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Abstract 

Background: Crohn’s disease (CD), an inflammatory bowel disease (IBD) subtype, results from pathologic interac-
tions between host cells and its resident gut microbes. CD manifests in both isolated disease locations (ileum or 
colon) or a combination of locations (ileocolonic). To date, a comprehensive understanding of how isolated CD sub-
types influence molecular profiles remains outstanding. To address this, we sought to define CD location signatures 
by leveraging a large cross-sectional feature set captured from the stool of over 200 IBD patients and healthy controls 
using metaproteomics, shotgun metagenomics, 16S rRNA sequencing, metabolomic profiling, and host genetics 
paired with clinical endoscopic assessments.

Results: Neither metagenomic nor host genetics alone distinguished CD location subtypes. In contrast, ileal and 
colonic CD were distinguished using mass spectrometry-based methods (metabolomics or metaproteomics) or 
a combined multi-omic feature set. This multi-omic feature set revealed colonic CD was strongly associated with 
neutrophil-related proteins. Additionally, colonic CD displayed a disease-severity-related association with Bacteroides 
vulgatus. Colonic CD and ulcerative colitis profiles harbored strikingly similar feature enrichments compared to ileal 
CD, including neutrophil-related protein enrichments. Compared to colonic CD, ileal CD profiles displayed increased 
primary and secondary bile acid levels and concomitant shifts in taxa with noted sensitivities such as Faecalibacterium 
prausnitzii or affinities for bile acid-rich environments, including Gammaproteobacteria and Blautia sp. Having shown 
robust molecular and microbial distinctions tied to CD locations, we leveraged these profiles to generate location-
specific disease severity biomarkers that surpass the performance of Calprotectin.

Conclusions: When compared using multi-omics features, colonic- and ileal-isolated CD subtypes display striking 
differences that suggest separate location-specific pathologies. Colonic CD’s strong similarity to ulcerative colitis, 
including neutrophil and Bacteroides vulgatus involvement, is also evidence of a shared pathology for colonic-isolated 
IBD subtypes, while ileal CD maintains a unique, bile acid-driven profile. More broadly, this study demonstrates the 
power of multi-omics approaches for IBD biomarker discovery and elucidating the underlying biology.
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Introduction
Inflammatory bowel disease (IBD) consists of two major 
subtypes, Crohn’s disease (CD) and ulcerative colitis (UC), 
with CD further sub-categorized into several subtypes 
including ileal (ICD), ileocolonic (ICCD), and colonic CD 
(CCD). Although these conditions are all classified as IBD, 
they harbor important differences in epidemiology, genetic 
abnormalities, clinical presentation, treatment effectiveness, 
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and long-term complications [1–4]. Research in the past 
decades has shown host-gut microbe interactions influ-
ence many of these factors in clinically relevant ways [5–7]. 
Indeed, intestinal microbiota are increasingly recognized 
for their potential as IBD biomarkers and treatment tar-
gets, yet in-depth knowledge of how differences in microbe-
host interactions shape CD location subtypes is lacking [8, 
9]. This is largely due to limitations such as small patient 
cohorts, limited metadata, reliance on patient-reported 
indices in place of endoscopic measurements, and a lack of 
comprehensive host-gut microbe profiling [10–13].

To date, the largest IBD multi-omic profiling effort 
enrolled approximately 117 total subjects, with 67 CD 
patients included [13]. However, profiling CD’s inher-
ent heterogeneity would benefit from a large number of 
cross-sectional samples and multiple profiling methods to 
accurately characterize categories such as disease location. 
Therefore, a need remains for a large-scale study leverag-
ing multi-omic approaches that focuses on revealing the 
molecular underpinnings of CD location subtypes through 
the lens of host and gut-microbe interactions. We hypoth-
esized this approach could help reveal the biological ration-
ale driving differences in CD location and further provide 
the basis for disease-severity biomarkers tailored to specific 
CD locations (e.g., ICD and CCD) [14].

To test this, our group recently generated an expansive 
multi-omics feature set consisting of fecal 16S rRNA gene 
amplicon sequencing (ASVs), shotgun metagenomics, 
metabolomics, and metaproteomics from healthy con-
trols and IBD patients spanning all major CD subtypes 
and severities [15]. These efforts were further supported 
by single-nucleotide polymorphism (SNP) sequencing of 
IBD patients covering known IBD-related mutations. By 
leveraging these feature sets, we reveal that colonic-isolated 
IBD subtypes (CCD and UC) are enriched in neutrophil-
related proteins and a unique disease severity related asso-
ciation with the taxon Bacteroides vulgatus. In contrast, 
ICD is largely distinguished by increased bile acid levels 
along with alternations in taxa with known associations 
with bile acids (both sensitivity to and affinity for). Given 
the evidence for a robust location-specific fingerprint, we 
provide guidance on location-specific disease severity bio-
markers that outperforms the current gold standard clini-
cal biomarker, Calprotectin. Together, our results highlight 
the power of profiling complex phenotypes with multiple-
omics types.

Results
Disease location, severity, and microbial diversity influence 
overall subject profiles
Two hundred ten patient samples were initially sub-
jected to multiple-omics pipelines and contributed to 
the features identified. After accounting for metadata 

completeness, we identified 182 subjects (103 CD, 60 UC, 
19 healthy controls) as our core analysis cohort (Fig. 1A). 
A subset of 126 IBD patients were further assessed using 
single-nucleotide polymorphism (SNP) arrays. Each IBD 
subject had detailed metadata and paired endoscopic 
assessments taken at the time of stool and DNA collec-
tions. Patients were largely balanced between ICD and 
CCD, with representation of disease severity spectrum 
based on endoscopic indices (Fig.  1B, Supplementary 
Figure S1A). Importantly, most features identified in this 
cohort were quantified in every disease subset, increasing 
statistical comparison potential (Fig. 1C).

Over 125,000 features from five different -omic plat-
forms were initially identified (Fig.  1D). 16S amplicon 
sequence variant (ASVs) identified with 1799 taxon (in > 
1 sample). Bolstering these results, shotgun metagenomic 
sequencing further identified 3568 Operational Genomic 
units (OGU) using the Woltka taxonomy pipeline [16]. 
Leveraging feature-based molecular networking and the 
available public libraries for metabolite classification 
(GNPS), we identified 1,929 metabolomic features from 
untargeted mass spectrometry data [17]. Lastly, the fea-
ture set included 108,081 metaproteome features, which 
to date represents the deepest single-study metapro-
teome in the public domain (Supplementary Figure S1B). 
Of these features, 106,409 were microbial proteins, while 
2031 were host-derived, similar to previous large-scale 
stool metaproteome ratios [18, 19].

Given our interest in regional CD differences, we 
first determined the ability of individual feature 
sets to distinguish CCD from ICD. Selecting 1206 
SNPs with previously identified IBD associations, 
we observed no difference between ICD and CCD 
profiles, with near total overlap in PCA-generated 
confidence intervals, despite a difference in minor 
allelic frequency between ICD and CCD (CI = 0.95, 
Supplementary Figure S1C) [20]. ICD and CCD SNP 
diversity was similar, likely contributing to lack of dif-
ferentiation. While this result does not discount the 
utility of individual SNPs (or subgroups of related 
SNPs) to influence host pathways and alter micro-
bial communities (neither of which was analyzed 
in the paper to limit its scope), it suggests ICD and 
CCD stool-based profiles are more easily influenced 
by other features, limiting further SNP analyses for 
the purposes of this study. All single-omics feature 
sets significantly distinguished controls from UC and 
CD, similar to previous results, with mixed results on 
other categories (Bray-Curtis-based ß-diversity, PER-
MANOVA corrected, permutations = 999, q < 0.05, 
expanded PERMANOVA results for all data sets in 
Supplementary Table S1, Supplementary Figure S1D) 
[21, 22]. Intra-IBD comparisons using OGUs failed to 
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differentiate UC from CCD (q > 0.05), while ASVs did 
(q = 0.005). However, neither ASV nor metagenomic 
feature sets differentiated isolated CD subtypes. In 

contrast, both metaproteomic and metabolomic fea-
ture sets, which inherently contain both microbe- and 
host-related features, significantly differentiated ICD 

Fig. 1 Cohort and high-level feature overview. A Cohort and pipeline overview. B Density plot of disease severity, as measured by either SES-CD 
for CD (left) or Ulcerative Colitis Endoscopy Index of Severity (UCEIS, right) for UC. C Venn diagram of all features overlap from our cohort. 
Common features = 6.022, unique CD = 927, unique UC = 454. D Relative proportion each feature set contributed to the multi-omic feature 
set. Of note, only OGUs were used in this analysis, and thus percentage would change based on sequence annotation workflow. E Schematic of 
machine-learning pipeline. F Test set classification accuracy scores for individual feature sets and the multi-omic (combined) feature set across 
several different metadata categories. Expanded metrics (e.g., precision, recall, etc.) available in Supplementary Table S2. G Multi-omic-generated 
Bray-Curtis distance PCoA, colored by metadata category (listed above graph). Color scaling for SES-CD and Faith’s phylogenetic diversity (Faith’s PD) 
is continuous from minimal value (small dot) to maximum value (large dot)
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and CCD profiles (q < 0.05), suggesting the inclusion 
of host features may be needed for subtle distinctions.

We next merged all feature sets (excluding SNPs) into 
a large multi-omic feature set to determine its ability to 
differentiate CD locations. To limit noise and spurious 
signals, we selected metagenomic, ASVs, and metabo-
lomics features present in more than a single sample, 
while only including metaproteome features (298 host, 
2344 microbial) quantified in all samples. This scheme 
was chosen to avoid suboptimal metaproteomic data 
imputation methods and focus analyses on highly abun-
dant proteins. This filtering resulted in a total of 9937 
features, a ~ 10× loss compared to initial features, but 
with the added benefit of substantially increasing its 
quantitative power. As a proof of feature set reliability, 
we first tested whether IBD-relevant metadata categories 
other than location (e.g., steroid or biologic use) distin-
guished healthy controls from IBD patients (an expected 
result). We observed all healthy vs. IBD comparisons 
were significant (q < 0.05), while intra-IBD comparisons 
using these categories were not (except for subjects that 
underwent surgical resection, Table 1). Similar to single 
feature sets, multi-omics features confirmed IBD sub-
types were distinct from healthy controls and further 
distinguished CD from UC (q = 0.001) and isolated CD 
subtypes (ICD and CCD, q = 0.02), while ICCD was not 
significantly different to ICD and CCD, in line with its 
mixed-location phenotype. To further support these 
results, we generated a machine learning pipeline and 
tested each feature set’s ability to predict a variety of 
clinically relevant categories such as IBD subtype, dis-
ease location, severity group, and ulcer size (Fig.  1E). 
The results revealed that in the current study, mass 
spectrometry-generated features outperformed DNA-
based methods in most categories, with the multi-omic 
feature set performing at a similar level to metaproteom-
ics when focused on classifying ICD vs. CCD (Fig.  1F, 
expanded results in Supplementary Table S2).

To investigate features driving global profile trends, 
we generated principal coordinate analysis (PCoA) plots 
(and associated results) overlayed with metadata features 
likely influencing ordination (e.g., significant differences 
in beta-diversity, Fig.  1G). The top 20-contributing PC1 
features were largely dominated γ-Proteobacteria fea-
tures (ASVs and OGUs, 55% of total features), while 40% 
of PC2 features were from the class Clostridiales (Sup-
plementary Figure S1E, Supplementary Table S3). This 
suggests microbial features influence global profiles, but 
additional features are required to discriminate between 
more nuanced disease phenotypes such as ileal and 
colonic CD.

Together, these analyses suggest comprehensive multi-
omic profiles illuminate subtle disease-related distinc-
tions that single-omic feature sets miss. As such, we next 
explored how the feature sets interacted and uniquely 
contributed to disease location-based profiles.

Colonic‑related CD subtypes are dominated by increased 
host response and linked microbial and metabolic 
signatures
Our high-level analyses revealed multi-omic profiles 
readily differentiated ICD and CCD, as such we next 
examined the features differentiating them. We observed 
the strongest enrichment in CCD subjects was gener-
ated by neutrophil degranulation-associated proteins, 
a trend confirmed even when controlling for severity 
score (Fig. 2A, Supplementary Figure S2A). In line with 
this observation, CCD patient SES-CD scores were sig-
nificantly more correlated with their neutrophil-related 
protein abundance compared to ICD patients, even 
when only a single scored CCD segment (rectum) was 
used (Fig.  2B, Supplementary Figure S2B). To further 
control for both tissue involvement and disease sever-
ity, we further selected ICD (n = 13) and the rectal-only 
CCD patients (n = 6) with equal CD-SES scores (mean 
ICD = 6.1, CCD = 6.5) and compared their abundances 

Table 1 Relevant metadata group comparisons for significance

Category Groups Significance Significant groups (q value)

Steroid 3 Y Ctrl vs. unknown (0.003), Ctrl vs. yes (0.006)

Bowel_resec 2 Y 0.002

ICV_resec 2 Y 0.002

Smoker 3 N NA

ASA 3 Y Ctrl vs. unknown (0.002), Ctrl vs. yes (0.002)

AZA 3 Y Ctrl vs. unknown (0.001), Ctrl vs. yes (0.001)

Sex 2 N NA

Biologics 3 Y Ctrl vs. unknown (0.003), Ctrl vs. yes (0.003)

Ulcer Group 2 N NA
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Fig. 2 Multi-omics identifies features both common and unique features of ileal- and colonic-isolated diseases. A Enrichr-generated gene 
ontology enrichment graph using host proteome features significantly greater in CCD compared to ICD, sorted by Enrichr combination score 
[23]. B Comparison of neutrophil-associated proteins and SES-CD Spearman correlation scores, binned by CD location. Significance derived using 
Welch’s t test, *** = p < 0.0001. n = 49 features, all active disease ICD (n = 31) and CCD (n = 24) subjects used in comparison. C Heatmap of 
neutrophil-associated protein abundance (x-axis) compared in healthy controls, CD subtypes, and UC. Abundance is column scaled to enhance 
visibility. D Bar plot comparing log2-transformed relative protein abundance between ICD (n = 31) and CCD (n = 24). *p < 0.05, ***p < 0.0001, 
Welch’s t test. E Comparison of dipeptide/amino acid abundances between ICD (n = 31) and CCD (n = 24). Mean abundance levels plotted. Each 
dot represents a different amino acid/dipeptide identified and lines connecting dots denote the same metabolite in the disease location specified. 
F Comparison of blood-related proteins (complement C4, fibrinogen, and serum albumin) found in ICD (n = 31) and CCD (n = 24) stool samples. 
**** = p < 0.0001, Welch’s t test. G PCA biplot of individual CD locations, overlayed with SES-CD severity scores. Color ramping from purple to yellow 
denotes increasing severity score. Only five most contributing features (combined PCA1 + 2 contribution) plotted for ease of viewing. H Scatter 
plot comparing SES-CD scores (x-axis) and B. vulgatus metagenomic abundance. Linear model used to plot trend line. ICD n = 31, Rho = 0.29, p 
= 0.16; CCD n = 24, Rho = 0.48, p = 0.03; ICCD n = 11, Rho = 0.84, p = 0.07. I Bar plot comparing Spearman correlation values (n = 89 corr. pairs) 
of B. vulgatus levels and neutrophil related proteins, split by ICD and CCD. ****p < 0.0001, Welch’s t test. J Bar plot comparing significant (p < 0.05) 
Spearman correlation values of B. vulgatus levels and dipeptide metabolomic features, split by ICD (n = 6 features), and CCD (n = 31 features). ****p 
< 0.0001, Welch’s t test



Page 6 of 15Gonzalez et al. Microbiome          (2022) 10:133 

(Supplementary Figure S2C). While this diminished the 
robustness of prior results, comparing the means of the 
top 10 proteins with the greatest difference revealed sig-
nificantly greater levels in CCD, supporting the prior 
findings. UC patients also harbored significantly greater 
levels of neutrophil-related proteins compared to ICD 
despite having a similar distribution of patient severity 
scores when considering all active UC patients (UCEIS 
> 1 mean scaled score = 0.42, ICD SES-CD > 1 scaled 
score = 0.38, Fig. 2C) [24]. To reveal how inflammatory 
cytokines may influence the increased neutrophil activity 
in CCD, we imputed known inflammatory cytokines into 
protein-protein interaction networks generated by upreg-
ulated proteins in CCD (Supplementary Figure S2D, see 
Supplementary Table S4 for input list). This revealed a 
highly integrated network of inflammatory cytokines and 
proteins observed to be upregulated in CCD, with major 
imputed-observed connection hubs stemming from FN1, 
ITGAM, and ALB.

One consequence of neutrophil involvement is the 
secretion of proteases and inhibitors that alter proteolytic 
activity and drive disease severity. We observed protease-
inhibitor pairs such as MMP-9 (Spearman ρ = 0.71, p = 
0.0006) and S100A12 (Spearman ρ = 0.73, p = 0.0003), 
which can inactivate MMP-9, as correlated with disease 
severity in both CCD and ICD. However, the strength 
and significance of these correlations was decreased in 
ICD (Spearman ρ = 0.41, p = 0.04; Spearman ρ = 0.53, 
p = 0.005 respectively). Both proteins were significantly 
increased in CCD compared to ICD (Fig. 2D). In line with 
this, we observed generally increased levels of dipeptide 
and amino acid-related features in CCD (Fig.  2E, Sup-
plementary Figure S2E). Since gut-based proteolytic 
activity is often linked to ‘gut leakiness’, we next searched 
our feature set for markers of possible blood infiltrate 
and observed the levels of proteins commonly found in 
blood such as serum albumin, compliment factors (C4), 
and fibrinogen were significantly higher in CCD subjects 
(Fig. 2F).

While the previous results reflect increased host-pro-
tease activity, these may solely reflect tissue injury and 
acute response and as such may not reflect a pathologi-
cal increase in proteolytic activity. In contrast, many 
microbial proteases are known virulence factors [25, 26]. 
As such, we were also interested in microbial proteases 
contributed to this environment. We previously iden-
tified the taxa Bacteroides vulgatus (BV) contributed 
to UC pathogenesis, and this contribution was largely 
driven by protease overproduction [15]. Biplots of CD 
locations revealed BV also contributed to CCD severity 
ordination, but not ICD or ICCD (Fig. 2G). In agreement, 
relative BV levels in CCD subjects were significantly cor-
related with SES, despite non-significant differences in 

overall BV abundance between CD locations (Fig.  2H, 
Supplementary Figure S2F). BV was also positively cor-
related with neutrophil-related proteins in CCD yet dis-
played the opposite trend in ICD (Fig. 2I). Abundance of 
BV proteases was largely similar between CCD and ICD; 
however, BV proteases from CCD patients displayed a 
trend in overall positive association with disease sever-
ity (p = 0.06, Supplementary Figure S2G). Lastly, BV was 
strongly correlated with dipeptides in CCD patients but 
not in ICD, suggesting a potential BV-neutrophil proteo-
lytic synergy that results in increased colonic proteolysis 
(Fig. 2J).

Overall, multi-omic profiling of CCD subjects revealed 
possible increases in neutrophil and microbially related 
proteolytic activity compared to ileal profiles.

Alterations in metabolite levels heavily contribute 
to overall ICD profile
In contrast to CCD, clear immunogenic enrichments 
were largely absent in ICD, pointing instead towards 
increased levels of muscle-related proteins (Fig.  3A). 
These proteins were almost exclusively various forms 
of myosin. A similar trend was also observed when ICD 
was compared to UC patients, suggesting it is a com-
mon distinction between ileal- and colonic-involved 
subtypes. The enriched myosin proteins were not signifi-
cantly associated with disease severity, ulcer severity, or 
the presence of strictures or penetrating wounds. How-
ever, comparing patients with any strictures or penetrat-
ing wounds (n = 10) to those without (n = 9) revealed 
a significant (p < 0.05) difference between these two 
groups, with increased abundance in patients with stric-
tures or wounds (Supplementary Figure S3A). This dif-
ference was not as pronounced as overall comparisons 
to CCD, suggesting they may also be a generalized fea-
ture of ICD. Similar to our prior analysis, we next gen-
erated a cytokine inference protein-protein network map 
from proteins upregulated in ICD to reveal any possible 
connections to common inflammatory cytokines (Sup-
plementary Figure S3B, Supplementary Table S4). In con-
trast to CCD, these cytokines were entirely segregated 
from the input network, with a single connection from 
TPM4 to IL2.

Next, we observed both primary and secondary bile 
acids displayed a robust increase in ICD patients com-
pared to CCD, in line with known defects in bile acid 
reabsorption in ICD (Fig.  3B, Supplementary Table S5). 
Confirming ileal involvement is a major determinant of 
stool bile acids levels in CD, ICCD also harbored sig-
nificantly altered levels of bile acids compared to CCD. 
Interestingly, bile acids were not broadly correlated with 
disease severity for any CD subtype, possibly suggesting 
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Fig. 3 Multi-omics identifies features both common and unique features of ileal- and colonic-isolated diseases. A Enrichr-generated gene 
ontology enrichment graph using host proteome features significantly greater in ICD compared to CCD, sorted by Enrichr combination score [23]. 
B Volcano plots comparing major CD subtypes and the abundance of bile acid labeled metabolites. Significance cutoff = FDR < 0.05 and |log2 
fold-change| > 0.5. Bile acid types denoted by specific colors. ICD n = 31, CCD n = 31, ICCD n = 11. C Heatmap of Gammaproteobacteria feature 
abundances (x-axis) in ICD (n = 31) and CCD (n = 24) subjects. Color key at bottom denotes feature-set origin. D Bar plot comparing Spearman 
correlation values (Proteobacteria-SES-CD, only significant values selected, see) between ICD (14 features) and CCD (17 features). **** signifies p 
< 0.0001, Welch’s t test. E Heatmap of Lachnospiraceae mean abundances for each CD subtype. Values scaled column-wise for visualization. F Bar 
plot comparing Spearman correlation values (Lachnospiraceae-SES-CD, only significant features [p < 0.05] selected, CCD = 88, ICD = 45, ICCD 
56) between major CD subtypes. *** signifies p < 0.001, Welch’s t test. G Heatmap of Faecalibacterium feature abundance (y-axis, all feature sets 
included) among CD subtypes (x-axis). Feature abundances are row-scaled for emphasis. H Plot of Faecalibacterium-bile acids correlations, colored 
by subtype and split by location. Only significant features used in comparison
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their impact on severity is indirect, such as influence of 
microbial compositions.

Comporting with these findings, we observed a strik-
ing enrichment in γ-Proteobacteria (and Proteobacte-
ria in general) levels in ICD, echoing prior reports [27] 
(Fig. 3C). While significant Proteobacteria-disease sever-
ity (SES-CD) correlations were present in both ICD and 
CCD, the strength and abundance of positive correlations 
was significantly greater in CCD (Fig.  3D), suggesting 
Proteobacteria are entrenched in ICD microbial com-
munities, while their presence in CCD signifies active 
inflammation. After initially filtering for metabolites pre-
sent in > 40% of samples (to increase correlational pairs), 
we observed ICD patient Proteobacteria levels were asso-
ciated with bile acids and their derivatives, echoing prior 
evidence suggesting Proteobacteria are often resistant to 
antimicrobial effects of bile acids [28]. 40% of positively 
correlated Proteobacteria-metabolite pairs consisted of 
dihydroxylated bile acid, the strongest likely being isour-
sodeoxycholic acid (Supplementary Table S6). Relax-
ing this filter expanded the associations to primary bile 
acids as well (tri and tetrahydroxylated); however, their 
specific identity was most often unknown due to lack of 
annotation.

The family Lachnospiraceae (specifically Ruminococcus 
and Blautia) also distinguished ileal-involved CD sub-
types from CCD (Fig.  3E, Supplementary Figure S3D). 
When correlated to disease severity, ileal-involved sub-
types (ICD and ICCD) exhibited approximately equal 
positively and negatively correlated features, while CCD 
was comprised of nearly all negatively correlated features 
(Fig.  3F). Blautia sp. have previously been reported as 
processors of primary bile acids such as cholic acid [29]. 
In line with this, mono- and di-hydroxyl bile acids (e.g., 
secondary bile acids) were positively correlated with 
Blautia levels, while a tri- and tetra-hydroxyl (primary) 
bile acids exhibited the opposite trend (Supplementary 
Figure S3E).

Further supporting the role of bile acids in shaping 
ICD’s microbial-community structure, our machine 
learning pipeline identified Faecalibacterium praus-
nitzii (F. prausnitzii) as highly discriminative of ileal- and 
colonic-isolated IBD subtypes CCD and UC (Fig.  2G, 
Supplementary Figure S3E). F. prausnitzii is highly sensi-
tive to bile acids and its absence has previously been used 
to distinguish ICD [30, 31]. In contrast to Blautia, we 
observed F. prausnitzii abundance was decreased in ICD 
while displaying the same negative correlation with tri- 
and tetra-hydroxylated bile acids (p < 0.05, mean corre-
lation coefficient = – 0.51). This suggests the underlying 
rationale for the correlation is possibly due to bile sen-
sitivity, not utilization; however, both hypotheses remain 
to be confirmed (Fig. 3H).

Lastly, we used selected results increased in CCD or 
ICD to test their performance as potential biomarkers. 
Nine features that represented the biological classes dif-
ferentiating ICD and CCD were chosen and their abil-
ity to predict these classes (Supplementary Figure S3F). 
Individually, the sensitivity and specificity of these fea-
tures varied substantially, ranging from ROC-generated 
AUCs of 0.63 to 0.84, with proteins having greater accu-
racy than microbial or metabolic features. When these 
features were combined in a model, leave-one-out cross 
validation revealed an 84% accuracy. Test set prediction 
revealed a slightly greater accuracy (90%) and an AUC of 
0.94 (Supplementary Figure S3G). However, unlike our 
prior models (Fig. 1F), these results are biased by ‘infor-
mation leakage’ and are thus their performance in a naïve 
cohort remains to be observed.

Together, multiple lines of evidence suggest ICD’s 
altered microbial community composition may be largely 
influenced by increased bile acid levels, with the loss of 
beneficial microbes such as F. prausnitzii, resulting in 
increased levels of Gammaproteobacteria and Blautia sp.

Determination of location‑specific disease severity 
correlates
Our results confirm ileal and colonic CD subtypes 
exhibit unique molecular fingerprints, reflecting mark-
edly different pathologies. For instance, neutrophil pro-
teins were less associated with severity in ICD. In line 
with this, prior work has observed ICD patients’ level 
of neutrophil-generated fecal Calprotectin, a com-
monly used inflammatory biomarker, is significantly 
less useful as a diagnostic marker in ICD compared 
to CCD [32, 33]. This suggests location-specific bio-
markers would facilitate more specific, sensitive, and 
non-invasive disease severity monitoring. To identify 
potential location-specific severity biomarkers, we 
identified proteins most correlated with disease sever-
ity in isolated CD subtypes. Furthermore, we reasoned 
since we selected proteins due to their presence in all 
samples (including controls), the resulting correlations 
would likely be reflective of their performance in a 
larger cohort. We identified Gelsolin, an actin-binding 
protein, as both highly correlated with CCD disease 
severity (SES-CD, Spearman ρ = 0.77, p =  1e−4) and 
not ICD severity (Spearman ρ = 0.2, p = 0.33). Pro-
tein abundance of Gelsolin was significantly increased 
in colonic-isolated IBD subtypes compared to ICD and 
healthy controls (Fig.  4A, Supplementary Figure S4A). 
To further enhance the performance of this correlation, 
we combined Gelsolin and a protein of unknown func-
tion from the species Clostridiales bacterium (strain 
VE202-26) that negatively correlated with severity in 
CCD to generate a ‘CCD severity ratio’ pair (Fig.  4B). 
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Using this ratio resulted in similar correlation scores 
but nearly 100-fold greater significance and increased 
disease location specificity (Spearman ρ = 0.78, p 
=  9e−5, ICD Spearman ρ = 0.14, p = 0.48). Binning 
patients by the median severity score into two groups 
(mild vs. severe), ratios of our protein pair maintained 
the ability to discriminate severity in CCD but not 
ICD (Fig.  4C). Using the same logic, we generated an 

‘ICD severity ratio’ comprised of a protein of unknown 
function a Bacteroides sp. (numerator) and Galec-
tin-4 (denominator). Comparing relative abundance of 
Galectin-4 in ICD and CCD revealed no significant dif-
ference between each group, suggesting its abundance 
alone did not discriminate between the two conditions 
(Fig. 4D). Using this ratio resulted in a similarly strong 
and selective disease score correlation (ICD Spearman 

Fig. 4 CD location-specific protein pairs outperform calprotectin for inferring severity. A Log2-transformed Gelsolin protein abundance comparison 
between ICD (n = 25) and CCD (n = 19) abundance. ** denotes p < 0.01, Welch’s t test. B Scatterplot comparing CCD ratio (Gelsolin/Clostridia) pair 
value and SES-CD disease severity for ICD (ρ = 0.29, p = 0.21) and CCD (ρ = 0.77, p =  9e−5). Ratio input was  log2-scaled prior to ratio. Correlation 
values were obtained using Spearman’s correlation. SES-CD scores (X-axis) are scaled for visualization purposes. C Binned comparisons of CCD ratio 
pair abundance in ICD and CCD patients binned by “low” and “High” severity (median SES-CD split). ICD high sev. n = 8 and low sev. n = 17, CCD 
severity groups high patient n = 8, low patient n = 10. Statistical comparison performed using Welch’s t test, **p = 0.0033. D Log2-transformed 
Galectin-4 protein abundance comparison between ICD and CCD abundance. “NS” = non-significant difference (P > 0.05, Welch’s t test). E 
Scatterplot comparing ICD ratio pair value and SES-CD disease severity for ICD (ρ = 0.75, p =  1e−5) and CCD (ρ = 0.14, p = 0.21). Ratio input was 
 log2-scaled prior to ratio. Correlation values were obtained using Spearman’s correlation. SES-CD scores (X-axis) are scaled for visualization purposes. 
F Binned comparisons of Galectin-4 abundance in ICD and CCD “low” and “high” severity median split groups. ICD severity groups split between 
high n = 8, low n = 17 and CCD severity groups split between high = 8, low = 10. Statistical comparison performed using Welch’s t test, ***p = 
0.0002. G Log2-transformed feature abundance for all features used in ratios along with both Calprotectin subunits (S100A8 and 9). All samples 
(182) used to illustrate broad pattern of expression in comparison to calprotectin expression. H Table of statistics comparing the performance of 
location-specific ratios and calprotectin subunits. All statistics derived using Spearman correlational analysis
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ρ = 0.75, p =  1e−5; CCD Spearman ρ = 0.29, p = 0.21) 
(Fig.  4E). Similar to previous results, binning ICD 
patients into mild and severe subsets revealed the ICD 
ratio discriminated between severity in ICD patients 
but not CCD (Fig. 4F).

We next compared the proposed biomarker ratios’ 
performance to that of Calprotectin, a canonical sever-
ity biomarker commonly referenced in IBD literature. 
Uncorrected mass spectrometry intensity revealed Cal-
protectin subunits were on average 5–10× more abun-
dant than either of the proposed host biomarkers, but all 
were present in our ‘core’ proteome present in all sam-
ples (Fig.  4G). Both calprotectin subunits (S100A8-9) 
were strongly correlated with each other (Spearman ρ 
= 0.957), confirming the integrity of the measurements. 
Calprotectin subunit 1 (S100A8) abundance was corre-
lated with both ICD and CCD disease severity, however 
both significance and magnitude of correlation were 
appreciably less than the candidate pairs, while subunit 
2 (S100A9) did not significantly correlate with either CD 
subtype (Fig. 4H). We attempted to confirm these results 
in prior studies but either the proteomes lacked the depth 
necessary to identify these proteins in untargeted mass 
spectrometry runs (in uploaded results), or the necessary 
metadata was not available. Despite this lack of external 
confirmation, these data suggest the simple protein ratio 
pairs may serve as highly specific location-based CD 
severity biomarkers.

Discussion
Research in past decades has begun to elucidate how 
genetic mutations, sex, environments, and microbial 
composition affect CD phenotypes and treatment out-
comes. While disease location is a major aspect of CD, 
it has largely been ignored by -omic studies. As a result, 
factors influencing location profiles, and thus the under-
lying pathology, are far less contextually understood. 
Here, we leveraged an expansive multi-omic IBD cross-
sectional study allowing for highly granular analyses 
relative to smaller studies that lose statistical power 
comparing IBD subtypes that can easily connect features 
from disparate technologies. While the feature-sets we 
leveraged in our targeted analyses of ICD and CCD all 
displayed reasonable discriminatory power, SNP pan-
els did not. This may suggest that as global profiling tool 
they provide little utility, or that the study was not large 
enough for effects to be adequately revealed. It may also 
mean that their utility lies in the effects individual SNPs 
impart on host responses and microbial compositions, 
both questions that deserve additional in-depth analyses 
that are beyond the targeted scope of our results.

We revealed the molecular uniqueness of ICD and 
CCD, an important consideration as clinical treatment 

moves towards the goal of precision medicine [1]. 
Our results suggest that despite UC and CCD differ-
ing in clinical and histological presentation, neutrophil 
involvement consistently differentiated colonic-isolated 
subtypes compared to ICD, even when controlling for 
disease severity. This comports with prior findings in 
biopsies observing increased expression of host genes 
associated with neutrophil recruitment in CCD biopsies 
but not ICD [12]. Deoxyribonuclease-sensitive perinu-
clear anti-neutrophil cytoplasmic antibodies, a common 
marker for neutrophil activity, were also more likely to 
be present in CCD subjects [34]. Neutrophil-secreted 
products were also more correlated with severity in CCD 
subjects compared to ICD counterparts, echoing and 
expanding previous results [32]. Lastly, prior proteomics 
profiling of CCD and ICD biopsy differences also con-
cluded that CCD biopsies also harbored greater abun-
dances of neutrophil-related proteins [35]. Importantly, 
this controls for the extent of tissue assayed, which is a 
significant limitation of stool-based assays, as they can 
collected proteins from all along the intestinal tract, pos-
sibly skewing measurements. Regardless, a more direct 
and controlled comparison of differential neutrophil 
activity in CCD and ICD is needed to confirm that this is 
not solely the result of extended tissue involvement and 
is reflective of differential pathology. We noted increased 
colonic neutrophil-related proteins were paired with the 
increased presence of amino acids and dipeptides, poten-
tially the result of increased proteolytic activity in the 
colon. Prior research has established abnormal proteo-
lytic activity as a hallmark of IBD [36]. Our lab, and oth-
ers, identified B. vulgatus protease levels were strongly 
associated with UC inflammation severity [15, 37]. While 
the host- and microbe-driven proteolytic phenotype has 
yet to be confirmed in CCD using orthogonal assays, we 
found B. vulgatus to be associated with increased CD 
severity solely in CCD, and further correlated with pro-
teolytic products such as dipeptides. However, it must 
be noted that neutrophils and other immune cells also 
secrete many potent proteases associated with increased 
disease burden. Therefore, the degree to which hosts and 
microbes contribute to pathologic proteolytic environ-
ments in colonic diseases remains to be determined by 
future studies. These future studies should also consider 
combining untargeted multi-omic studies with more 
targeted assays such as cytokine profiling to more fully 
characterize immune networks involved. This is critical, 
as cytokines, due to their low abundance, are virtually 
never identified in stool without the aid of enrichment 
techniques.

With regards to ICD, our analyses identified several 
key taxa with noted bile acid associations, suggesting 
the altered bile acid levels found in ICD patients may 
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ultimately shape their microbial communities and influ-
ence downstream pathology, possibly due to the loss of 
beneficial byproducts such as short-chain fatty acids. In 
line with this, the loss of F. prausnitzii in ICD patients is 
a well-known phenomenon and has been characterized 
as part of the “F-E” index (F. prausnitzii + E. coli) used 
to discriminate between IBD subtypes [38]. Here, we 
expand the list of microbes discriminating ICD and CCD 
with results suggesting Blautia sp. (often B. obeum), and 
Lachnospiraceae in general, are more abundant in ICD. 
Prior results found Blautia decreased broadly in CD; 
however, to our knowledge, we report this loss is poten-
tially isolated to CCD [39]. Blautia’s noted ability to pro-
cess primary bile acids further cements its role in the 
bile-driven ICD ecosystem. Future studies should con-
sider targeted studies of bile acid sensitive- and resistant-
species and the effect various types of common bile acids 
have on their abundance and functional profiles. Consid-
ering results distinguishing both ICD and CCD, it is pos-
sible that a major driver in gut-microbe composition may 
be their greater sensitivity to host immune products or 
the antimicrobial effects of bile acids.

Given the clear profile differences between isolated 
ileal and colonic CD, we leveraged our feature set to cre-
ate novel, location-specific disease biomarker pairs. In 
our cohort, the selected markers more accurately pre-
dicted disease severity than either Calprotectin subunit. 
We further confirmed the proteins used were readily 
detectable in every stool sample collected (including 
healthy), albeit at lower levels than those of Calprotectin 
subunits. Despite this, the use of highly sensitive detec-
tion techniques such as ELISA would likely overcome 
this deficit given their ability to detect extremely low-
abundant biomarkers such as cytokines (virtually never 
identified in untargeted shotgun proteomics feature sets). 
If confirmed in a new cohort and developed into a point-
of-care assay, these biomarker pairs (even in singular 
non-pair, in the case of host proteins, for the purposes 
of greater consistency in a wide population) could help 
monitor disease without the use of colonoscopies.

Despite these promising findings, limitations on 
their applicability remain. While our cohort was large 
compared to prior studies, moving toward reliable 
non-endoscopic disease diagnostics via machine learn-
ing will require thousands of samples selected meticu-
lously to answer a specific question. Unfortunately, 
this requirement is not often feasible in clinical set-
tings where most patients vary in many dimensions. 
This underscores the need for a stool-omics field-wide 
effort to establish standardized processing and collec-
tion protocols, allowing for the integration of multi-
ple smaller cohorts. An additional limitation of this 
study was missing feature annotations, a common 

issue in -omics studies. Indeed, despite the use of cus-
tom metagenomic-generated proteome databases, and 
machine-learning-based molecular networking for 
metabolite identification, many features were of little 
value due missing or unhelpful (e.g., “hypothetical pro-
tein” or “unknown metabolite”) annotations, hindering 
our ability to fully characterize location profiles. Thus, 
future cohort profiles would undoubtedly benefit from 
a more robust annotation pipeline including targeted 
strain-level metagenomic searches for microbes, and 
spike-in panels for important metabolite families (e.g., 
bile acids) that emerge after initial analyses. While this 
would necessitate additional runs, the information 
gleaned would be much more impactful. Lastly, due 
to stool’s intestinal transit, it is difficult to identify the 
origin of some proteins and microbes. For instance, the 
presence of increased myosin-related proteins in ICD 
patients seems useful as a general biomarker but does 
not provide evidence for its source along the intesti-
nal tract. Moreover, stool is somewhat biased towards 
resembling colonic microbial communities [40]. Con-
versely, many proteins have noted sources, such as 
digestive enzymes and neutrophil related proteins, 
suggesting stool has a mixed capacity for localization, 
which could be addressed in more targeted studies. 
Despite these challenges, stool-based -omics studies 
line up well with more spatially targeted studies, and 
lead to real mechanistic insights [15, 35].

In summary, by leveraging a large IBD cohort com-
bined with extensive multi-omic profiling, our analyses 
present both novel and confirmatory insights on IBD 
subtypes and further establish the utility of multi-omic 
strategies for identifying biomarkers. The extensive pro-
files allowed for highly granular subgroup analyses, pro-
viding strong evidence for the decoupling of ICD and 
CCD despite some commonalities. Given the evidence 
that ICD and CCD host and microbial profiles differ in 
a biologically consequential manner, the next steps must 
consist of greater understanding of mechanistic under-
pinnings. Achieving this goal will bring us one step closer 
to potential therapeutic paradigm shifts in the field of CD 
treatment.

Conclusions
Despite both being categorized as CD, our analyses high-
light the utility of stool-based multi-omics for the elu-
cidation of disparate mechanisms influencing ICD and 
CCD pathology. CCD’s profile highlights the integral role 
host inflammation and proteolytic activity play in disease 
severity, while ICD is characterized by changes in the 
abundance of bile acid-resistant and sensitive microbial 
constituents. These findings drive the identification of 
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proteins that may be useful for the non-invasive monitor-
ing of disease severity.

Methods
Patient demographics and disease severity scoring
Patient demographics (age, gender, ethnicity), dis-
ease history (prior surgeries, complications, Montreal 
sub-classifications), current and prior therapies (cor-
ticosteroids, immunomodulators, biologics), patient-
reported disease activity (partial Mayo and CDAI), and 
endoscopic and histologic disease activity (SES-CD, 
UCEIS, Mayo) were recorded. Endoscopic scoring was 
done by a physician blinded to any information per-
taining to study. Paired stool samples and endoscopic 
assessments were done within 24 h. Further details 
regarding clinical metrics and endoscopic and histo-
logic activity scoring are discussed further in Dulai 
et al. [41].

Isolation of stool proteins and peptides
Peptides from stool samples were isolated as described 
by Mills et  al. Briefly, 0.5 g of stool was suspended in 
TBS. Particulate was removed using steriflip (Milipore) 
filters. Cells were suspended in a 4-mL mixture of lysis 
buffer and 4M urea and lysed via probe sonication. Pro-
teins were reduced and alkylated, then precipitated using 
chloroform and methanol. Peptides were generated by 
digesting overnight with LysC (Wako), and a 6-h trypsin 
digestion at 37 °C. Peptides were desalted using C18 Sep-
Paks (Waters). Tandem Mass Tag (TMT, Thermo Fisher 
Scientific) 10 plex kits were used with a dedicated chan-
nel used containing a study-wide representative peptide 
mixture used for normalization between runs.

Metaproteomic data collection and processing
Data collection and processing was performed as 
described by Mills et al. [42] In brief, combined peptides 
from each TMT experiment underwent offline basic pH 
reverse-phase liquid chromatography (LC) using C18 
columns on an Ultimate 3000 HPLC (Thermo Scientific), 
separating each experiment into 24 fractions. Twelve 
fractions underwent LC-MS2/MS3 analysis on an Orbit-
rap Fusion mass spectrometer (Thermo Fisher Scientific) 
utilizing in-line fractionation for 60 min on an Easy-nLC 
1000 (Thermo Fisher Scientific).

Data was processed using Proteome Discoverer 2.1 
(Thermo Fisher Scientific), with MS2 spectra searched 
against a custom in-house database of microbial pro-
teins identified from the metagenomic sequenc-
ing analysis, and the Human proteome (unipo rt. org, 
accessed 5/11/2017). Search parameters were set as 

previously described, and data was quality controlled at 
a 1% false discovery rate for both peptide and protein 
identifications.

SNP feature generation
Genomic DNA was extracted from patient blood using 
DNeasy DNA extraction columns (Qiagen). Purified 
DNA was then quantified using a Qubit 4 fluorometer 
(Thermo Fisher Scientific) and aliquoted to 30 μg/μL. 
Samples were then processed further and amplified 
and genotyped using Illumina Infinium Global Diver-
sity Array (Illumina, Inc.). Data acquired was then 
processed using Illumina Genom Studie v2. Prior to 
output, we applied the following settings: Call freq. ≤ 
0.99, Cluster separation < 0.45, AA R mean, < 0.4, AB 
R mean < 0.4, BB R mean < 0.4, 10% GC score ≤ 0.3, 
heat excess > 0.2, AB freq. ≥ 0.4, AB t. mean < 0.2 or > 
0.8. Statistics on the resulting data were done using the 
R package snpReady, and alleles were encoded numeri-
cally as follows: AA = 0, Aa = 1, and aa = 2, follow-
ing snpReady package instructions. These features were 
further plotted as a PCA using FactoExtra R package.

Generation of sequencing data sets
Shotgun sequencing data (EBI Project Identifier 
PRJEB42155) was mapped to the web of life microbial 
genome database using Centrifuge 1.0.3 with default 
parameter settings [43]. Reads were summarized per 
reference genome per sample. Genomes mapped by 
less than 0.01% reads per sample were dropped. 16S 
sequencing data (EBI Project Identifier PRJEB42155) 
was split demultiplexed, trimmed to 150 bp and 
assigned to amplicon sequencing variants via deblur 
using [44].

Generation of metabolomic feature set
Samples and data was processed as previously 
described [15]. In brief, stool samples were weighed, 
and metabolites were extracted at a 1:5 ratio of wet 
weight from fecal material to 70% methanol infused 
with 5 μM internal standard sulfamethoxine, vortex, 
and left to extract overnight at 4°C. Supernatant extrac-
tion was then centrifuged to remove particulate and 
placed in a 96-well plate and diluted 1:4 with methanol. 
Shotgun LC-MS/MS was performed on a Bruker Maxis 
qTOF mass spectrometer (Bruker, Billerica, MA USA) 
with in-line HPLC fractionation using a ThermoScien-
tific UltraMate 3000 Dionex UPLC (Fischer Scientific, 
Waltham, MA USA) equipped with a Kinetex C18 col-
umn flowing at 0.5 mL/min. Mobile phase gradient was 
run for 850 s. starting from 98:2 water:acetonitrile to 
2:98 water:acetonitrile. MS was run in positive mode 

http://uniport.org
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(m/z 50-2000) using a data dependent selection of the 
top ten most intense ions per MS1 scan chosen for MS2 
level analysis. Lock mass internal calibration used a 
wick saturated with hexakis (1H,1H,3H-tetrafluoropro-
poxy) phosphazene ions (Synquest Laboratories, m/z 
922.0098) located within the source.

Individual MS runs were aligned using mzMine soft-
ware (parameters described previously) [45]. Area under 
the MS1 peak was utilized for feature abundance val-
ues, and two strategies were used for feature identifica-
tion based on MS2 fragmentation patterns. One method 
utilized feature-based molecular networking [46], the 
other method utilized the Qemistree workflow [47]. Both 
methods were performed utilizing the online metabo-
lomics database and processing servers provided by 
GNPS [17]. Based on prior literature, quantification val-
ues for each sample were subsequently normalized using 
rarefaction based on minimum intensity of 1e8 [48]. This 
data was further scaled for integration into the multi-
omic feature set.

Machine learning pipeline
Each dataset was first split 70/30 into two sets (training 
and testing, respectively), balancing SES-CD scores, loca-
tion, diseases, and UCEIS scores. Using the training set, 
we performed feature selection using the R package EFS 
(v1.0.3). The selected features were then used to subset 
each full omics set. Using these subsets, each algorithm 
was trained using the Randomized Search CV package 
from SciKit-Learn (v0.24.0) with 5-fold cross-validation 
and targeting the setting ‘balanced accuracy’ to account 
for imbalanced data sets. We then used the testing set 
and recorded the accuracy, precision, and recall of the 
highest scoring algorithm amongst the five used.

Initially 10 different algorithms were tested for the gen-
eral predictive performance on ICD vs. CCD and CCD 
vs. UC and CD vs UC: (1*)RandomForest, (2*)ExtraTrees, 
(3*)Decision Trees, (4*)SVC, (5)MLPC, (6*)Voting Clas-
sifier, (7)Naïve Bayes, (8)K-nearest Neighbors, (9)Logis-
tic Regression, (10)Adaboost. *Denotes a classifier that 
was chosen for all subsequent comparisons. Five were 
found to produce inconsistent results and were not used 
further.

To account for algorithmic biases, we performed per-
mutation of feature importance (SciKit-Learn v0.24.0) on 
the test feature set, which recorded the loss in classifica-
tion performance after each permutation (n = 100).

Statistical analyses
Where applicable, multivariate statistics were computed 
using the R statistical program and matrixTests package 
(v0.1.9), with multiple hypothesis testing added using 
“false discovery rate” (also known as Benjamini-Hochberg 

correction) using Hmisc (p.adjust) R statistical pack-
age and Qiime2 in the case of groupwise statistics [49]. 
Univariate statistics were computed using Prism (v9.0.0). 
Specific statistical tests undertaken are reported in text 
section or associated figure legend. Songbird analysis was 
done using the Qiime2 version of software.
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Additional file 1: Supplementary Figure S1. IBD200 Cohort supple-
mentary metrics A) Severity breakdown of CD and UC cohorts. SES-CD 
and UCEIS (UC severity scale) used for scoring breakdown. B) Proteomic 
feature set comparison to previously reported values in literature. Every 
effort was taken to include reported values from IBD stool metaproteomic 
studies from the past five years, however this list may not be exhaustive. 
PubMed search terms used “Inflammatory bowel disease meta/proteome”, 
“Ulcerative colitis meta/proteome”, “Crohn’s disease meta/proteome”. C) 
SNP panel generated statistics on 126 IBD patients in cohort. Left panels 
are histograms of Nei’s genetic diversity and minor allele frequency. Right 
panel is PCA graph colored by disease location (only ICD n = 27, and 
CCD n = 22, subtype used in graph generation). Colored circles indicate 
confidence interval (0.95). D) Comparison of discriminatory power of each 
feature set, as calculated by Log2(Pseudo-F/P-value). Both input values 
determined by PERMANOVA beta-diversity comparisons (see Supplemen-
tary Table 1 for extended results). E) PCoA biplot of multi-omic feature 
set. Top 10 features are plotted in biplot, colored by active IBD location 
subgroup, please refer to Supplementary Table 3 for details.

Additional file 2: Supplementary Figure S2. Features distinguishing 
CCD from ICD A) Enrichr plot generated from severity-controlled compari-
son of CCD to ICD (q-value = 8e-11). Of note, given the greater number 
of segments that can be scored for severity in CCD, this comparison is for 
presentation purposes only and does not truly represent a fair compari-
son to ICD (e.g. ICD patients could have more severe inflammation and 
still not score as high as CCD with less inflammation). B) Comparison of 
neutrophil-SES-CD score Spearman correlations in two single segment 
CD subtypes (ICD and rectal-only inflammation). Only significantly cor-
related proteins (p < 0.05, ICD = 17 proteins, Rectal = 14 proteins) were 
used in comparison. **** = p < 0.0001, Welch’s t-test. C) Comparison of 
neutrophil-SES-CD score Spearman correlations in two single segment CD 
subtypes (ICD and rectal-only inflammation) further controlled for SES-CD 
score (ICD mean = 6, CCD = 6.5). Top 10 most highly correlated proteins 
used. * = p < 0.05, Welch’s t-test. D) String-DB-generated network of 
combined inflammation-related cytokines and other proteins, filtered for 
high-confidence interactions (interaction score ≥ 0.7, see Supplementary 
Table 4) and proteins significantly increased in CCD compared to ICD. 
Grey dots represent imputed features, orange is features increased in CCD. 
E) Heatmap of mean dipeptide abundance per CD subtype. F) Plot of 
 Log2 ratios of B. vulgatus in CD subtypes. No significance noted (ANOVA 
adjusted p > 0.05). ICD n = 25, CCD n = 17, ICCD n = 8. G) Plot of ICD and 
CCD Spearman correlation values generated by comparing B. vulgatus 
proteases (metaproteome features, log2-transformed) and SES-CD score. 
Welch’s t-test, p = 0.06.
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Additional file 3: Supplementary Figure S3. Information supporting the 
distinction between ICD and CCD A) Comparison of mean abundance of 
Myosin-isoform proteins between ICD patients with either penetrating or 
structuring wounds (n = 10) to those with no wounds present (but still 
active disease, n = 9). * p < 0.05, Welch’s t-test. B) String-DB-generated 
network of combined inflammation-related cytokines and other proteins, 
filtered for high-confidence interactions (interaction score ≥ 0.7, see Sup-
plementary Table 4) and proteins significantly increased in ICD compared 
to CCD. Grey dots represent imputed features, green is features increased 
in ICD. C). Expanded heatmap of features from the genus Blautia (x-axis) 
split by CD subtype (right) and further color coded by disease severity. See 
section 1 results for disease scoring split. Feature abundance scaled by 
column. D) Spearman correlation measurements comparing different bile 
acid families and SES-CD scores. Each dot represents mean correlation of a 
bile acid (or subtype) and metagenomic Blautia sp. features. E) Abundance 
of F. prausnitzii features from both metaproteome (left and middle) and 
ASV (right) feature sets in CD subtypes. * p < 0.05, *** p < 0.001, Welch’s 
t-test. F) ROC curve of individual features differentiating ICD and CCD. 
Features were chosen due to their statistical significance and representa-
tion of classes explored in the results. G) ROC curve generated by a model 
trained (ExtraTrees classifier) on all features in Supplementary Fig. 3F, and 
tested using a 70/30 split, using Leave-one-out cross validation.

Additional file 4: Supplementary Figure S4. Information support-
ing the distinction between ICD and CCD A) Log2 scaled abundance of 
Gelsolin among various categories in study. Multiple comparison statistics 
performed using Brown-Forsythe and Welch ANOVA, * = p < 0.05, ** = p 
< 0.01, *** = p < 0.0005.
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