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Abstract
In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-
mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and
therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic
research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor
genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the
near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds
in vitro and provide new solutions for cell replacement and precise therapies.
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Induced Pluripotent Stem Cell (iPSC)
Technology

In 2006 and 2007, Dr. Takahashi and Dr. Yamanaka over-

expressed four pluripotency-related transcriptional factors

(octamer-binding transcription factor 4 (Oct4), Kruppel-

like factor 4 (Klf4), sex-determining region y box 2

(Sox2), and c-myc) and successfully reversed mouse and

human somatic cells back to a pluripotent status. These

embryonic stem cell (ESC)-like cells are called induced

pluripotent stem cells (iPSCs)1,2. iPSCs share similar

properties with ESCs, including self-renewal, a normal

karyotype, a 3-germlayer cell formation and germline

transmission ability1,2. These unique advantages of

ESC-like properties and personalized fabrication from

somatic cells rapidly garnered world-wide attention to

this technology. Accumulative research has steered the

fundamental improvement of the efficacy of iPSC estab-

lishment, including culture conditions, optimal cell

sources2,3, vector designs4–8, and reprogramming assistance

by proteins and small molecules9–11. Notably, Dr. Hou

reported the success of iPSC production by chemical

induction without the introduction of Yamanaka factors12.

Currently, iPSCs are widely applied in basic research and

have become a reliable in vitro platform for developmen-

tal studies, disease modeling and drug screening (Fig. 1).

Genome modifications in pluripotent stem cells

(PSCs) will fundamentally improve the feasibility for

researchers to delineate the cell fate, patterning of gene

expression, and niche environment regulation at different

developmental stages or in 3D organoid architecture. The

following text will briefly introduce the genetic editing

tools through both random insertion and site-specific

modification.
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Development of Genome Editing Tools:
Genome Modifications Before Site-Specific
Nucleases (SSNs)

For genetic modification, there are two major strategies,

random insertion and site-specific targeting. For random

insertion, lentiviruses13 and retroviruses14 are the most com-

monly used vectors. Other well-known random insertion

tools are transposons, including Sleeping Beauty15, piggy-

Bac16, and others. Through the help of the transposase pro-

tein, DNA fragments surrounded with a terminal repeat

sequence can be randomly inserted into a host genome. Dif-

ferent from lentiviruses or retroviruses, the transposon can

be excised from the host genome via re-expression of trans-

posase and reverse back to transgene-free cell clones15,16.

Foreign DNA fragments can be inserted into the host cell

genome for different purposes, like gene-specific reporters

and gene overexpression. Despite the convenience of the

genetic tools, this approach has several shortcomings. First,

the random inserted segments may induce mutagenesis in

host cells. In addition, the expression level of random

inserted genes may be different from the natural expression

level of host cells. In some cases, the inserted genes may be

silenced, depending on the insertion sites of chromosomes.

Compared with random insertion strategies, site-specific

DNA targeting provides higher stability and accuracy for

genetic research. For instance, transcription regulatory ele-

ments of most genes are still not clear and restrict the appli-

cation of transgenic systems to genetic function research.

Site-specific DNA targeting can overcome these defects of

the transgenic approach and become powerful tools for

genetic research and therapies. To implant a foreign DNA

segment into a specific position of a chromosome, homolo-

gous recombination (HR)-based targeting is the traditional

approach. Two homologous arms on the 5’ and 3’ ends of

foreign DNA are essential for spontaneous HR17. Site-

specific HR is widely used in mouse ESCs (mESCs) for

generating knock-in/knockout mice18. Several genetically

modified human PSC (hPSC) lines have also been estab-

lished for disease models. These strategies have also been

used to establish gene-specific reporter hPSCs, such as Oct4

(a pluripotent specific marker) and Oligo2 (a neuroglia spe-

cific marker), for cell differentiation research or specific cell

lineage purification19,20.

Although the HR approach is widely applied to mESCs,

this genetic targeting approach is limited in hPSCs. The

major challenge is the dissociation-induced cell death of

hPSCs. Most hPSCs undergo anoikis and die after cell dis-

sociation due to loss of the cell–cell surface cadherin

junction21,22. This property not only reduces the DNA trans-

fection or electroporation efficiency, but also influences the

efficacy to obtain targeted hPSC lines from a single cell.

Recent evidence indicates that hPSC dissociation-induced

cell death can be inhibited by adding Y27632, which blocks

the activation of Rho/ROCK signaling pathway and sustains

the cytoskeleton architecture21–23. In addition, this cell death

can also be dramatically attenuated when the hPSCs status is

converted to naı̈ve state. Naı̈ve hPSCs share similar features

with mESCs, including cell morphologies, germline markers

expression and high survival rates in single cell status24,25.

These properties of naı̈ve hPSCs may benefit the improve-

ment of genome editing efficiency in hPSCs. Moreover,

newly-developed feeder-free and defined hPSC culture

medium fundamentally accelerate the generation of genetic

Fig. 1. Applications of induced pluripotent stem cell (iPSC) technology. iPSCs derived from patients can be differentiated into specific cell
lineages to recapitulate cytopathies for disease studies and potential drug screening. For therapies, iPSC-derived cells can provide materials
for transplantation.
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modified hPSCs by avoiding the disturbance of feeder cells

during gene transfer and increasing the homogeneity of

expanded cultured cells26–28.

The Development of Genome Editing
Tools: Site-Specific Nuclease-Mediated
Genome Editing

The efficacy of genetic editing by HR can be enhanced by

creating DNA break by SSNs. SSNs can initiate the DNA

repair system, including both homology-directed repair

(HDR) and non-homologous end joining (NHEJ). The most

widely used SSNs for genome editing are zinc-finger

nucleases (ZFNs), transcription activator-like effector

nucleases (TALENs), and clustered regularly interspaced

short palindromic repeat (CRISPR)/CRISPR-associated sys-

tem (Cas9)29 (Fig. 2).

The zinc finger domain of transcription factor, a

DNA-binding motif that recognize and bind to specific

DNA sequences, was artificially conjugated with DNA

nuclease as zinc-finger nuclease (ZFN) for human genome

targeting in 200530. ZFNs are composed of tandem repeat-

ing DNA-binding domain which recognize three bases of

nuclear acids. For the balance of DNA specificity and

targeting efficiency, 3 to 6 zinc fingers are the most suitable

length for genome editing. The most common nuclease of

ZFN is the FokI restriction enzyme31,32 (Fig. 2A). ZFNs are

widely used for human genome editing33. A clinical trial

using ZFNs to modify the chemokine receptor CCR5

for human immunodeficiency virus (HIV) therapy is now

in progress29,34–37.

Although ZFN is a powerful tool for genome editing,

there are still some limitations for this SSN. First, the opti-

mal couple between the zinc finger domain and the nucleo-

tides is a challenge. It is a tremendous work to tailor proper

amino acid sequence of the DNA-binding domain for prop-

erly fitting the variables of 3-mer DNA sequence. Second,

the pairing efficiency of nucleic acids and zinc fingers may

be influenced by up- and downstream nucleic acid

sequences and zinc finger compositions. Finally, the low

binding specificity may also cause off-target mutations and

targeting failure.

Transcription activator-like effector (TALE) nucleases

(TALENs) is another common SSN for genetic targeting and

contain both DNA-binding domain and nuclease domain.

The DNA-binding domain of TALE proteins, derived from

the plant bacterium, Xanthomonas, are composed of a series

of repeating residues with 33*35 amino acids. The 12th and

13th amino acids within a TALE residue are variable and

play major roles in DNA recognition, called repeat variable

di-residues (RVDs). Each RVD can specifically recognize a

nucleic acid (Asn-Gly for thymine, His-Asp for cytosine,

Asn-Ile for adenine, and Asn-Asn for guanine)38–40. Combi-

nations of continuous designed TALE theoretically can

recognize all DNA sequences. After DNA-binding, the FokI

nuclease can break DNAs with DSB nicks and induce HDR

or NHEJ DNA repair reactions41 (Fig. 2B).

Compared with ZFNs, TALENs have only four types of

RVDs to cover the four nucleotides. This advantage makes it

much easier to generate TALEN-targeting clones for gene

targeting. To overcome difficulties of assembling continu-

ously repeating residues, many strategies have been devel-

oped for TALEN assembly, including the Golden Gate

method, Platinum Gate method, and ligation-independent

cloning (LIC)42–46.

The Development of Genome Editing
Tools: CRISPR/Cas9

CRISPR/Cas9 system, the most common SSN from Strepto-

coccus pyogenes, is first discovered from a microbial adap-

tive immune system against phage infection47 (Table 2).

There are three components of CRISPR/Cas9-mediated

DNA recognition and cleavage: Cas nuclease, CRISPR

(cr)RNA and trans-activating crRNA (tracrRNA)48–50.

Cas9 contains two nuclease domains, HNH and RuvC, to

make a DSB48–50. For CRISPR/Cas targeting, tracrRNA pro-

motes crRNA maturation and conjugates with processed

crRNA to form small-guide (sg)RNA for targeting site rec-

ognition. The specificity of the gene targeting depends on the

pairing of targeting sequencing (also named as protospacer)

with sgRNA and protospace-adjacent motif (PAM), which

interact with Cas9 protein48–50 (Fig. 2C).

Accumulative evidence indicates that off-targeting effect

of CRISPR/Cas9 mainly causes by the high tolerance in the

sgRNA sequence (up to five mismatches) and the DSB-

induced NHEJ repair. To decrease the off-targeting rate and

increase the accuracy of genetic modification, Cas9 nickase

is generated by inactivating the RuvC nuclease region of

Cas9 (D10A mutant in RuvC) to trigger a DNA single-

strand break and predominant repair by the high-fidelity base

excision repair pathway. Paired Cas9 nickases with reverse

orientation DNA-binding are able to make double-strand

nicks (Fig. 2D). This modified Cas9 nickase approach can

improve targeting specificity by more than 50–1500-fold

compared with wild-type Cas9, and also lowers the off-

targeting rate51–53. Truncated sgRNAs may also reduce

off-targeting effects of CRISPR/Cas954.Moreover, replacing

the Cas9 with FokI, called fCas9, increased targeting speci-

ficity more than 140-fold compared with the wild-type Cas9

in human cells (Fig. 2E)55,56.

Application of SSNs in Clinical Trials

For gene therapy, the development of efficient genome tar-

geting tools provides possibilities for clinical applications.

Corrected cells may be helpful for transplantation therapies.

The first application of SSNs in clinical trials was to treat

acquired immune deficiency syndrome (AIDS). For precli-

nical AIDS therapy, researchers applied genome editing tools

to generate mutations in HIV co-receptor CCR5 that blocks

Chang et al 381



Fig. 2. Site-specific nuclease (SSN)-based genome editing tools. (A) Zinc-finger nucleases (ZFNs). Two zinc-finger nucleases (ZFNs)
cooperate for site-specific recognition with a 3-bp pairing/zinc finger and dimerized FokI to create double-strand breaks (DSBs) on DNA.
(B) Transcription activator-like effector-based nucleases (TALENs). Two TALENs cooperate for site-specific recognition with 1-bp pairing/
repeat variable di-residues (RVDs) and dimerized FokI to create DSBs on DNA. (C–E) Cas9-based SSN system. sgRNA recognizes specific
sites via Watson–Crick pairing and cleavage target DNA (C) with wild-type Cas9 (which makes DSB), (D) Cas9 nickase (double-strand
nicking with PAM-out and PAM-in orientations), and (E) FokI-dCas9 (which creates DSBs with dimerized FokI).
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HIV infection and proliferation on CD4 T-cells34–36,57. The

modified T-cells are resistant to HIV infection. Based on

the positive results, a phase I study which used ZFNs to

modify CCR5 of patient CD4 T-cells for autologous trans-

plantation was initiated in 2009. A total of 12 patients with

chronic aviremic HIV infection were enrolled, and 6 of them

were treated with CCR5-edited CD4 T cell autologous trans-

plantation. Results showed that HIV RNA levels in one

patient (this patient was heterozygous for CCR5 delta 32)

became undetectable and decreased in most patients. This

trial demonstrated the safety and curative efficacy of this

strategy. Notably, replenished CCR5 edited T-cells are

required for long-term therapy to overcome the short-term

survival of edited T-cells or alternatively using hematopoie-

tic stem cells as the next genetic engineered target for pro-

viding long-term T-cells.

Application of hPSCs in Clinical Trials

Clinical trials of PSCs have shown the safety and efficacy of

the transplantation of PSC-derived differentiating cells,

including the treating for age-related macular degeneration

(AMD), type I diabetes, Parkinson’s disease (PD), and myo-

cardial infarction (Table 1)58.

The first clinical trial using human ESCs (hESCs) tar-

geted spinal cord injury, supported by Geron company. This

phase I clinical trial was initiated in October 2010. hESC-

derived oligodendrocyte progenitor cells (GRNOPC1) were

used to treat spinal cord injury patients in the subacute

stage59. Unexpectedly, Geron halted this program in

2013. However, Asterias re-initiated this clinical trial using

the same cell type in 2016 due to the success of using

hESCs in AMD.

For type I diabetes mellitus (DM), a phase I/II clinical

trial using hESC-derived pancreatic precursor cells60 was

initiated in October 2014 by the company Viacyte. Type I

DM is caused by the loss of b-islet cells, and patients need to

inject insulin for the rest of their lives. In this trial, research-

ers used a biocompatible capsule to protect hESC-derived

pancreatic precursor cells from immune rejection61. Animal

studies revealed that these encapsulated precursor cells can

sense the blood glucose level and secrete insulin over the

long-term without the formation of a teratoma. However,

detailed results from human clinical trials are still under

investigation.

hESC-derived cardiomyocytes have potential for myo-

cardial infarct therapy. In non-human primate preclinical

studies, transplantation of ESC-derived cardiomyocytes

improved heart function after a myocardial infarct with

no ventricular arrhythmia- related problems62. For the

phase I clinical trial, hESC-derived cardiac progenitor cells

were merged with fibrin to form a patch, which was then

engrafted onto the damaged area of the heart. After 3

months, the heart function had improved without arrhyth-

mias being observed63,64.

The functional improvements of PSC-derived cells were

first validated in the AMD studies. AMD, the most common

type of blindness in the elderly, is caused by the progressive

degeneration of the retinal pigment epithelium (RPE). Star-

gardt macular dystrophy (SMD), also caused by RPE degen-

eration, is a juvenile-onset inherent disease caused by

mutations of ABCA4, ELOVL4, and PROM1. The phase I

results in AMD and SMD patients showed that no tumori-

genesis, immune rejection, and RPE outgrowth were

observed after the engraftment of ESC-derived RPE sheets.

Notably, long-term observation of these phase I/II trials

Table 1. List of current human pluripotent stem cell (hPSC)-based clinical trials.

Disease Engrafted cell type PSC type hPSC source
Current clinical

trial phase

Spinal cord injury Oligodendrocyte precursor
cell

ESC Allogenic I

Dry age-related macular degeneration & Stargardt
disease

Retinal pigment epithelium ESC Allogenic I/II

Wet age-related macular degeneration Retinal pigment epithelium
sheet

iPSC Autologous/
allogenic

I

Parkinson disease Dopaminergic neuron iPSC Allogenic I
Type I diabetes b-cell progenitor ESC Allogenic I/II
Myocardial infarction Cardiomyocyte ESC Allogenic I

ESC: embryonic stem cell; hPSC: human pluripotent stem cell; iPSC: induced pluripotent stem cells; PSC: pluripotent stem cells.

Table 2. Comparison of site-specific nuclease (SSN) genome editing tools of zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system 9 (Cas9).

SSN system DNA recognition type Targeting flexibility Easy to design and use Targeting efficiency Off-targeting effects

ZFN Protein guide, trimer þ þ þ þþ
TALEN Protein guide, monomer þþþ þþ þþ þþþ
CRISRR/Cas9 RNA guide, monomer þþþ þþþ þþþ þ
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revealed that transplanted RPE cells were integrated with the

layer of photoreceptors and significantly recovered the

vision spectrum in recipients65–67.

Clinical trials for AMD using iPSCs were carried out in

Japan. The phase I trial began in Japan in September 2014,

initiated by the Kyoto University’s Center for iPSC Research

and Application, Center for Developmental Biology RIKEN

(RIKEN CDB), and Kobe City Medical Center General Hos-

pital. This was the world’s first clinical trial using patient’s

own iPSCs for autologous transplantation68,69. Long-term

observations revealed no tumorigenesis or immune rejection.

In addition, transplantation of the derived RPE sheets ame-

liorated the vision deterioration in the patients. More clinical

patients will be recruited for the safety evaluation of iPSC-

based cell therapy.

In the above-mentioned clinical trials, most applied

hESCs were allogenic. Allogeneic transplantations can

only be applied in some immune privilege sites, like the

eyes and spinal cord. Some special strategies need to be

considered to avoid immune rejection61. Personalized iPSC

lines can resolve immune-related problems. However, gen-

erating and characterizing personalized clinical-grade iPSC

lines are expensive and time consuming. Allogenic trans-

plantation with human leukocyte antigen (HLA)-matching

donors is a standard procedure of organ and bone marrow

transplantation. It is an ideal strategy to establish and bank

a few HLA-homozygous super-donor iPSC lines for clin-

ical applications without the drawback of severe immune

rejection (Fig. 3).

Genome Editing Tools Expand the
Application Horizon of iPSC-Based
Research and Disease Modeling

PSCs provide an in vitro model to recapitulate human

development processes and cell lineage differentiation, espe-

cially for the early embryo stage. With genome modifica-

tions, researchers can delineate the cell fate, gene expression

timing, and niche environment regulation at different devel-

opmental stages and 3D organoid architecture. Differentiat-

ing PSCs also can serve as a platform to address single or

multiple gene functions and their physiological roles in vitro

by gene mutations, deletions, or replacement 19,20,50,70–81

(Fig. 4).

Genome editing tools also provide the feasibility to gen-

erate isogenic iPSCs for accurate disease modeling. Specific

mutations of disease iPSCs can be artificially fabricated or

corrected by genome editing tools to generate isogenic dis-

ease iPSCs without the interference of cell resources, ran-

dom mutations and epigenetic variation during the iPSC

establishment. This genotype/phenotype validation by

Fig. 3. The source of human pluripotent stem cells (hPSCs) for clinical therapies. (A) Currently, most clinical trials use allogeneic human
embryonic stem cells (hESCs) for transplantation without human leukocyte antigen (HLA) matching. (B, C) In Japan, two clinical trials used
autologous and HLA matching allogeneic-induced pluripotent stem cells (iPSCs) as cell sources. For burden consideration, HLA homo-
genous iPSC banking is the optimal cell supplement source.
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SSN-mediated gene correction or introduction consolidates

the roles of candidate genetic loci in patients-derived iPSCs.

SSN-mediated genetic corrections of patient-derived

PSCs are applied to Parkinson’s disease82, Niemann–Pick

type C (NPC) disease83, sickle cell disease84,85, b-thalasse-

mia86–88, Rett syndrome89, cystic fibrosis90–92, and a1-anti-

trypsin deficiency93. CRISPR/Cas9 was also used to correct

mutations of MYO15A in hair cell-like cell deficiency94,

chromosome 7q deletion in myelodysplastic syndromes95,

and COL7A1 in recessive dystrophic epidermolysis bullosa

(RDEB)96. For Down syndrome trisomy 21 correction, an

inducible XIST transgene was introduced into the DYRK1A

locus of chromosome 21 with a ZFN-editing tool. This

modification successfully silences the chromosome 21

and forms the chromosome 21 Barr-body to maintain

genetic expression balances97. Combining of these two

technologies also provide us to generate gene corrected

iPSCs of large-scale chromosome abnormal diseases like

Duchenne muscular dystrophy (DMD)98,99. The above

examples demonstrate that SSN- mediated genetically

corrected hPSCs not only provide research materials but

also potentially serve as healthy cell sources for autolo-

gous grafting.

Future Direction of SSN/hPSC-Combined
Applications

Integrating both fast-evolved genome editing tools and stan-

dardized hPSCs fundamentally accelerates the scientific

progress on the human developmental studies, disease mod-

eling, specific cell tracing/isolation and clinical cell ther-

apy19,20,50,70–81. The exogenous factors-directed

differentiation from PSCs basically follows the developmen-

tal principles and reflects early embryonic formation,

enabling the hPSC as an ideal model to investigate early

human development. Given the high efficacy of CRISPR/

Cas9-mediated on single gene knockout, the impact of a

disrupted gene can be traced in the hPSCs and their deriva-

tives. Investigating the mutant effects in spherical 3D orga-

noid culture of PSCs can further broaden the affected

spectrum of the cell–cell interaction, such as cell migration,

niche environment and tissue organization100–103. By the

stable expression of inducible Cas9 at the AAVS1 locus,

similar to the ROSA26 locus in mice, precisely inactivating

the gene expression at desired developmental stages can

also be achieved104. This constitutive expression of Cas9

endonuclease (iCRISPR) significantly improves the

efficacy of multiple gene inactivation and facilitate the

exploration of orthologous genes simultaneously in devel-

opmental studies. Moreover, the CRISPR/Cas9 system can

be further modified to be a gene repressor or converted to

be a gene activator module to delineate the regulatory com-

plex and gene function in specific cell types105,106. These

highly evolved and versatile genetic editing tools will sub-

stantially shape the hPSCs as a new platform for early

human developmental study.

Accumulative evidence indicates that familial genetic

mutations in the patient-derived iPSCs are high penetrable

Fig. 4. Applications of genome editing tools for induced pluripotent stem cell (iPSC) technology. Genetic technologies provide kinds of
application potentials for iPSC research. For example, genome editing tools are used to generate reporter cells for cell purification and
tracing, knock-in and knockout (KO) for molecular studies, mutations or corrections for disease modeling, and clinical therapies.
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and can faithfully recapitulate the disease phenotype in the

derivative target cells from iPSCs100,107–122. The disease

cytopathology can be corrected by the TALEN or

CRISPR/Cas9-mediated HR123–127. Given the power of

CRISPR/Cas9 system, researchers can modify the disease

progress and severity by introducing gene deletion or repair

using synthetic oligonucleotides in isogenic iPSCs. The

interaction network of risk factors can also be delineated

by multiplex gene knockout. The combined CRISPR/Cas9

and PSCs also provide a valuable system to investigate the

accumulation effects of common but low-risk genetic factors

for the progress of non-familial and idiopathic diseases,

especially for the neurodegeneration, diabetes, atherosclero-

sis and cancers. Recently, whole-genome gRNA libraries

(genome-wide CRISPR knockout screen [GeCKO]) have

been established to dissect gene function in several cancer

lines and hPSCs128,129. These innovative approaches will

continuously provide fundamental and comprehensive

understanding for the etiology of multiple-hit idiopathic dis-

eases, paving the way for an optimized treatment strategy for

patients.

Fabricating PSCs with genetic editing tools can extend

the application of precision medicine by introducing specific

tag on the cells and correcting gene mutation in PSC-derived

cells. Expressing single or multiple specific reporter proteins

under cell specific promoters can assist the cell tracing and

cell sorting for further cell analysis and transplanta-

tion19,20,70–75. Currently the clinically applied PSC-derived

RPE sheet for AMD is manually isolated without cell sort-

ing. Genetic labeling of PSC-derived cells may be required

in the future for enriching desired cell population, such as

dopaminergic neuron precursors and hematopoietic stem

cells, to facilitate the tracing of cell fate, cell survival rates

and tumorigenesis in vivo.

The advantage of ease, cost, efficacy and versatility war-

rants CRISPR/Cas9 system as a suitable tool for human gene

therapy. Several clinical trials based on genome editing and

PSC technologies also reveal the possibilities to bring SSN/

PSC-combined transplantation therapies to the real world.

Not only for genetic disease, SSN/PSC-combined technolo-

gies also have potential for HIV and cancer therapies130.

However, to apply PSCs and genome editing tools for clin-

ical use, there are still some serious challenges on the road

ahead that need to be overcome.

Large-scale production of clinical grade, high-purity

engineered specific cell lineages is the first challenge for

clinical applications. iPSC generation, specific cell lineages

differentiation and genome editing are effort and time con-

suming, also a high cost processes. Especially in current

Good Manufacture Practices (cGMP) norm. To streamline

the procedure of SSN/PSC-based therapies, cGMP grade

HLA iPSC banking is an imperative approach for the next

decade. For clinical hPSC preparation, a bioreactor capable

of large-scale amplification of high quality hPSCs is needed.

Moreover, an efficient differentiation protocol to generate

specific cell lineages is another big challenge131. For this

issue, fluorescence-based cell sorting is an ideal option to

purify specific cell lineages. For example, the surface mar-

ker, Corin and leucine rich repeats and transmembrane

domains 1 (LRTM1) were used for dopaminergic neuron

precursor purification132,133. As previously descripted,

SSN-mediated cell lineage specific reporter can also provide

an ideal solution for cell purification.

For clinical therapy, the most concerned issue is safety.

The innate tumorigenic property of hPSCs is still a

challenge. For clinical applications, how to identify

low-tumorigenesis-risk iPSC clones and eliminate undiffer-

entiated iPSCs before transplantation still has room to

improve. Besides, the off-target risk of CRISPR/Cas9 is

another challenge of safety. The high tolerance of mis-

matches for target recognition and strong DSB activity can

create considerable off-targeting mutation, which dramati-

cally hinders the clinical application on gene therapy. The

researches using CRISPR/Cas9 for primary human CD4þ
T-cells showed promising CCR5 specific targeting, negligi-

ble off-target mutation and HIV resistance134,135. However,

testing CRISPR/Cas9 for homologous recombination-

directed repair in tripronuclear embryos observed high

unintended mutations in the genome of zygotes136. Although

several approaches have developed to reduce the off-

targeting drawbacks of CRISPR/Cas9 system, such as afore-

mentioned Cas9-nickase, dCas9-FokI dimers and truncated

sgRNA oligomer54,56, the clinical-grade gene-editing tools

with high fidelity and low undesired mutations have to be

developed and validated before the clinical applications in

embryo or in PSC-based cell transplantation.

Recently, the discover of naı̈ve-state hPSCs may benefit

the differentiation of primordial germ cells (PGCs)137.

Researchers also applied CRISPR/Cas9 to edit human

embryo’s genome136. However, as technology advances,

some ethical debates will arise. The SSN/PSC-based tech-

nologies may not only allow us to apply to transplantation

therapies, but also allow us to generate modified germ cells.

It is an important ethical concern that needed to be detailed

discussed before applying these techniques for human germ-

line modification and affect our next generation.

Conclusion

In conclusion, combining iPSCs and SSN genome targeting

tools provides new insights for disease modeling and trans-

plantation therapies. The tumorigenic and off-targeting

issues of SSN/PSC-based therapies may be overcome in a

near future and SSN/PSC-based therapies may be routinely

clinical therapies. The future road map is challenging but

hopeful.
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