated an interaction network for the NF-kB
pathway involving miRNA-mRNA and proteins regulated by
ST08 in MDA-MB-231 cells (Figure 7D). The protein-protein
interaction network was generated using the STRING database
(49), andmiRNAsandTFsweremanually added to thenetwork.All
the targets ofNF-kB except Baxwere downregulated in our dataset.
One of the mechanisms by which ST08 could have downregulated
gene expression of the downstream NF-kB genes is via regulating
miRNA. Therefore we also checked for miRNAs against targets of
NF-kB.We found significant differentially expressed miRNAs that
were upregulated and respective genes downregulated (Figure 7F),
suggesting ST08 mediated cell proliferation and migration
inhibition by altering both miRNA and mRNA.

To further establish that ST08 mediated its anticancer activity
via NF-kB, we designed a proliferation assay with a known
Frontiers in Oncology | www.frontiersin.org 14
activator (phorbol 12- myristate 13-acetate; PMA) and inhibitor
(IKK-16) of NF-kB. Activation of the NF-kB pathway by phorbol
ester(phorbol 12- myristate 13-acetate;PMA) is very well
documented (94–96). PMA activates protein kinase C (PKC)
isozymes by binding to diacylglycerol (DAG) receptor sites in the
N-terminus of these proteins, which lead to the activation of NF-
kB, a major transcription factor (97). We evaluated the
antiproliferative potential of ST08 on PMA-induced invasion
of MDA-MB-231 cells. 48h treatment of 50nM ST08 on PMA-
induced (25nM, 24h) MDA-MB-231 cells led to a significant
reduction in cell viability (Figure 7G). We used IKK-16, a known
NF-kB inhibitor (98, 99), as a positive control for comparing
ST08’s potential for inhibiting NF-kB. The IC50 of IKK-16 for
MDA-MB-231 was evaluated as 480 nM after 48h treatment
(Figure 7H). 500nM IKK-16 was added to PMA-induced
(25nM,24h) MDA-MB-231 cells which led to a reduction in
cell viability comparable to ST08 (Figure 7H). We further used a
combination of ST08 and IKK-16 to check its effect on PMA-
induced proliferation. No significant difference in inhibition was
observed between IKK-16 and ST08 vs. IKK-16 alone, indicating
that ST08 mediated inhibition of proliferation via the NF-kB
pathway, further establishing that one of the pathways altered by
ST08 is the NF-kB pathway.
DISCUSSION

In the present study, we have elucidated the cell death mechanism
induced by ST08, a previously reported curcumin derivative.
Interestingly, integrated miRNA –mRNA analysis revealed ST08
mediated regulation of NFKB and its downstream targets.
Importantly, we observed that ST08 (20mg/kg b.wt) reduced
tumor burden in EAC mice tumor models. In combination with
cisplatin (1mg/kg b.wt), ST08(10mg/kg b.wt) showeddrastic tumor
reduction inmice models with no apparent liver and renal toxicity.
Additionally, integrated transcriptome(miRNA-mRNA) analysis
revealed mRNA and miRNA players in ECM regulation in MDA-
MB-231 cells.

Breast cancer is known for its multifactorial and aggressive
nature in advanced stages. Due to the high metastatic rate,
multidrug resistance, and relapse, newer drugs are being
explored. However, chemotherapy drugs must show
effectiveness with the least possible organ toxicity and side
effects. Thus, plant-based therapeutics have been explored.
Curcumin is a plant-based therapeutic with multitudinal effects
reported in various diseases, including cancer. However, multiple
limitations of curcumin hinder its usage, and thus, several
curcumin derivatives have been explored. However, only the
ST series derivatives viz ST03 (5), ST06 (100), ST08 (5), and ST09
(2) have shown their potency in the nanomolar range. All the
members of this series have exhibited their potential to inhibit
tumor growth with negligible organ toxicity and side effects.

A drug can induce cell death in multiple ways- apoptosis
being the most vital. The two major apoptotic pathways are
intrinsic(mitochondrial-mediated) and extrinsic(death receptor-
mediated) (5, 101). ST08 induced an intrinsic apoptotic pathway.
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We have previously reported that ST08 induces cytotoxicity in
the MDA-MB-231 breast cancer cell line (5). This study shows
that ST08 altered mitochondrial membrane potential and
activation of Caspase 9 and Caspase 3 to induce cell death
invitro. Also, ST08 reduced tumor burden in mouse EAC
model by activation of Caspase 3 protein and apoptosis.

To develop a chemotherapeutic drug with potent anticancer
activity, the drug must exhibit negligible organ toxicity and
minimal side effects. ST08, like ST09 (2), showed minimal
toxicity related to body weight, minimal organ toxicity in liver,
kidney, and spleen, and reduced the number of proliferating cells
in tumor tissue.

ST08, a curcumin derivative, synergizes with cisplatin,
reduces the effective dose of cisplatin, and reduces tumor
burden. The in vivo effect of the drug might be synergistic or
additive and needs further evaluation. Cisplatin, an alkylating
agent, is well known for nephrotoxicity (57, 59), and drug
resistance (102) limits its usage. Cisplatin is also known to
induce apoptosis in MCF7, MDA-MB-231 cells (103–105). In
this context, the parent compound curcumin sensitized breast
cancer cells to cisplatin (106, 107). Thus, a combination of ST08
and low dose cisplatin might be an effective strategy for inducing
apoptosis in cancer cells.

ST08 induced changes in the gene expression were evaluated
using RNA and miRNA sequencing. ST08 treated MDA-MB-231
cells showed upregulation of TSG like GPX3, OSGIN1, CLU,
CDH13. GPX3, a ROS regulator, is a known TSG in breast cancer
(108). Docosahexaenoic acid-induced cell death in Breast cancer
cells by upregulating OSGIN1 expression via PI3K/Akt/Nrf2
signaling pathway (109). CDH13 is a known tumor suppressor
gene, and its promoter is methylated in breast cancer patients
(110, 111) and other cancers as well (112, 113). ST08 induced the
expression of CDH13. ST08 treatment led to downregulation of
oncogenes like UACA, PDE4D, HMGN5. HMGN5 promotes the
proliferation and invasion of breast cancer cells, and its
knockdown increases apoptosis in breast cancer cells (114).
PDE4D overexpression induces colony formation, cell
proliferation, and anchorage−independent growth in colorectal
cancer cells (115). In breast cancer patients treated with
tamoxifen, PDE4D overexpression is associated with worse
survival. In addition, PDE4D is known to inhibit cAMP/ER
stress/p38-JNK signaling and apoptosis in tamoxifen-resistant
ER-positive Breast Cancer cells (116). UACA is an oncogene
known to induce apoptosis resistance in cancer (117). UACA
expression is regulated by p53 activation and/or inhibition of
NF-kB activity (118). Coincidently, ST08 upregulated p53 and
downregulated NF-kB.

ST08 regulated miRNA levels in MDA-MB-231 cells miR-668
is crucial in breast cancer’s radiosensitivity and regulates IkBa, a
tumor-suppressor, and an NF-kB inhibitor (119). miR-668
downregulation in breast cancer cells by ST08 might restore
radiosensitivity. miR-19b-3p regulates PIK3CA and could
reverse saracatinib resistance in saracatinib-resistant breast
cancer cells. ST08 upregulated miR-19b-3p expression in breast
cancer cells, making them targetable by drugs like saracatinib,
reinstating the potential of ST08 as a good candidate for
Frontiers in Oncology | www.frontiersin.org 15
combination therapy. On the other hand,miR-155-5p is known
for its oncogenic role in breast cancer (120–122) and was
upregulated in MDA-MB-231 cells upon ST08 treatment. miR-
155 upregulation has been utilized in predicting response to
PARP1 inhibitors in the clinical setting (123). ST08 in
combination with PARP1 inhibitor might overcome any
resistance to ST08 due to elevated miR-155.

We built a miRNA-mRNA network of pathways for
understanding gene regulation by miRNAs. miRNA-mRNA data
integration using miRmapper showed that miR-340 regulates
2.85% DE genes in MDA-MB-231 cells. miR-340 is a known TS
miR in breast cancer and regulates metastasis in TNBC cells by
inhibiting EZH2. We got an intricate network for ECM regulation
in MDA-MB-231. GEPIA analysis of the genes in the network
helped analyze the expression of genes in tumor samples
compared to normal samples. ST08 restored the expression of
FN1, CTSV, DCN, ADAMTS1 in MDA-MB-231 cells. Decorin
(DCN) is representative of small leucine-rich proteoglycans
(SLRPs) in the extracellular matrix (ECM). DCN upregulation
can predict a good prognosis in breast cancer patients (124, 125).
ADAMTS1 downregulation can stimulate migration and invasion
in breast tumors (126). ST08 restored normal expression of
ADAMTS1 most probably by downregulating miRs, miR-181
(127) and miR-4262 (128), targeting ADAMTS1 in TNBC cells.

We found that ST08 regulates miRNA to control the
expression of target mRNA both at transcriptional and
translational levels. Pathway enrichment analysis of integrated
data showed enrichment of translational block, which can be
attributed to ST08 induced miRNA regulation. miR-708-5p is a
tumor suppressor known to regulate NF-kB subunit p-65, the
master regulator of an array of genes (20) and MMP2.
Additionally, PTX3 is exclusively expressed in basal-like breast
cancer via PI3K-AKT- NF-kB signaling and promotes stem-cell-
like traits (86–89). ST08 mediated downregulation of PTX3 at
protein levels could be attributed to low NF-kB and miR-26b-3p
expression. Similarly, MMP1, MMP2, and Bcl2 protein levels were
reduced by ST08 treatment, downstream targets of NF-kB, and
correlated with high levels of let-7f-5p, miR-708-5p, and miR-
125a-5p expression. In contrast, Bax levels were upregulated by
ST08, which correlated with the downregulation of miR-148b-3p.
MMP2 (2, 85) and MMP1 (2, 85) are key players in breast cancer
proliferation, metastasis, and invasion. Whereas, Bax (129, 130)
and Bcl2 (90, 91) regulate apoptosis. Interestingly, the
transcription factors ZNF843, ZNF1, and EGR3, having binding
sites on the promoter of miR-708-5p, were upregulated by ST08.
Thus, ST08 regulates apoptosis, proliferation, metastasis, and
invasion by regulating TFs like NF-kB and its downstream
targets by modulating protein levels through the action of miRs
or downregulation or upregulation of mRNA.

In MDA-MB-231, oncogenic miR-203 was downregulated on
ST08 treatment. miR-203 is also responsible for Cisplatin
resistance via SOCS3 upregulation (131). The observation that
ST08+Cisplatin reduced tumor burden in EACmice tumor model
significantly with least liver and kidney toxicity could be through
modulation of miR-203. Apart from that Tumor suppressor miRs
like miR-26a/b,miR-708, miR-340,miR-204,miR-296,miR-129-2-
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3p, miR-223 and miR-372-3p which play a crucial role in EMT
and cell migration, were upregulated. miR-26a is downregulated in
TNBC cells and tumors. On overexpression, it downregulates the
expression of metadherin (132) and MCL-1 (133). miR-26b
negatively regulated DEPDC1 expression and upregulated
FOXM1 expression (134). miR-708 is another promising
metastasis suppressor for TNBC. Downregulation of miR-708
elevates intracellular Ca2+ levels via neuronatin which promotes
migration (135, 136). Thus, multilayered gold nanoparticles
carrying miR-708 have been synthesized, which reduces lung
metastasis (134, 135). miR-340 is another player in TNBC
which exhibits tumor suppressor activity by inhibiting EZH2
(137). miR-204-5p regulates metastasis by directly controlling
the expression of PIK3CB and downstream PI3K/Akt signaling
activities (138).

ST08 regulated NF-kB levels could be attributed to miRNA
regulation of NF-kB translation. NF-kB is known to be regulated
by miRNAs like miR-506 and miR-520/373 family (139) and via
ubiquitin ligases that regulate the NF-kB degradation pathway
(115, 140). In this study, we found that miR-708a-5p might have
a role in the regulation of NF-kB. Direct targets of NF-kB could
be downregulated due to a decrease in NF-kB levels or by ST08
induced miRNA regulation. NF-kB regulates cancer progression
by controlling cell cycle, apoptosis, survival, migration,
proliferation, cellular metabolism, angiogenesis, therapy
resistance, immunosuppression, metastasis, inflammation, and
epigenetic alterations (77). NF-kB is one of the downstream
targets of curcumin, and its role has been established in
carcinogenesis (22–26).

The integrated analysis of miRNA-mRNA led to the
identification of critical pathways altered in MDA-MB-231 on
ST08 treatment. ST08 altered the NF-kB pathway and
downstream targets and synergized with cisplatin, making it a
promising chemotherapeutic agent.
CONCLUSION

For the first time, we report an integrated miRNA-mRNA
analysis in breast cancer cells upon ST08 treatment, which
revealed NF- kB as one of the targets.ST08 regulated both
upstream and downstream targets of NF-kB. It induced the
intrinsic pathway of apoptosis. This study documents the
pleiotropic effect of ST08 against highly metastatic, recurrent,
and invasive breast cancer by modulating both miRNA and
mRNA. ST08 also sensitized breast cancer cells to cisplatin. ST08
Frontiers in Oncology | www.frontiersin.org 16
alone or in combination can be developed as a potential drug for
cancer therapy.
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