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Abstract: Visual sensor networks (VSNs) can be widely applied in security surveillance,
environmental monitoring, smart rooms, etc. However, with the increased number of camera
nodes in VSNs, the volume of the visual information data increases significantly, which becomes
a challenge for storage, processing and transmitting the visual data. The state-of-the-art video
compression standard, high efficiency video coding (HEVC), can effectively compress the raw visual
data, while the higher compression rate comes at the cost of heavy computational complexity.
Hence, reducing the encoding complexity becomes vital for the HEVC encoder to be used in VSNs.
In this paper, we propose a fast coding unit (CU) depth decision method to reduce the encoding
complexity of the HEVC encoder for VSNs. Firstly, the content property of the CU is analyzed.
Then, an early CU depth decision method and a low complexity distortion calculation method
are proposed for the CUs with homogenous content. Experimental results show that the proposed
method achieves 71.91% on average encoding time savings for the HEVC encoder for VSNs.
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1. Introduction

Visual sensor networks (VSNs) have emerged in response to the developments in image sensor
technology, sensor networking and distributed computing, which have been widely used in security
surveillance, environmental monitoring, smart rooms, and so on [1,2]. VSNs consist of a number of
visual sensor nodes named camera nodes, which are used to collect visual information. However,
the visual sensors generate a huge amount of visual data as compared to the traditional scalar
sensors [3,4]. This becomes a challenge for storage, processing and transmitting the visual data
due to the current storage, computing and transmission capability being still limited. Hence, the
high compression rate and low complexity are the key requirements of VSNs [5,6]. High efficiency
video coding (HEVC) [7,8] is the state-of-the-art video compression standard, which can efficiently
compress the raw visual data. The compression rate of HEVC is twice as much as the former video
compression standard, H.264 [9,10]. However, the achieved compression rate is at the cost of the
heavy computational complexity of a series of advanced coding tools used in the HEVC, such as
the quadtree-based coding unit (CU), the rate distortion optimization (RDO) technique, and so on.
Hence, reducing the encoding complexity becomes vital for the HEVC encoder to be used in VSNs.

To reduce the encoding complexity of the HEVC encoder, many researchers have devoted their
efforts to optimizing the HEVC encoding process [11,12]. In [11], Choi et al. proposed an early
termination for the CU size decision process, in which the CU size decision process is terminated
if the current CU selects the Merge/Skip mode as its best prediction unit mode. In [13], Pan et al.
proposed a fast CU depth decision method by using the CU depth selection correlation between
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the current CU and its spatiotemporal neighboring CUs. In [14], Shi et al. proposed a fast CU size
decision method based on adaptive CU depth selection, in which an adaptive CU depth set is derived
by using the encoding information of the previously encoded frames. In [15], Zhang et al. proposed
a machine learning-based coding unit depth decision for flexible complexity allocation in HEVC.
Based on the spatiotemporal encoding parameters of the HEVC encoder, Ahn et al. proposed a fast
CU encoding method, which consists of an early CU Skip mode decision method and a fast CU size
decision method [16]. Based on the rate distortion differences between the root CU and children
CUs, Goswami et al. proposed an early termination method for the CU depth decision process [17].
Based on the texture complexity of the video content, Tian et al. proposed an adaptive prediction unit
mode decision for the HEVC intra-coding [18]. In [19], Kim et al. proposed a fast Skip mode decision
method based on the rate distortion optimization for HEVC. According to the differential motion
vector and coded block flag, an early determination of the prediction unit mode decision for HEVC
was proposed in [20]. In [21], Lee et al. proposed an early Skip mode decision for the HEVC encoder
by utilizing the rate distortion characteristics of the Merge mode. By considering the motion activity
and hierarchical depth correlation, Pan et al. proposed an early Merge/Skip decision method for the
low complexity HEVC encoder [12]. These methods can efficiently remove the encoding complexity
of the HEVC encoder for universal video coding. However, the content characteristics of the videos
that are generated by the visual sensor camera are not considered, and the encoding complexity can
be further improved by considering the content property of the visual sensor videos.

In this paper, we propose a low complexity HEVC encoder for VSNs by optimizing the CU size
decision process. The rest of this paper is organized as follows. Section 2 presents the motivations
and statistical analyses. Section 3 introduces the details of the proposed fast CU size decision method.
Experimental results are given in Section 4. At last, Section 5 concludes this paper.

2. Motivations and Statistical Analyses

When compressing the raw videos that are generated by the visual sensor camera, the videos
are separated into images/frames, then the images/frames are encoded one by one. Each frame is
split into slices; the slices are further partitioned into a group of coding tree units (CTUs), which are
the basic processing units of the HEVC encoder. Based on the quadtree, the CTUs are further split
into CUs. In order to achieve the maximum compression rate, HEVC supports flexible CU sizes from
64 × 64 to 8 × 8, which corresponds to the CU quadtree Depth 0 to Depth 3. In the CU encoding
process, the HEVC encoder checks 4n, n∈[0, 1, 2, 3], CU partitions for each quadtree depth level n,
which totally equals 40 + 41 + 42 + 43 = 85 CU partitions. For the CU intra-/inter-prediction, a CU is
further partitioned into one, two or four prediction units (PUs) according to the prediction type, and
the PU is the basic processing unit of the intra-/inter-prediction. To remove the spatial and temporal
redundancy, the HEVC encoder supports 11 PU modes, including Merge/Skip mode, eight inter-PU
modes (i.e., inter-2N × 2N, inter-2N × N, inter-N × 2N, inter-N × N, inter-2N × nU, inter-2N × nD,
inter-nL × 2N and inter-nR × 2N.) and two intra-PU modes (i.e., intra-2N × 2N and intra-N × N.).
For CU encoding, these 11 PU modes are checked sequentially. Figure 1 shows an example of the
quadtree-based CUs and their PU modes. Ultimately, the best CU quadtree depth level, d∗, and the
best PU mode, p∗, are determined according to the minimization of the Lagrangian cost function [22],{

{d∗, p∗} = arg mind∈D

(
∑ arg minp∈P J

(
O, C(d, p)

))
J
(
O, C(d, p)

)
= SSD

(
O, C(d, p)

)
+ λ · R(d, p)

(1)

where D is the candidate set of the CU quadtree depth levels and D ∈ {0, 1, 2, 3}; P indicates the
candidate set of the 11 PU modes; J is the rate distortion cost function; O is the original CU; and C
denotes the reconstructed CU, which is achieved by encoding the original CU O with the CU quadtree
depth level d and PU mode p; the SSD(d,p) denotes the sum of squared differences (SSD) between
the original CU O and its reconstructed CU C; λ is the Lagrangian multiplier; R(d,p) represents the
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number of total bits for encoding this CU, which is obtained by a table lookup. This “try all and select
the best” CU quadtree depth level decision and PU mode selection method efficiently improves the
coding efficiency of the HEVC encoder; however, it also results in heavy computation load and limits
the use of the HEVC encoder in VSNs.

In the CU encoding process, only parts of the CU partitions are finally chosen as the best CU
partitions, which are from 1 to 64; “1” represents that the CU quadtree depth Level 0 is selected as
the best depth level; “64” indicates the CU quadtree depth Level 3 is chosen as the optimal depth
level. To analyze the best CU quadtree depth level distribution, three different HD visual sensor
video sequences with a resolution of 1280 × 720, including “Fourpeople”, “Johnny” and “Vidyo1”,
are tested. The HEVC reference software HM12.0 [23] is used as the software platform. The test
conditions are listed as follows: the maximum CU size is 64 × 64, and the maximum CU quadtree
depth is four; the fast motion estimation method is TZSearch, and the search range equals [−64, 64];
four quantization parameters (QPs) are adopted. The statistical results are tabulated in Table 1.

64 64, Depth0

32 32, Depth1

16 16, 

Depth2

8 8, 

Depth3

(a)

Merge/Skip

Inter 2Nx2N Inter 2NxN Inter Nx2N Inter NxN

Intra 2NxN Intra NxN

Intra PU modes

Inter PU modes

Inter 2NxnD Inter 2NxnU Inter nLx2N Inter nRx2N

2NxN

(b)

Figure 1. The quadtree-based coding units (CUs) and their prediction unit (PU) modes. (a) HEVC CU
quadtree partition process; the maximum CU size = 64 × 64, the maximum quadtree depth = 4; (b) all
prediction unit modes for a CU.

From Table 1, it can be observed that there are 68.26%, 16.07%, 14.33% and 1.34% CUs selecting
the quadtree depth Levels 0, 1, 2 and 3 as their best CU quadtree depth level, respectively. In addition,
the probability decreases as the depth level increases and as the QP decreases. This is because for the
video that is generated by the visual sensor camera, it contains a huge number of regions with simple
content, such as the background, and these regions are quite suitable for encoding in a large CU
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size. Moreover, more prediction residuals are transformed and quantized into zeros as QP increases,
which results in the video content becoming simple, and more CUs select the large CU size as their
best depth level. On the other hand, the CUs with depth Level 0 hold the largest proportion, and the
number of CUs with depth Level 3 is quite small. Therefore, if the best quadtree depth level of a CU
is determined early, significant encoding time could be saved.

Table 1. Statistical results of the best CU quadtree depth level distribution (%). QP,
quantization parameter.

Sequence QP Level 0 Level 1 Level 2 Level 3

FourPeople 22 49.48 24.79 22.13 3.60
27 66.59 16.50 15.19 1.71
32 74.69 11.88 12.46 0.98
37 79.57 8.78 11.15 0.50

Johnny 22 51.30 26.48 19.91 2.31
27 68.30 17.63 13.26 0.81
32 76.74 11.87 10.95 0.44
37 82.57 7.58 9.59 0.25

Vidyo1 22 48.94 26.55 21.07 3.44
27 65.94 18.27 14.51 1.27
32 74.66 13.12 11.66 0.55
37 80.34 9.35 10.07 0.24

Average 68.26 16.07 14.33 1.34

3. The Proposed Low Complexity HEVC Encoder for VSNs

3.1. The Proposed All-Zero Block-Based Fast CU Depth Decision Method

The videos that are captured by the visual sensor camera contain a huge number of homogenous
regions, such as the background; for these regions, they are quite suitable for encoding in a large CU
partition size due to a large-sized CU being able to represent the prediction residual in a small number
of symbols than is possible in the case of several small-sized CUs [24]. In addition, the inter-prediction
residuals of these regions have a large probability to be transformed and quantized to zeros [25–27].
Therefore, it is reasonable to design an early termination for the CU size decision process based on
the quantized coefficients. In video coding, the CU for which its inter-prediction/intra-prediction
residual is transformed and quantized to zeros is called the all-zero block (AZB). To exploit the
relationship between the AZB and the best CU depth selection, the event A indicates after encoding
the CUs of depth level i with the Megre/Skip mode and inter-2N× 2N PU mode; they are AZBs. The
event B represents that the CU quadtree depth i is chosen as the best CU depth level; the conditional
probability P(B|A) is analyzed. The statistical results are shown in Figure 2.

From Figure 2, it can be seen that when the CUs with quadtree depth i are AZBs, the CU has a
rather large probability to select the quadtree depth level i as its optimal depth level. The conditional
probability of P(B|A) is from 78.34% to 91.82%, 86.63% on average. It also can be observed that
the probability of P(B|A) increases as the QP value becomes large; this is because the large QP makes
the encoding content become simple and homogenous, which results in more prediction redials being
quantized to zeros. Hence, based on the above analyses, the optimal CU quadtree depth level decision
process is terminated early if:

∑
i

QMergei
+ ∑

i
QInter2N×2Ni = 0 (2)

where the i represents the number of total CUs, i = 4n, n ∈[0,1,2,3], n is the quadtree depth level;
QMergei

is equal to zero, if the prediction residuals of the Merge/Skip mode are quantized to zeros,
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otherwise, QMergei
is larger than zero; QInter2N×2Ni is equal to zero, if the prediction residuals of the

inter-2N × 2N mode are quantized to zeros, otherwise, QInter2N×2Ni is larger than zero.
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Figure 2. The conditional probability P(B|A).

3.2. Efficient Distortion Estimation Based on Spatial Correlation

In the inter-prediction process, the distortion value is used to find the best matching block. The
sum of absolute distortion (SAD) is a normal distortion calculation method in video coding; however,
the distortion calculation process consumes the majority of the total encoding time [22]. If this process
can be simplified, much more of the encoding time could be reduced. In the visual sensor videos,
there exist a huge number of homogenous regions, such as the background. In this paper, the content
property of one CU is determined according to the quantized coefficients; thus, the current encoding
CU belongs to a homogenous region if:

QMerge + QInter2N×2N = 0 (3)

where QMerge denotes the quantized coefficients of the CU, which is encoded with the Merge/Skip
mode, if after encoding the CU with the Merge/Skip mode, the prediction residuals are transformed
and quantized to zeros, then the value of QMerge is equal to zero; QInter2N×2N indicates the quantized
coefficients of the CU, which is encoded with the inter-2N× 2N mode; the value of QInter2N×2N equals
zero, if the prediction residuals are transformed and quantized to zeros after encoding the CU with
the inter-2N × 2N mode.

Additionally, there is rather high distortion correlation in the spatial domain for these
homogenous regions. Figure 3 shows an example of the spatial neighboring blocks of the current
encoding block, where A, B and C represent the spatial neighboring blocks on the up, up-right and
left of the current encoding block, respectively. Based on the spatial correlation [28,29], the motion
vector of the current block, ~MVPred, is predicted by the spatial neighboring blocks and is given in
Equation (4),

~MVPred = Median{ ~MVup, ~MVup−right, ~MVleft} (4)

where ~MVup, ~MVup−right and ~MVleft indicate the motion vector of the neighboring blocks of up,
up-right and left of the current block. Then, the predictive distortion for the CU with homogenous
content, SADPred, is obtained by:

SAD(o, c( ~MVPred)) =
Px

∑
x=1

Py

∑
y=1
|o(x, y)− c(x−MVPredx, y−MVPredy)| (5)
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where Px and Py mean the prediction unit size; o is the current value, and c indicates the reconstructed
block value; ~MVpred=(Predx, Predy) is the predictive motion vector.x

x A B

C Current

Figure 3. The spatial neighboring blocks of the current encoding block.

To evaluate the distortion estimation accuracy, the event C represents that the current PU belongs
to a homogenous region, and the event D denotes that the distortion that is obtained by Equations (4)
and (5) is equal to the value that is gained by the original motion estimation. The conditional
probability of P(D|C) is analyzed, and the results are shown in Figure 4.
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Figure 4. The conditional probability P(D|C).

From Figure 4, it can be seen that the CU belongs to the homogenous region, and there is a large
probability that the predictive distortion is the same as the distortion obtained by the original motion
estimation. The probability of P(D|C) is from 92.32% to 97.80%, 95.65% on average. We can also
see that with the increase of QP values, the value of P(D|C) becomes larger; this is because the large
QP makes the coding content become homogenous. From these values, we can draw the conclusion
that the proposed distortion estimation method can efficiently predict the distortion for a CU with
homogenous content.

3.3. The Overall Algorithm

Based on the above analyses, the proposed fast CU size decision method for the low complexity
HEVC encoder is summarized in Algorithm 1.
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Algorithm 1 Proposed fast CU size decision method for the low complexity H.265/HEVC encoder.
Input: CTU size = 64 × 64, the maximum quadtree depth level = 4
for Depth level=0 to 3 do

Encode the current CU with the Merge/Skip mode
Encode the current CU with the inter-2N×2N mode
if QMerge + QInter2N×2N = 0 then

The predictive distortion of the remaining inter-prediction modes is obtained by
Equations (4) and (5)

else
The predictive distortion of the remaining inter-prediction modes is achieved by the original
motion estimation

end if
if ∑i QMergei

+ ∑i QInter2N×2Ni = 0 then
The CU size decision process is terminated

else
Encode the current CTU with the next quadtree depth level

end if
Output: The best CU quadtree depth level

end for
Process the next CTU

4. Experimental Results

To evaluate the efficiency of the proposed fast CU size decision method, the HEVC reference
software HM12.0 is used as the software platform. The test conditions are listed as follows: the
maximum CU size is 64 × 64; the maximum CU quadtree depth level is four; the motion estimation
method is TZSearch, and the search range equals [−64, 64]; four QPs, 22, 27, 32 and 37, are
used in our experiments. Six visual sensor video sequences, including “FourPeople”, “Johnny”,
“KristenAndSara”, “Vidyo1”, “Vidyo3” and “Vidyo4”, are adopted. These six video sequences
are shown in Figure 5. The detailed information of these six sequences is that the resolution is
1280× 720; the frame rate equals 60 fps; the number of encoded frames is 193. The hardware platform
is Intel Xeon CPU E3-1241 v3 with 3.50 GHz and 3.50 GHz, 4.00 GB RAM with the Microsoft Windows
7 64-bit operating system.

We compared the encoding performance of the proposed method with Choi [11], Kim [20] and
Pan [12], in terms of peak signal-to-noise ratio (PSNR), bit rate (BR) and total encoding time savings.
The experimental results are summarized in Table 2. In the table, ∆T means the total encoding CPU
time savings, and this is computed as:

∆PSNR = PSNRΩ − PSNRo,

∆BR =
BRΩ − BRo

BRo
× 100%,

∆T =
TΩ − To

To
× 100%

(6)

where PSNRΩ, BRΩ and TΩ representing the PSNR, BR and total encoding time of method Ω;
Ω ∈{Choi, Kim, Pan}, PSNRo, BRo and To indicate the PSNR, BR and total encoding time of the
original HM12.0. In addition, the average ∆PSNR and ∆BR are computed by the Bjontegaard delta
PSNR (BDPSNR) and Bjontegaard delta BR (BDBR) [30,31], respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The test sequences. (a) FourPeople; (b) Johnny; (c) KristenAndSara; (d) Vidyo1; (e) Vidyo3;
(f) Vidyo4.

From Table 2, it can be seen that Choi’s method reduces the total encoding time from 32.54%
to 70.17%, 55.47% on average. Meanwhile, the PSNR degrades from 0.022 dB to 0.071 dB, and the
BR increases from −0.38% to −1.99%. The average PSNR variation is from −0.003 dB to 0.033 dB,
0.002 dB on average, and the average BR changes from −0.98% to 0.70%, 0.07% on average. Kim’s
method saves the total encoding time from 29.06% to 56.22%, 45.71% on average. At the same time,
the average PSNR change is from −0.025 dB to 0.030 dB, −0.005 dB on average, and the average
BR variation is from −0.90% to 0.68%, 0.18% on average. Pan’s method improves the encoding
complexity from 33.82% to 69.12%, 54.28% on average. Meanwhile, the average PSNR degrades from
0.009 dB to 0.031 dB, 0.018 dB on average, and the BR increases from 0.34% to 1.15%, 0.67% on average.
The proposed method reduces the total encoding time from 51.27% to 85.26%, 71.91% on average.
Moreover, the PSNR degrades from 0.030 dB to 0.114 dB, and the BR variation is from −1.43% to
0.70%. The average PSNR change is from −0.064 dB to 0.033 dB, −0.021 dB on average, and the
average BR variation is from −1.02% to 1.98%, 0.73% on average. From these values, we can observe
that the proposed method achieves a similar rate distortion performance as these compared methods,
while the encoding complexity saving performance is the best among these compared methods.

To intuitively show the encoding time saving performance of the proposed method, the encoding
time saving comparison among the Choi, Kim, Pan and proposed method is given in Figure 6. It can
be observed that the proposed method obtains the best complexity saving performance. Compared
to Chio’s, Kim’s and Pan’s methods, the proposed method reduces 36.92%, 48.26% and 38.56% of
the total encoding time, respectively. These values demonstrate that the proposed method works
efficiently for reducing the encoding complexity of the HEVC encoder for VSNs.
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Table 2. Summary of the encoding results. BR, bit rate.

Sequence QP Choi [11] vs. HM Kim [20] vs. HM Pan [12] vs. HM Proposed vs. HM

∆PSNR ∆BR ∆T ∆PSNR ∆BR ∆T ∆PSNR ∆BR ∆T ∆PSNR ∆BR ∆T
(dB) (%) (%) (dB) (%) (%) (dB) (%) (%) (dB) (%) (%)

FourPeople 22 −0.030 −1.32 −41.84 −0.008 0.07 −35.70 −0.014 −0.08 −39.27 −0.034 −1.13 −58.04
27 −0.039 −1.28 −55.15 −0.013 −0.41 −45.36 −0.027 0.15 −52.35 −0.041 −0.99 −71.59
32 −0.025 −0.65 −62.45 0.001 −0.12 −50.67 −0.029 0.81 −60.81 −0.047 −0.57 −78.38
37 −0.029 −0.62 −67.37 −0.012 0.04 −54.20 −0.019 −0.38 −66.34 −0.063 0.06 −82.46

Average −0.004 0.09 −56.70 −0.002 0.06 −46.48 −0.011 0.34 −54.69 −0.021 0.61 −72.62

Johnny 22 −0.024 −1.22 −41.67 −0.010 −0.52 −36.45 −0.019 −0.32 −39.61 −0.032 −1.04 −58.17
27 −0.030 −1.16 −56.50 −0.014 −0.21 −46.92 −0.016 −0.57 −56.67 −0.047 −1.43 −74.11
32 −0.046 −1.21 −64.98 −0.029 −0.35 −52.46 −0.042 −0.53 −65.08 −0.064 −1.62 −81.09
37 −0.039 −1.30 −70.17 −0.026 −0.43 −56.22 −0.021 −0.38 −69.12 −0.075 −1.26 −85.26

Average −0.003 0.22 −58.33 −0.009 0.44 −48.01 −0.008 0.57 −57.62 −0.017 0.69 −74.66

KristenAndSara 22 −0.035 −1.12 −41.23 −0.010 −0.28 −35.41 −0.014 −0.08 −39.27 −0.047 −1.08 −57.91
27 −0.047 −1.44 −54.02 −0.014 −0.09 −44.77 −0.027 0.15 −52.35 −0.072 −2.35 −71.39
32 −0.050 −1.99 −62.69 −0.013 0.00 −50.86 −0.029 0.81 −60.81 −0.079 −1.59 −79.14
37 −0.053 −1.27 −67.84 −0.012 0.19 −54.51 −0.019 −0.38 −66.34 −0.089 −0.84 −83.58

Average −0.004 0.01 −56.45 −0.012 0.39 −46.39 −0.031 1.15 −54.69 −0.019 0.68 −73.00

Vidyo1 22 −0.034 −1.40 −43.63 −0.003 0.21 −36.67 −0.014 −0.36 −40.42 −0.042 −1.51 −59.66
27 −0.042 −1.28 −55.67 −0.013 −0.22 −45.59 −0.026 −0.82 −52.61 −0.056 −0.78 −72.37
32 −0.043 −1.06 −62.99 −0.024 −0.46 −50.79 −0.027 −0.40 −61.17 −0.063 −0.57 −79.38
37 −0.036 −1.40 −68.12 −0.022 −0.76 −54.25 −0.023 0.12 −65.18 −0.070 −0.64 −83.88

Average 0.033 −0.98 −57.60 0.030 −0.90 −46.82 −0.009 0.29 −54.84 0.033 −1.02 −73.82

Vidyo3 22 −0.038 −0.80 −40.47 −0.010 −0.16 −34.68 −0.017 −0.29 −39.41 −0.053 −1.11 −57.07
27 −0.045 −0.69 −51.98 −0.020 0.06 −43.51 −0.025 −0.05 −51.86 −0.061 −0.40 −69.79
32 −0.059 −0.84 −59.36 −0.041 −0.30 −49.01 −0.036 0.52 −60.94 −0.114 −0.39 −76.91
37 −0.071 −0.75 −65.03 −0.017 0.69 −52.55 −0.034 0.39 −66.03 −0.112 0.16 −81.96

Average −0.024 0.70 −54.21 −0.025 0.68 −44.94 −0.032 1.04 −54.56 −0.064 1.98 −71.43

Vidyo4 22 −0.029 −0.69 −32.54 −0.008 −0.09 −29.06 −0.015 −0.26 −33.82 −0.030 −0.72 −51.27
27 −0.022 −0.72 −46.57 −0.009 −0.20 −39.92 −0.024 −0.14 −47.37 −0.037 −0.58 −57.46
32 −0.026 −0.38 −56.17 −0.011 0.29 −46.56 −0.016 −0.03 −55.37 −0.041 0.70 −74.86
37 −0.028 −0.40 −62.89 −0.009 0.03 −50.81 −0.017 0.03 −60.62 −0.049 0.46 −80.07

Average −0.009 0.39 −49.54 −0.008 0.38 −41.59 −0.018 0.60 −49.29 −0.036 1.46 −65.91

Average −0.002 0.07 −55.47 −0.005 0.18 −45.71 −0.018 0.67 −54.28 −0.021 0.73 −71.91
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Figure 6. Comparison of the total encoding time savings.

5. Conclusions

High computational complexity becomes a bottleneck for the HEVC encoder to be used in VSNs.
In order to reduce the encoding complexity of the HEVC encoder, in this paper, we proposed a
low complexity HEVC CU size decision method based on the quantized coefficients, which consists
of a CU depth early termination method and a low complexity distortion calculation method.
Experimental results show that the proposed method can efficiently reduce the encoding complexity
of the HEVC encoder of VSNs.

30123



Sensors 2015, 15, 30115–30125

Acknowledgments: This work was supported in part by the National Natural Science Foundation of
China under Grant 61501246 and Grant 61232016, in part by the National Natural Science Foundation of
Jiangsu Province of China under Grant BK20150930, in part by the Natural Science Foundation of the
Jiangsu Higher Education Institutions of China under Grant 15KJB510019, in part by the Project through
the Priority Academic Program Development of Jiangsu Higher Education Institutions, in part by the
Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)
under Grant 2243141501012 and in part by the Natural Science Foundation of Hebei Province of China under
Grant F2015202311.

Author Contributions: All authors contributed significantly to the preparation of this manuscript. Zhaoqing Pan
is the main author who proposed the idea, performed the experiments and wrote the manuscript. Liming Chen
performed the experimental data processing and revised the manuscript. Xingming Sun discussed with the main
author the proposed method and revised this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Soro, S.; Heinzelman, W. A survey of visual sensor networks. Adv. Multimed. 2009, 2009, 1–21.
2. Costa, D.G.; Silva, I.; Guedes, L.A.; Vasques, F.; Portugal, P. Availability issues in wireless visual sensor

networks. Sensors 2014, 14, 2795–2821.
3. Charfi, Y.; Wakamiya, N.; Murata, M. Challenging issues in visual sensor networks. IEEE Wirel. Commun.

2009, 2, 44–49.
4. Chung, Y.; Lee, S.; Jeon, T.; Park, D. Fast Video Encryption Using the H.264 Error Propagation Property for

Smart Mobile Devices. Sensors 2015, 15, 7953–7968.
5. Costa, D.G.; Guedes, L.A. A survey on multimedia-based cross-layer optimization in visual sensor

networks. Sensors 2011, 11, 5439–5468.
6. Xie, S.; Wang, Y. Construction of tree network with limited delivery latency in homogeneous wireless sensor

networks. Wirel. Pers. Commun. 2014, 1, 231–246.
7. Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the high efficiency video coding (HEVC)

standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 12, 1649–1668.
8. ISO/IEC 23008-2:2013 ITU-T Rec. H.265: Information technology-High Efficiency Coding and Media Delivery in

Heterogeneous Environments-Part 2: High Efficiency Video Coding; ISO: Geneva, Switzerland, 2013.
9. Pan, Z.; Kwong, S. A direction-based unsymmetrical-cross multi-hexagon-grid search algorithm for

H.264/AVC motion estimation. J. Signal Process. Syst. 2013, 7, 59–72.
10. Lei, J.; Feng, K.; Wu, M.; Li, S.; Hou, C. Rate control of hierarchical B prediction structure for multi-view

video coding. Multimed. Tools Appl. 2014, 72, 825–842.
11. Choi, K.; Park, S.-H.; Jang, E.S. Coding tree pruning based CU early termination. In Proceedings of the

ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) Document JCTVC-F092, Torino, Italy,
14–22 July 2011.

12. Pan, Z.; Kwong, S.; Sun, M.-T.; Lei, J. Early MERGE mode decision based on motion estimation and
hierarchical Ddepth correlation for HEVC. IEEE Trans. Broadcast. 2014, 62, 405–412.

13. Pan, Z.; Kwong, S.; Zhang, Y.; Lei, J.; Yuan, H. Fast coding tree unit depth decision for high efficiency video
coding. In Proceedings of the IEEE International Conference on Image Processing(ICIP), Paris, France,
27–30 October 2014; pp. 3214–3218.

14. Shi, H.; Fan, L.; Chen, H. A fast CU size decision algorithm based on adaptive depth selection for HEVC
encoder. In Proceedings of the 2014 International Conference onAudio, Language and Image Processing
(ICALIP), Shanghai, China, 7–9 July 2014; pp. 143–146

15. Zhang, Y.; Kwong, S.; Wang, X.; Yuan, H.; Pan, Z.; Xu, L. Machine learning-based coding unit depth
decisions for flexible complexity allocation in high efficiency video coding. IEEE Trans. Image Process. 2015,
24, 2225–2238.

16. Ahn, S.; Lee, B.; Kim, M. A novel fast CU encoding scheme based on spatiotemporal encoding parameters
for HEVC inter coding. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 422–435.

17. Goswami, K.; Kim, B.; Jun, D.; Jung, S.; Choi, J. Early coding unit-splitting termination algorithm for High
Efficiency Video Coding (HEVC). ETRI J. 2014, 36, 407–417.

18. Tian, G.; Goto, S. Content adaptive prediction unit size decision algorithm for HEVC intra coding.
In Proceedings of the 2012 Picture Coding Symposium (PCS), Krakow, Poland, 7–9 May 2012; pp. 405–408.

30124



Sensors 2015, 15, 30115–30125

19. Kim, M.; Ling, N.; Song, L.; Gu, Z. Fast skip mode decision with rate-distortion optimization for high
efficiency Video coding. In Proceedings of the 2014 IEEE International Conference on Multimedia and
Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; pp. 1–6.

20. Kim, J.; Yang, J.; Won, K.; Jeon, B. Early determination of mode decision for HEVC. In Procedings of the
2012 Picture Coding Symposium (PCS), Krakow, Poland, 7–9 May 2012; pp. 449–452.

21. Lee, H.; Shim, H.J.; Park, Y.; Jeon, B. Early Skip mode decision for HEVC encoder with emphasis on coding
quality. IEEE Trans. Broadcast. 2015, 61, 388–397.

22. Ohm, J.-R.; Sullivan, G.J.; Schwarz, H.; Tan, T.K.; Wiegand, T. Comparison of the coding efficiency of video
coding standards-including High Efficiency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol.
2012, 12, 1669–1684.

23. Bossen, F.; Flynn, D.; Suehring, K. JCT-VC AHG Report: HEVC HM Software Development and Software
Technical Evaluation (AHG3); (JCT-VC) Document JCTVC-O0003; ITU-T/ISO/IEC Joint Collaborative Team
on Video Coding: San Jose, CA, USA, 2013.

24. Pan, Z.; Lei, J.; Zhang, Y.; Yan, W.; Kwong, S. Fast transform unit depth decision based on quantized
coefficients for HEVC. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Hong Kong, China, 9–12 September 2015; pp. 1127–1132.

25. Ma, L.; Li, S.; Ngan, K.N. Reduced-reference image quality assessment in reorganized DCT domain.
Signal Process. Image Commun. 2013, 28, 884–902.

26. Ma, L.; Ngan, K.N.; Zhang, F.; Li, S. Adaptive block-size transform based just-noticeable difference model
for images/videos. Signal Process. Image Commun. 2011, 26, 162–174.

27. Ma, L.; Li, S.; Zhang, F.; Ngan, K.N. Reduced-reference image quality assessment using reorganized
DCT-based image representation. IEEE Trans. Multimed. 2011, 13, 824-829.

28. Chen, Z.; Xu, J.; He, Y.; Zheng, J. Fast inter-pel and fractional-pel motion estimation for H.264/AVC. J. Vis.
Commun. Image Represent. 2007, 17, 264–290.

29. Pan, Z.; Kwong, S.; Xu, L.; Zhang, Y.; Zhao, T. Predictive and distribution-oriented fast motion estimation
for H.264/AVC. J. Real-Time Image Proc. 2014, 4, 597–607.

30. Bjontegaard, G. Calculation of Average PSNR Differences between RD-Curves. In Proceedings of the ITU-T
Video Coding Experts Group (VCEG) Thirteenth Meeting, Austin, TX, USA, 2–4 April 2001.

31. Pan, Z.; Zhang, Y.; Kwong, S. Efficient motion and disparity estimation optimization for low complexity
multiview video coding. IEEE Trans. Broadcast. 2015, 61, 166–176.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

30125


	Introduction
	Motivations and Statistical Analyses
	The Proposed Low Complexity HEVC Encoder for VSNs
	The Proposed All-Zero Block-Based Fast CU Depth Decision Method
	Efficient Distortion Estimation Based on Spatial Correlation
	The Overall Algorithm

	Experimental Results
	Conclusions

