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Cryo-EM structure of an active bacterial TIR–
STING filament complex

Benjamin R. Morehouse1,2, Matthew C. J. Yip3, Alexander F. A. Keszei3,  
Nora K. McNamara-Bordewick2, Sichen Shao3 ✉ & Philip J. Kranzusch1,2,4 ✉

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly 
conserved in both innate immunity in animals and phage defence in prokaryotes1–4. 
Activation of STING requires its assembly into an oligomeric filament structure 
through binding of a cyclic dinucleotide4–13, but the molecular basis of STING filament 
assembly and extension remains unknown. Here we use cryogenic electron microscopy 
to determine the structure of the active Toll/interleukin-1 receptor (TIR)–STING 
filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based 
antiphage signalling system (CBASS) defence operon. Bacterial TIR–STING filament 
formation is driven by STING interfaces that become exposed on high-affinity 
recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric 
STING units stack laterally head-to-head through surface interfaces, which are also 
essential for human STING tetramer formation and downstream immune signalling in 
mammals5. The active bacterial TIR–STING structure reveals further cross-filament 
contacts that brace the assembly and coordinate packing of the associated TIR NADase 
effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface 
and cross-filament contacts are essential for cell growth arrest in vivo and reveal a 
stepwise mechanism of activation whereby STING filament assembly is required for 
subsequent effector activation. Our results define the structural basis of STING 
filament formation in prokaryotic antiviral signalling.

Activation of STING signalling results in assembly of oligomeric fila-
ment structures that have been observed in both human innate immu-
nity and bacterial antiphage defence4–13. Key early findings supporting 
STING oligomerization as a required step of activation include obser-
vation of STING puncta formation in cells9, electrophoresis analysis 
of STING multimeric complexes10,11 and artificial activation of STING 
on fusion to multimerization domains12. More recently, insight into 
the structural basis of mammalian STING oligomerization has been 
obtained through analysis of STING crystal packing7 and cryogenic 
electron microscopy (cryo-EM) structures of tetrameric STING com-
plexes5,13. Strict conservation of filament formation in prokaryotic 
STING signalling suggests that prokaryotic and metazoan STING sig-
nalling domains share an ancient mechanism of signal induction4. To 
define the molecular basis of STING filament formation, we recon-
stituted signalling of the S. faecium TIR–STING (Sf STING) antiphage 
effector in vitro and used single-particle cryo-EM to determine the 
structure of the activated complex (Fig. 1a and Extended Data Figs. 1, 
2, 3 and 8). In response to the nucleotide second messenger c-di-GMP 
produced during cyclic oligonucleotide-based antiphage signalling 
system (CBASS) immunity, Sf STING rapidly assembles into oligomers 
that form single filaments and antiparallel double-filament structures 
that make supra-molecular contacts between STING and TIR domains 
of opposing filaments (Extended Data Figs. 1 and 2). The TIR domains 

are not as well resolved in the main double-filament class, probably 
owing to conformational heterogeneity, and we therefore focused 
structural analysis on the single-fibre filaments. A 3.3-Å-resolution 
cryo-EM reconstruction of the dominant class of single-fibre filaments 
reveals that Sf STING oligomerizes through formation of a repeat-
ing laterally translated array of parallel stacked protein dimers that  
buries more than 3,000 Å2 of surface area between two pairs of dimers 
and locks the STING cyclic dinucleotide (CDN)-binding domain and 
associated TIR effector domains into filamentous assemblies capable 
of reaching greater than 300 nm in length (Fig. 1a).

Architecture of Sf STING filaments
To explain how CDN signal recognition drives filament formation, we 
determined the cryo-EM structure of Sf STING bound to the weakly 
activating ligand 3′,3′-cGAMP (ref. 4; Extended Data Figs. 2 and 3). 
Compared with the modelled open apo state and partially closed 
3′,3′-cGAMP-bound conformations, recognition of the signal from 
the correct nucleotide, c-di-GMP, induces an inward rotation of the 
Sf STING β-strand ‘lid’ region of about 25° and about 9° respectively and 
results in formation of a tightly closed complex (Fig. 1b and Extended 
Data Fig. 4). Tighter lid closure is driven by repositioning of the highly 
conserved Sf STING lid domain residue R234 to form base-specific 
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contacts with the guanosine Hoogsteen edge, mirroring interactions 
required for high-affinity complex formation between human STING 
and the cGAS product 2′,3′-cGAMP (refs. 14,15; Fig. 1c). The partially 
closed 3′,3′-cGAMP-bound Sf STING conformation allows incomplete 
oligomerization and is incompatible with stable filamentous pack-
ing beyond about 4–6 units (or about 20 nm). Compared to the fully 
active Sf STING–c-di-GMP filament structure, 3′,3′-cGAMP recognition 
induces partial closure of the lid domain and an overall conformation of 
the STING CDN-binding domain (CBD) that probably weakens contact 
sites observed for c-di-GMP-induced filaments. Additionally, a lack of 
well-defined density for the TIR domains in the 3′,3′-cGAMP filaments 
suggests conformational flexibility that may impact stability of the 
filaments. Sf STING binds to c-di-GMP with about 300 nM apparent 
affinity (Kd) and a low nanomolar concentration of c-di-GMP is sufficient 
to initiate robust NADase activity4. Our previous results demonstrate 
that 3′,3′-cGAMP binds with slightly weaker affinity (about 700 nM Kd) 
and is unable to induce robust TIR NADase activity, findings that are 
now explained by our cryo-EM analysis. Thus, complete closure of the 
lid domain and structural compression around the high-affinity ligand 
c-di-GMP is essential to translate CDN recognition into a conformation 
sufficient to seed STING protein-filament formation and downstream 
signal induction.

In the Sf STING–c-di-GMP complex, individual dimeric units adopt a 
two-fold symmetric conformation and form the basic repeating build-
ing block of the filament structure (Fig. 1a, right). In each Sf STING  
dimer unit, the canonical V-shaped STING CBD is positioned above 
two TIR enzymatic NADase domains that dock against the base of the 

receptor (Fig. 1a and Extended Data Figs. 4 and 5). The Sf STING CBD 
contains a unique β-hairpin insertion immediately following the stem 
dimerization helix, but otherwise adopts the same minimized fold and 
highly conserved CDN-binding pocket previously observed in crystal 
structures of Flavobacteriaceae sp. and Capnocytophaga granulosa 
bacterial STING (ref. 4). In the active-state Sf STING filament structure, a 
short linker sequence connects the α-helix stem of each STING domain 
to the TIR effector domain (Extended Data Fig. 4e). Previously, struc-
tures of a TIR–STING homologue from the oyster Crassostrea gigas 
and the human transmembrane domain-containing STING in inactive 
states revealed a twisted linker sequence that connects the effector 
domain to the STING domain located across the dimeric interface4,5,13 
(Extended Data Fig. 4e). The active-state conformation of the chicken 
Gallus gallus STING–2′,3′-cGAMP complex exhibits a parallel linker 
orientation similar to the Sf STING filament, suggesting that parallel 
linker orientation is a defining feature of both prokaryotic and meta-
zoan STING activation5,6.

Mechanism of Sf STING oligomerization
TIRs are widespread NADase effector domains encoded in CBASS,  
Pycsar and Thoeris antiphage defence systems4,16,17, but no previous TIR 
active-state structures exist to explain the mechanism of NAD+ hydrolysis. 
The Sf STING TIR domain is most closely related to plant immune proteins 
and secreted bacterial effectors that catalyse glycosidic bond hydroly-
sis during immune defence and interspecies conflict17–21. The Sf STING 
residues F83, F85, L87 and L89 within the highly conserved TIR helix αC 
interface form extensive hydrophobic packing interactions that bridge 
the dimeric unit, and the Sf STING TIR domain also contains a unique βD′ 
and βE′ strand insertion in the TIR ‘CC loop’ that further extends the dimer 
interface (Fig. 2a–c and Extended Data Fig. 5). Structural comparison with 
the human SARM1 TIR–ribose structure demonstrates that the Sf STING 
NAD+-binding pocket is formed by two regions: a set of hydrophobic 
residues, F6, W33, F37 and L47, positioned to stack the substrate nicoti-
namide; and a set of hydrophilic residues, S10, R78 and N80, positioned 
to coordinate the phosphodiester linkage and ribose of the adenosine 
base19 (Fig. 2d). In addition to the highly conserved Sf STING catalytic 
residue E84, the NADase active site is completed by residue D110 from 
the opposite TIR dimer mate (Fig. 2d and Extended Data Fig. 5).

The active Sf STING–c-di-GMP structure reveals a series of protein–
protein interfaces that explain a shared mechanism of STING filament 
formation. The primary STING filament interface occurs along two 
surfaces that pack between adjacent Sf STING dimeric units and drive 
lateral head-to-head oligomerization (Fig. 3a and Extended Data Fig. 6).  
These surfaces centred around the hydrophobic residues V280and  
A309 are exposed in the closed Sf STING domain conformation, explain-
ing a key mechanism that couples c-di-GMP recognition and filament 
nucleation (Extended Data Fig. 6). Individual STING-domain protomers 
(STINGa and STINGb) within the Sf STING filament are also bridged by 
an electrostatic interaction between STINGa R307 and STINGb E290 
(Fig. 3b). Notably, the previous cryo-EM structure of a chicken STING–
2′,3′-cGAMP tetramer contains residues Q278 and D280 involved in a 
similar interaction and hydrophobic surfaces packed along the same 
STING–STING protein interface, revealing remarkable conservation 
of an ancient mechanism of STING oligomerization5 (Fig. 3a,b). In the 
full Sf STING filament structure, the STING domains are more tightly 
packed compared to those in the minimal chicken/human STING 
tetramer model. Additionally, a modest approximately 2° shift between 
packed Sf STING dimeric units is observed in both the single-fibre and 
wrapped double-fibre cryo-EM reconstructions, resulting in the active  
Sf STING filament structure adopting a slight curve (Extended Data Fig. 1).  
Assembly of the complete Sf STING filament allows formation of a 
second cross-filament interface between the STING domain residues 
N278 and Q279 and residue E95 in the TIR domain associated with the 
adjacent protomer (Fig. 3c and Extended Data Fig. 6). Cross-filament 
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Fig. 1 | Cryo-EM structure of the active TIR–STING filament. a, Left,  
Sf STING domain organization (top) and cryo-EM density map of the active 
Sf STING–c-di-GMP filament complex (bottom). The colouring of the density 
for one dimer is used to highlight the filament organization, with TIR in pink 
and the STING CBD in orange. Right, an isolated SfSTING protomer (dimer) 
rotated 90° along the vertical axis relative to the orientation of the filament on 
the left. c-di-GMP is shown as a purple stick model. b, Left, a comparison of the 
apo (grey; top) versus the c-di-GMP-bound (orange, inside grey; bottom) 
Sf STING CBD highlighting the V-shaped homodimer closing in on the ligand. 
The apo Sf STING CBD was modelled through structural alignment with the 
crystal structure of a related prokaryotic TIR–STING from C. granulosa (Protein 
Data Bank (PDB) 6WT4)4. Right, a top-down view highlighting the closure of the 
β-strand ‘lid’ (90° rotated). c, A close-up view of the c-di-GMP-binding pocket of 
Sf STING. Several side chains make direct contacts to the c-di-GMP. Symmetry- 
related contacts are not shown for clarity.
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TIRa–TIRb interactions are also formed between two flexible Sf STING TIR 
loops (BB loop: P32a–G43a; and DD loop: A101b–K118b) that stack on top 
of one another (Fig. 3d). Comparison of the active Sf STING–c-di-GMP 
complex with the inactive apo C. granulosa bacterial STING structure 

reveals substantial rearrangements in the STING domain necessary to 
enable reorganization and TIR-domain packing4 (Extended Data Fig. 4).  
Close packing is required to allow the TIR D110 loop to reach across 
and complete the dimer-mate active site, providing an explanation for 
how Sf STING filament formation triggers NADase domain activation 
(Figs. 2d and 3d and Extended Data Fig. 5).

Filamentation controls NADase activity
We next combined the bacterial STING filament structure with biochem-
ical and cellular analysis of Sf STING function to establish a molecular 
model of STING activation. Measuring degradation of a fluorescent 
NAD+ analogue, we observed that Sf STING alterations predicted to 
disrupt STING–STING, STING–TIR and TIR–TIR cross-filament inter-
action surfaces each strongly inhibit NADase enzymatic activity in 
vitro (Fig. 4a and Extended Data Fig. 7). The Sf STING substitutions 
V280D, E290K and R307E within the STING oligomerization interface 
disrupted all detectable NAD+ hydrolysis. Likewise, Sf STING variants 
with substitutions in the STING–STING interface (N208D and A309R) 
and STING–TIR interface (R52E, K142D, N278E, Q279E and D285K) 
exhibit weak NADase activity only at 10–100× protein concentration, 
suggesting defects in the ability to oligomerize and catalyse NAD+ cleav-
age (Fig. 4a and Extended Data Fig. 7). Each Sf STING filament interface 
mutant retains the ability to form a stable, high-affinity complex with 
c-di-GMP, demonstrating that inhibition of NADase function is not 
due to impaired protein stability or ligand interaction (Extended Data 
Fig. 7 and Supplementary Fig. 1). Negative-stain electron microscopy 
analysis confirmed that the absence of NADase activity is a direct result 
of Sf STING interface mutants specifically losing the ability to form an 
active filament complex (Fig. 4b and Extended Data Fig. 7). Replacement 
of the TIR BB loop within the principal TIRa–TIRb interaction site with 
a glycine linker sequence (ΔA36–K41) resulted in complete disrup-
tion of NADase function (Fig. 4a and Extended Data Fig. 7). However, 
this Sf STING TIR mutant retains the ability to oligomerize into a fila-
ment in the presence of c-di-GMP, demonstrating that STING–STING 
interactions are the main driver of filamentation and that secondary 
TIR–TIR cross-filament interactions are required only for induction 
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of NADase catalysis. We also observe that a D110A mutant retains the 
ability to recognize c-di-GMP and form long protein filaments but loses 
all ability to initiate NADase activity, providing further evidence for the 
essential role of filament formation in the activation mechanism of 
Sf STING (Extended Data Fig. 7). We expressed Sf STING in Escherichia 
coli, a bacterium that constitutively produces the activating ligand 
c-di-GMP, and confirmed that each Sf STING filament interaction inter-
face is essential for STING-induced growth arrest in vivo (Fig. 4c and 
Extended Data Fig. 7).

Our results provide a complete structural model of bacterial STING 
filament formation and effector domain activation in CBASS antiphage 
defence (Fig. 4d). STING-mediated antiphage defence begins when 
the associated CBASS protein CdnE, a cGAS/DncV-like nucleotidyl-
transferase that recognizes a yet unknown phage cue, senses bacte-
riophage infection and initiates synthesis of the antiviral nucleotide 
second messenger c-di-GMP (refs. 4,22,23). c-di-GMP is a high-affinity 
ligand that binds STING in a central chamber formed at the receptor 
homodimeric interface. Cognate CDN signal recognition induces a 
conformational change in the STING β-strand lid domain that enve-
lopes c-di-GMP in a closed receptor complex. Next, the conformational 
change induced on complete lid closure exposes surface contact sites 
that create an interface for nucleating STING filament formation. STING 
filament extension is driven primarily by STING–STING contacts and 
cross-filament contacts between STING and the associated TIR effector  
domain. Finally, filament assembly leads to TIR–TIR interactions that 
rearrange the NADase active site to stimulate NAD+ degradation and 
an abortive infection response that prevents phage propagation. 
In further support of our model of TIR NADase activation in CBASS 
antiphage defence, another study has determined the high-resolution 
structure of a distinct CBASS effector named TIR-SAVED that demon-
strates that cyclic oligonucleotide binding induces a curved protein 
filament responsible for TIR NADase activation24. In animal cells, pro-
tein oligomerization has emerged as a general principle controlling 
rapid induction of innate immune signalling25. Our structural analysis 
of bacterial STING activation defines the molecular basis of STING 
filament formation and demonstrates remarkable conservation of 
oligomerization as a unifying mechanism controlling both prokaryotic 
and metazoan antiviral immune defence.
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Methods

Synthetic nucleotide ligands
Synthetic CDN ligands were purchased from Biolog Life Science Insti-
tute: c-di-GMP (catalogue number C 057) and 3′,3′-cGAMP (catalogue 
number C 117). Benzamide adenine dinucleotide was a gift from Frank 
Schwede (Biolog Life Science Institute).

Protein expression and purification
Recombinant bacterial Sf STING protein was recombinantly 
expressed and purified as previously described4. Briefly, all con-
structs were cloned using Gibson assembly into a modified pET16 
vector for expression of recombinant amino-terminal 6×His-fusion 
proteins in BL21-CodonPlus(DE3)-RIL E. coli (Agilent)26. The 
TIR-to-TIR cross-filament contact mutant ΔA36–K41 was designed 
as a glycine-serine loop replacement (D35-GSGG-S42). Inoculated 1-l 
M9ZB cultures (0.5% glycerol, 1% Cas-amino acids, 47.8 mM Na2HPO4, 
22 mM KH2PO4, 18.7 mM NH4Cl, 85.6 mM NaCl, 2 mM MgSO4 and trace 
metals, supplemented with 30 mM nicotinamide to limit TIR toxic-
ity) were grown at 37 °C with 230 r.p.m. shaking. Cultures reaching 
an optical density at 600 nm (OD600nm) > 2.5 were induced with a final 
IPTG concentration of 500 μM and incubated at 16 °C overnight at 
230 r.p.m. Collected bacterial pellets were sonicated in lysis buffer 
(20 mM HEPES-KOH pH 7.5, 400 mM NaCl, 30 mM imidazole, 10% glyc-
erol and 1 mM dithiothreitol) and purified by gravity flow over Ni-NTA 
resin (Qiagen). Resin was washed once with lysis buffer supplemented 
to 1 M NaCl, and recombinant protein was eluted with 300 mM imida-
zole. Protein was dialysed overnight at 4 °C (20 mM HEPES-KOH pH 7.5, 
250 mM KCl, 10% glycerol and 1 mM dithiothreitol). Dialysed protein was 
concentrated with 30-kDa-cutoff Amicon centrifuge filters (Millipore) 
before loading onto a 16/600 Superdex 200 size-exclusion column 
(Cytiva) equilibrated in gel filtration buffer (20 mM HEPES-KOH pH 7.5, 
250 mM KCl, 1 mM TCEP). Protein purity was assessed by denaturing 
gel before concentrating samples to >10 mg ml−1 and flash freezing in 
liquid nitrogen for storage at −80 °C.

Cryo-EM sample preparation and data collection
On exposure to the activating ligand c-di-GMP, solutions of puri-
fied Sf STING immediately begin filament formation and become 
visibly cloudy. For the first c-di-GMP dataset, Sf STING at 1 mg ml−1 
was rapidly mixed with a 3× molar concentration of c-di-GMP (84 µM), 
immediately applied to glow-discharged 1.2/1.3 Cu 300 mesh grids 
(Quantifoil), and frozen in liquid ethane within 10 s of mixing using a 
Vitrobot Mark IV (Thermo Fisher) set at 4 °C and 100% humidity with 
no wait time, 3 s blot time and +8 blot force. For the second c-di-GMP 
dataset, Sf STING at 1 mg ml−1 was pre-incubated with 1 mM benzamide 
adenine dinucleotide before rapid mixing with 84 µM c-di-GMP and 
frozen as above. Semi-automated data collection was performed 
with SerialEM v3.8.5 and v3.8.6. Grids were imaged on a Titan Krios 
(Thermo Fisher) operating at 300 kV equipped with a BioQuantum 
K3 imaging filter with a 20-eV slit width and a K3 summit direct elec-
tron detector (Gatan) in counting mode at a nominal magnification 
of 105,000× corresponding to a calibrated pixel size of 0.825 Å. For 
the first dataset, a total exposure time of 1.6 s, corresponding to a 
total dose of 55.5 electrons Å−2, was fractionated over 49 frames. For 
the second dataset, a total exposure time of 1.29 s, corresponding 
to 51.7 electrons Å−2, was fractionated over 51 frames. The defocus 
targets were −1.2 to −2.1 µm for the first dataset and −1.2 to −2.5 µm 
for the second dataset.

For the 3′,3′-cGAMP dataset, Sf STING at 1 mg ml−1 was rapidly mixed 
with a 3× molar concentration of 3′,3′-cGAMP (84 µM) and frozen as 
described above. The 3′,3′-cGAMP dataset was collected on a Talos 
Arctica (Thermo Fisher) operating at 200 kV equipped with a K3 direct 
electron detector (Gatan) in counting mode at a nominal magnifica-
tion of 36,000× corresponding to a calibrated pixel size of 1.1 Å. A total 

exposure time of 4.494 s, corresponding to a total dose of 52.9 elec-
trons Å−2, was fractionated into 50 frames. The defocus targets were 
−1.4 to −2.6 µm.

Cryo-EM image processing and model building
Data processing was performed in cryoSPARC v3.1.018 (ref. 27) and 
RELION-3.1 (ref. 28). For the c-di-GMP datasets, patch-based motion 
correction and CTF estimation was performed in cryoSPARC. Micro-
graphs with severe contamination or poor contrast transfer function 
(CTF) fits were removed. Automated particle picking was performed 
in cryoSPARC with the template picker, using templates generated 
from either the filament tracer (first dataset) or the blob-based picker 
(second dataset). The particles were extracted with a box size of 320 
and downsampled to a box size of 160 for initial two-dimensional (2D) 
classification and refinement steps.

For the c-di-GMP-bound Sf STING single-filament reconstruction, 
particle coordinates from the filament tracer and template-based 
picking in the first c-di-GMP dataset were combined, and duplicate 
coordinates closer than 40 Å were removed. A total of 277,287 coor-
dinates corresponding to single-filament classes after heterogeneous  
refinement were imported into RELION. The second dataset had more 
bundled filaments and did not contribute to the single-filament recon-
struction. Global and local (12 × 8 patches) motion correction was 
repeated in RELION using MotionCor2 v1.4.0 (ref. 29), followed by CTF 
estimation with GCTF v1.06 (ref. 30). After 2D classification and 3D 
refinement, 270,695 particles were subjected to signal subtraction 
using a mask around the central filament, followed by 3D classifica-
tion without alignment. A total of 206,965 particles were reverted and 
subjected to two rounds of CTF refinement and a round of Bayesian 
polishing. One 3D classification without alignments was performed 
with the polished particles using a mask around the central filament. 
A class containing 26,447 particles that best resolved both the TIR and 
STING domains was selected for a final round of 3D refinement. In our 
analysis, Sf STING activation is observed as individual filaments that 
range in size with some filaments reaching >300 nm in length (about 
85 dimer copies, about 6.3 MDa). Particles selected for processing 
and high-resolution structural analysis include density for at least 5 
Sf STING dimer copies.

For the c-di-GMP-bound Sf STING double-filament reconstruc-
tion, multiple rounds of heterogeneous refinement were performed 
independently on each dataset in cryoSPARC to isolate particles con-
tributing to the best reconstructions of a double filament after 3D 
non-uniform refinement. The final reconstructions contained 176,549 
particles in the first dataset and 178,579 particles in the second dataset. 
As no further density corresponding to the benzamide adenine dinu-
cleotide analogue or other differences were observed in the maps, the 
double-filament particle coordinates from the two datasets were com-
bined and subjected to local motion correction, CTF refinement and 
non-uniform refinement. For all datasets, attempts to apply symmetry 
or helical parameters resulted in inferior reconstructions because the 
Sf STING dimers are not exactly symmetrically related in the oligomeric 
complexes.

For the 3′,3′-cGAMP dataset, patch-based motion correction and 
CTF estimation was performed in cryoSPARC. Micrographs with 
severe contamination or poor CTF fits were removed. Automated 
particle picking was performed in cryoSPARC with the template 
picker using templates generated from the blob-based picker. 
The particles were extracted with a box size of 280 and subjected 
to 2D classification followed by ab initio reconstruction and 3D 
non-uniform refinement. The resulting map and corresponding 
261,685 particle coordinates were exported to RELION. Global and 
local (12 × 8 patches) motion correction and CTF estimation was 
repeated in RELION using MotionCor2 and GCTF respectively. After a 
round of 3D classification, 105,567 particles in classes with clear den-
sity for all four strands were subjected to CTF refinement, Bayesian 



polishing and 3D refinement without and with a mask around the 
two most defined strands.

The FsSTING (PDB 6WT5) CBD was used as a starting model docked 
into the single-fibre c-di-GMP-bound Sf STING density in Coot followed 
by iterative manual model building31. The c-di-GMP-bound Sf STING 
dimer was used as the starting model in the c-di-GMP-bound double 
filament and 3′,3′-cGAMP-bound oligomer. In the c-di-GMP double 
filament, individual secondary structure elements of the TIR domains 
of the central dimer that interacts with the STING domain of the other 
filament were placed by rigid fitting and manually adjusted in Coot. 
N-terminal portions of the TIR domain where side chains were not 
visible were converted to polyalanine. The TIR domains of all other 
Sf STING dimers in the c-di-GMP double filament and 3′,3′-cGAMP  
oligomer were removed. The 3′,3′-cGAMP-bound Sf STING dimers 
probably contain a combination of the 3′,3′-cGAMP orientation mod-
elled and an approximately 180° rotation. Multiple rounds of Phenix 
real-space refine32 was applied with manual correction in Coot in 
between. Model validation was performed in Phenix using MolPro-
bity (ref. 33). Figure panels were generated using ChimeraX (ref. 34) 
and PYMOL (v2.5.1). Software for data processing and modelling was 
configured in part by SBGrid (ref. 35).

Analysis of TIR NAD+ cleavage activity with fluorescent 
nicotinamide 1,N6-ethenoadenine dinucleotide
Plate reader reactions to assess NADase function were prepared as 
described previously4. Reactions were built in 50 µl final volume with 
reaction buffer (20 mM HEPES-KOH pH 7.5, 100 mM KCl), 500 µM 
nicotinamide 1,N6-ethenoadenine dinucleotide; (ε-NAD, Sigma), 
0.1–10 µM enzyme and 20 µM c-di-GMP. Reactions were prepared as 
master mixes in PCR-tube strips and initiated by adding nicotinamide 
1,N6-ethenoadenine dinucleotide immediately before placing into the 
plate reader. Fluorescence emission at 410 nm was read continuously 
over 40 min using a Synergy H1 Hybrid Multi-Mode Reader (BioTek) 
after excitation at 300 nm. Plots were generated with GraphPad Prism 
9.3.0.

Electrophoretic mobility shift assay
Sf STING interactions with radiolabelled c-di-GMP were monitored by 
electrophoretic mobility shift assay as previously described4. In brief, 
10-μl reactions contained 1× buffer (5 mM Mg(OAc)2, 50 mM Tris-HCl 
pH 7.5, 50 mM KCl) with a final protein concentration of 20 μM and 
about 1 μM α32-P-labelled c-di-GMP generated by overnight reaction 
of purified Vibrio cholerae DncV with GTP (about 0.1 μCi). Reactions 
were incubated for 5 min at 25 °C and separated on a 6% nondenaturing 
polyacrylamide gel held at 100 V for 45 min in 0.5× TBE buffer. Gels 
were fixed (40% ethanol and 10% glacial acetic acid) before drying 
at 80 °C for 1 h. Dried gels were then exposed to a phosphor stor-
age screen and imaged on a Typhoon Trio Variable Mode Imager (GE 
Healthcare).

Negative-stain EM sample preparation, data collection and 
image analysis
Wild-type or mutant Sf STING (1 µM) was incubated with 10 µM 
c-di-GMP in buffer (20 mM HEPES-KOH pH 7.5, 250 mM KCl, 1 mM 
TCEP) for 15 min on ice. The mixture was then directly applied to a 
glow-discharged (30 s, 30 mA) 400-mesh Cu grid (Electron Micros-
copy Sciences, EMS-400Cu) coated with an approximately 10-nm 
layer of continuous carbon (Safematic CCU-010) for 30 s. After side 
blotting, the grid was immediately stained with 1.5% uranyl formate 
and then blotted again from the side. Staining was repeated twice 
with a 30-s incubation with uranyl formate in the final staining step. 
EM images were collected on a FEI Tecnai T12 microscope operating at 
120 keV and equipped with a Gatan 4K × 4K CCD camera at a nominal 
magnification of 52,000× corresponding to a pixel size of 2.13 Å and 
at a defocus of about 1 µm.

STING toxicity analysis in E. coli
Sf STING and mutant constructs as well as an sfGFP negative-control 
construct were cloned into pET vectors for IPTG-inducible expres-
sion. E. coli BL21 (DE3) (NEB) were transformed with these plasmids 
and then plated on LB medium plates supplemented with 100 μg ml−1 
ampicillin. After overnight incubation, three colonies from these plates 
were used to inoculate 5-ml MDG liquid cultures (0.5% glucose, 25 mM 
Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4, 
0.25% aspartic acid and trace metals) supplemented with 100 μg ml−1 
ampicillin and grown overnight at 37 °C with 230 r.p.m. shaking. Cul-
tures were diluted 1:50 into fresh M9ZB medium (supplemented with 
100 μg ml−1 ampicillin) and grown for 3 h at 37 °C with 230 r.p.m. shak-
ing. Cultures were then diluted to a uniform OD600nm in M9ZB medium 
and further diluted 1:5 into fresh M9ZB medium supplemented with 
5 μM IPTG to induce protein expression. A 200 μl volume of induced 
culture was added to a 96-well plate in technical triplicate and OD600nm 
was recorded over 300 min in a Synergy H1 Hybrid Multi-Mode Plate 
Reader (BioTek) shaking at 37 °C. Plots were generated with GraphPad 
Prism 9.3.0.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Coordinates and density maps have been deposited with the PDB 
and the Protein Data Bank in Europe under the following accession 
codes: Sf STING single fibres with c-di-GMP—7UN8 and EMD-26616; 
Sf STING double fibres with c-di-GMP—7UN9 and EMD-26617; Sf STING 
short fibres with 3′,3′-cGAMP (masked)—7UNA and EMD-26618; and  
Sf STING short fibres with 3′,3′-cGAMP—EMD-26619. Data that support 
the findings of this study are available within the article and its Extended 
Data and Supplementary Information. Source data are provided with 
this paper.
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Flavobacteriaceae sp. FsSTING (PDB 6WT4)4. Superposition RMSD of 2 Å with a 
sequence identity in the STING CBD of only 25% highlights the incredible 

degree of structural conservation in this family of bacterial proteins and 
exemplifies the shared mechanism for cyclic dinucleotide recognition.  
d, Conservation of bacterial STING sequence plotted on the Sf STING 
monomeric STING CBD domain. Conservation based on multiple sequence 
alignment of 102 bacterial STING CBD sequences. Analysis and colouring done 
using the ConSurf webserver36. Conservation scores range from 1 to 9 with 
increasing conservation. Highest conservation is evident within the core CDN 
binding pocket and along the dimerization interface. Weak conservation is 
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STING CBD structures omitted for clarity.
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(red- negative, blue- positive, white- neutral). Mainly net-neutral charged loop 
projections mediate filament contacts (left). Dimer electrostatics at the 
tetramer filament interface for Sf STING and human STING (middle and right, 
respectively). Conserved patches of negative and positive charge are circled.  
b, Alternative views of the TIR dimerization interface. The TIR CC loop βD′ and 
βE′ insertion in the TIR domain of SfSTING (left) with symmetry related side 
chains omitted for clarity. Residue D110 from the DD loop is positioned by 
filament contacts to insert directly into the active site of the opposing 

symmetry mate (right). c, Global comparison of Sf STING TIR domain monomer 
with prokaryotic BcThsB (Bacillus cereus MSX-D12 TIR from the Thoeris phage 
defense system, PDB 6LHY)20; SrMilB (Streptomyces rimofaciens hmCMP 
glycosylhydrolase PDB 4OHB)37; and eukaryotic TIRs VrRun1 (Vitis rotundifolia 
plant NLR important for resistance to grapevine disease, PDB 7RX1)21; SARM1 
(Homo sapiens TIR domain containing protein important for axonal 
degeneration, PDB 6O0Q)19. αC denoted for orientation and because it 
contains the catalytic glutamate residue in each structure. While all TIR-like 
proteins generally share a common fold, dashed regions indicate unique and 
poorly conserved structural elements found within several characterized 
active hydrolases.
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Extended Data Fig. 6 | Structural analysis of the SfSTING cross-filament 
contacts. a, Diagonal cross-filament contacts. SfSTING filaments are 
organized along mainly two planes, one separating pseudosymmetric dimer 
mates and one at the interface between ‘tetrameric’ dimers (left). Diagonal 
cross-filament interactions are those that cross the ‘tetramer’ and dimer 
planes. Additional views of TIR to TIR (middle, STINGs removed for clarity) and 
STING to STING (right, TIRs removed for clarity) contacts not detailed in main 
text. S42 is on the TIR BB loop and D112 and G113 are on the TIR DD loop. The 

STING loops containing P276 and S277 do not make direct electrostatic 
contacts but do make up a nearly continuous surface that effectively links the 
cross-tetramer plane related mates. b, Hydrophobic STING to STING 
cross-filament interactions. The non-polar side chain of V280 extends from a 
mostly polar and unstructured loop into a hydrophobic cavity formed across 
the filament ‘tetramer’ interface (left). A309 and A310 brace the hydrophobic 
face of an opposing α-helix from a STING ‘tetramer’ mate (right).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Mutational analysis of the SfSTING cross-filament 
contacts. a, Raw plate reader NADase assay measuring fluorescence increase 
over time as a proxy for NAD+ degradation. At 1 μM enzyme, WT* and E95Q* 
mutant Sf STING consume the ε-NAD substrate within the deadtime of the 
experiment (flat maximal signal). Error bars indicate standard deviation for 
average of three technical replicates. ΔA36–K41, Q279E, V280D, E290K, R307E, 
and D110A* (grey) show no activity at this enzyme concentration, and lines are 
obscured by other inactive construct curves. D110A* indicates that this is not a 
filament contact mutant but an intradimeric contact mutant. b, Bar-graph 
representation of NADase activity for mutant D110A similar to presentation in 
Fig. 4a. NADase activity is measured as fluorescence intensity at 5 min. Each bar 
within a set corresponds to 0.1, 1, and 10 μM enzyme. Baseline threshold 
indicates background fluorescent signal. Error bars indicate standard 
deviation for average of three technical replicates. Data representative of three 
independent biological replicates. One-way ANOVA comparison of mutant to 
WT at the same protein concentration with statistically significant mean values 

(P < 0.0001) marked by * or otherwise are greater than P = 0.05 and considered 
not significantly different. c, EMSA showing radiolabelled c-di-GMP binding to 
WT, D110A, and V280D mutant Sf STING. Note: lack of probable filament band 
for the V280D mutant. Image representative of n = 2 experiments. d, EMSA 
showing radiolabelled c-di-GMP binding to all mutants. Note: lack of probable 
filament band for majority of mutants, consistent with lack of observed 
filaments by electron microscopy. e, Extended negative-stain EM micrographs 
for all mutants in the presence of c-di-GMP. Scale bar represents 100 nm. 
Images representative of n ≥ 3 experiments. f, Extended plate reader growth 
curve assay data for most tested mutants. WT* and GFP* curves are identical to 
Fig. 4c. All curves represent the mean of 3 technical replicates. Data 
representative of >2 independent biological replicates. g, Plate reader growth 
curve assay for additional mutants V280D and D110A. All curves represent the 
mean of 3 technical replicates. Data representative of >2 independent 
biological replicates.
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Magnification    105,000 105,000 36,000  
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    FSC threshold 
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Model resolution range (Å) 28-3.4 33-3.4  49-4.2 
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    Non-hydrogen atoms 
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B factors (Å2) 
    Protein 
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59.7 
46.3 
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44.1 
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R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 
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 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
2.06 
13.44 
0 

 
1.61 
7.7 
0.05 

  
2.09 
13.42 
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 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
93.5 
6.3 
0.2 

 
96.9 
3.1 
0 

  
92.9 
7.1 
0 

Extended Data Fig. 8 | Cryogenic-electron microscopy data summary table. Table containing details of cryo-EM data collection, processing, and refinement 
including relevant statistics for all maps and models generated in this study.
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