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LSD but not lisuride disrupts prepulse inhibition in rats
by activating the 5-HT2A receptor
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Abstract
Rationale Compounds that activate the 5-HT2A receptor,
such as lysergic acid diethylamide (LSD), act as halluci-
nogens in humans. One notable exception is the LSD
congener lisuride, which does not have hallucinogenic
effects in humans even though it is a potent 5-HT2A

agonist. LSD and other hallucinogens have been shown to
disrupt prepulse inhibition (PPI), an operational measure of
sensorimotor gating, by activating 5-HT2A receptors in rats.
Objective We tested whether lisuride disrupts PPI in male
Sprague–Dawley rats. Experiments were also conducted to
identify the mechanism(s) responsible for the effect of
lisuride on PPI and to compare the effects of lisuride to
those of LSD.
Results Confirming a previous report, LSD (0.05, 0.1, and
0.2 mg/kg, s.c.) reduced PPI, and the effect of LSD was
blocked by pretreatment with the selective 5-HT2A antag-
onist MDL 11,939. Administration of lisuride (0.0375,
0.075, and 0.15 mg/kg, s.c.) also reduced PPI. However, the
PPI disruption induced by lisuride (0.075 mg/kg) was not
blocked by pretreatment with MDL 11,939 or the selective
5-HT1A antagonist WAY-100635 but was prevented by
pretreatment with the selective dopamine D2/D3 receptor
antagonist raclopride (0.1 mg/kg, s.c).
Conclusions The effect of LSD on PPI is mediated by the
5-HT2A receptor, whereas activation of the 5-HT2A receptor

does not appear to contribute to the effect of lisuride on
PPI. These findings demonstrate that lisuride and LSD
disrupt PPI via distinct receptor mechanisms and provide
additional support for the classification of lisuride as a non-
hallucinogenic 5-HT2A agonist.
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Considerable evidence demonstrates that the 5-HT2A

receptor, which is coupled to Gq/11 and activates the
phosphoinositide (PI) signaling pathway (Nichols and
Nichols 2008), is largely responsible for mediating the
effects of lysergic acid diethylamide (LSD) and other
serotonergic hallucinogens. Phenylalkylamine and indole-
amine hallucinogens bind to the 5-HT2A receptor with high
affinity and act as agonists or partial agonists (Glennon
1990). It has been shown that hallucinogenic potency in
humans and behavioral activity in laboratory animals are
robustly and significantly correlated with 5-HT2A binding
affinity (Glennon et al. 1984; Titeler et al. 1988; Sadzot et
al. 1989). Studies in rats have consistently found that the
behavioral effects of hallucinogens are blocked by the
selective 5-HT2A antagonist M100907 (Schreiber et al.
1994; Sipes and Geyer 1995a; Krebs-Thomson et al. 1998;
Vickers et al. 2001). Likewise, the ability of the hallucino-
gen 2,5-dimethoxy-4-iodoamphetamine (DOI) to induce
head twitch response (HTR) and ear scratch and to increase
locomotor activity is abolished in 5-HT2A −/− knockout
mice (González-Maeso et al. 2007; Halberstadt et al. 2009).
The selective 5-HT2 antagonist ketanserin blocks the
hallucinogenic effects of the indoleamine psilocybin in
human subjects (Vollenweider et al. 1998), providing strong
support for the link between 5-HT2A receptor activation and
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hallucinogenesis. Such evidence has implications for the
involvement of 5-HT2A receptor activation in the symptoms
of schizophrenia and the mechanisms of action of atypical
antipsychotic drugs (Geyer and Vollenweider 2008).

Lisuride hydrogen maleate is an isolysergic acid deriv-
ative that has been used clinically in the treatment of
migraine (Herrmann et al. 1977; Somerville and Herrmann
1978), cluster headache (Raffaelli et al. 1983), acromegaly
and hyperprolactinemia (Liuzzi et al. 1978; Verde et al.
1980), and Parkinson’s disease (Parkes et al. 1981;
Lieberman et al. 1983). The structure and pharmacological
activity of lisuride are strikingly similar to that of LSD.
Lisuride and LSD bind non-selectively to a variety of
serotonergic, dopaminergic, and adrenergic receptors
(Leysen 1989; Piercey et al. 1996; Egan et al. 1998;
Marona-Lewicka et al. 2002; Millan et al. 2002; Nichols et
al. 2002). Furthermore, LSD and lisuride have high affinity
for the 5-HT2A receptor, and both compounds act as partial
agonists (Egan et al. 1998; Kurrasch-Orbaugh et al. 2003;
Cussac et al. 2008). Nonetheless, despite the similar
pharmacological properties of lisuride and LSD, lisuride is
devoid of hallucinogenic effects when administered to
humans at acute doses of up to 400 μg (Herrmann et al.
1977; Verde et al. 1980; Raffaelli et al. 1983; Beneš et al.
2006). This lack of effect contrasts with the potent
hallucinogenic activity of LSD, which is psychoactive even
at doses as low as 20–30 μg (Stoll 1949; Greiner et al.
1958).

Given the fact that lisuride is not hallucinogenic, many
studies have compared the effects of LSD and lisuride
directly in order to detect neurochemical differences that
may explain why the latter drug is inactive. Toward this
goal, lisuride has been tested in several animal behavioral
paradigms known to be sensitive to the effects of
hallucinogens. Jacobs et al. (1977) proposed that the ability
of hallucinogens to induce limb flicks and abortive
grooming in cats serves as an animal model of hallucinogen
effects. However, lisuride also induces limb flicking and
abortive grooming (Marini et al. 1981; White et al. 1981),
and thus, this model cannot distinguish between LSD and
lisuride. Drug discrimination studies have evaluated wheth-
er lisuride can evoke a hallucinogen-like discriminative
stimulus, an effect known to be mediated by 5-HT2A

receptors (Glennon et al. 1984; Fiorella et al. 1995a). There
is some disagreement in the literature regarding the degree
to which the stimulus effects of LSD, DOI, and 2,5-
dimethoxy-4-methylamphetamine (DOM) generalize to
lisuride, with some studies reporting full substitution of
lisuride for those training drugs (White and Appel 1982;
Glennon and Hauck 1985; Fiorella et al. 1995b) and other
studies reporting only partial substitution (Holohean et al.
1982; Marona-Lewicka et al. 2002); nonetheless, it is clear
that at least some similarity exists between the interoceptive

stimulus cues evoked by hallucinogens and lisuride. Adams
and Geyer (1985) compared the effects of lisuride and LSD
on investigatory behavior and patterns of locomotor
activity. The locomotor effects produced by lisuride were
found to be distinct from those of LSD and closely
resembled the effects of the dopamine (DA) agonist
apomorphine.

Hallucinogens, including LSD, DOI, and DOM, induce
the HTR in rats and mice, an effect that is mediated by
activation of 5-HT2A receptors (Schreiber et al. 1995;
Vickers et al. 2001; González-Maeso et al. 2007). Notably,
despite the fact that lisuride is a 5-HT2A agonist, studies
indicate that lisuride does not evoke the HTR (Gerber et al.
1985; González-Maeso et al. 2007). Based on the behav-
ioral inactivity of lisuride in this paradigm, it appears that
the HTR has utility as a behavioral screen that can
distinguish hallucinogenic versus nonhallucinogenic 5-
HT2A agonists. Unfortunately, the usefulness of the HTR
as tool to study the effects of hallucinogens is diminished
by the fact that the HTR is a behavioral effect that has no
human counterpart, and thus, it is unclear how this behavior
relates to the subjective effects of hallucinogens. By
contrast, prepulse inhibition (PPI) of acoustic startle is a
cross-species phenomenon that can be assessed in humans
and animals using similar testing procedures. PPI refers to
the fact that a weak prestimulus will attenuate the reaction
to a subsequent startle-inducing stimulus and serves as an
operational measure of sensorimotor gating. Hallucino-
gens affect PPI in rodents (Sipes and Geyer 1994;
Johansson et al. 1995; Ouagazzal et al. 2001) and in
humans (Vollenweider et al. 2007). Importantly, it has been
shown that the decrease in PPI induced by LSD in rats is
mediated by 5-HT2A receptors (Ouagazzal et al. 2001). The
present studies were designed to test whether lisuride
disrupts PPI in rats. Experiments were also conducted to
identify the mechanism(s) responsible for the effect of
lisuride on PPI and to compare the effects of lisuride to
those of LSD.

Materials and methods

Animals

Male Sprague–Dawley rats (Harlan Industries, Indianapolis,
IN, USA; initial weight 250–275 g) were housed in pairs in
a temperature- and humidity-controlled vivarium under a
12-h reverse light–dark cycle (lights off at 0700 hours).
Food and water were available ad libitum. Animals were
acclimatized for approximately 1 week after arrival prior to
behavioral testing and maintained in American Association
for Accreditation of Laboratory Animal Care-approved
facilities that meet all federal and state guidelines. Proce-
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dures were approved by the University of California San
Diego institutional animal care and use committee. Princi-
ples of laboratory animal care were followed as well as
specific laws of the USA.

Apparatus

Eight startle chambers (SR-LAB system, San Diego Instru-
ments, San Diego, CA) were used to measure startle
reactivity (Mansbach et al. 1988). The startle test chambers
consist of a sound-attenuated, lighted, and ventilated
enclosure holding a clear nonrestrictive cylindrical Plexi-
glas stabilimeter, 8.2 cm in diameter. A high-frequency
loudspeaker mounted 24 cm above the Plexiglas cylinder
produced all acoustic stimuli. The peak and average
amplitudes of the startle response were detected by a
piezoelectric accelerometer, digitized, and stored on disk.
At the onset of the startling stimulus, 100 1-ms readings
were recorded, and the average amplitude was used to
determine the rat startle response. A dynamic calibration
system was used to ensure comparable stabilimeter sensi-
tivity across test chambers, and sound levels were measured
using the dB(A) scale, as described previously (Mansbach
et al. 1988).

Acoustic startle sessions

Acoustic startle test sessions consisted of startle trials
(pulse-alone) and prepulse trials (prepulse+pulse). The
pulse-alone trial consisted of a 40-ms 120-dB pulse of
broadband white noise. Prepulse+pulse trials consisted of a
20-ms acoustic prepulse, an 80-ms delay, and then a 40-ms
120-dB startle pulse (100 ms onset–onset). There was an
average of 15 s (range, 9–21 s) between trials. During each
inter-trial interval, the movements of the rats were recorded
once to measure responding when no stimulus was present
(data not shown). Each startle session began with a 5-min
acclimation period to a 65-dB broadband noise that was
present continuously throughout the session. One week
after arrival, animals were tested in a brief baseline startle/
PPI session to create treatment groups matched for levels of
startle and PPI.

For experiments with lisuride, the startle test session
included three blocks. The first block tested acoustic startle
response only and included four each of five different
acoustic stimulus intensities: 80, 90, 100, 110, and 120 dB
(unpublished data). The second block was designed to
assess PPI; it contained 12 pulse-alone trials and 30
prepulse+pulse trials [ten prepulses each of 68, 71, and
77 dB (or 3, 6, and 12 dB above background)] presented in
a pseudo-randomized order. The third block tested the
effect of varying the inter-trial interval on PPI (unpublished
data); it contained eight pulse-alone trials and 20 prepulse+

pulse trials [77 dB prepulses (12 dB above background)].
Five inter-trial intervals (onset–onset) were used for the
prepulse+pulse trials: 30, 60, 120, 240, or 2,000 ms. Five
pulse-alone trials were presented at the beginning and the
end of the test session but were not used in the calculation
of PPI values.

For experiments with LSD, the startle test session
included only one block. The test session contained 14
pulse-alone trials and 36 prepulse+pulse trials [12 pre-
pulses each of 68, 71, and 77 dB (or 3, 6, and 12 dB above
background)] presented in a pseudo-randomized order. Five
pulse-alone trials were presented at the beginning and the
end of the test session but were not used in the calculation
of PPI values.

Data analysis

The amount of PPI was calculated as a percentage score for
each prepulse+pulse trial type:%PPI=100−{[(startle re-
sponse for prepulse+pulse trial)/(startle response for
pulse-alone trial)]×100}. Startle magnitude was calculated
as the average response to all of the pulse-alone trials. PPI
data were analyzed with two- or three-factor analysis of
variance (ANOVA) with pretreatment and/or treatment as
between-subjects factors and trial type (prepulse intensity)
as a repeated measure. For experiments in which there was
no significant interaction between drug and prepulse
intensity, PPI data were collapsed across prepulse intensity
and the average PPI was used as the main dependent
measure. Startle magnitude data were analyzed with one- or
two-factor (pretreatment and/or treatment) ANOVA. Post-
hoc analyses were carried out using Tukey’s test. The alpha
level was set at 0.05.

Experimental design

Animals were placed in the startle chambers 10 min after
treatment with lisuride or 5 min after treatment with LSD.
In experiment 1, rats (n=9–10, 38 total) were treated with
vehicle, 37.5, 75, or 150 µg/kg lisuride. In experiment 2,
rats (n=10–12, 45 total) were treated with MDL 11,939
(vehicle or 0.3 mg/kg) 20 min before administration of
lisuride (vehicle or 75 µg/kg). In experiment 3, rats (n=11–
12, 46 total) were treated with raclopride (vehicle or
0.1 mg/kg) 10 min before administration of lisuride (vehicle
or 75 µg/kg). In experiment 4, rats (n=12–13, 50 total)
were treated with WAY-100635 (vehicle or 1.0 mg/kg)
20 min before administration of lisuride (vehicle or 75 µg/kg).
In experiment 5, rats (n=11–12, 47 total) were treated with
vehicle, 50, 100, or 200 µg/kg LSD. In experiment 6, rats
(n=11–12, 46 total) were treated with MDL 11,939 (vehicle
or 0.3 mg/kg) 25 min before administration of LSD (vehicle
or 100 µg/kg).
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Drugs

Drugs used were as follows: lisuride hydrogen maleate
(purity 98.9%, IVAX Pharmaceuticals, Opava, Czech
Republic); S-(−)-raclopride tartrate, N-[2-[4-(2-methoxy-
phenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecar-
boxamide maleate (WAY-100635; Sigma-Aldrich, St.
Louis, MO, USA); α-phenyl-1-(2-phenylethyl)-4-piperidi-
nemethanol (MDL 11,939; Tocris Bioscience, Ellisville,
MO, USA); and (+)-lysergic acid diethylamide tartrate
(LSD) (National Institute on Drug Abuse, Rockville, MD,
USA). Drug doses are expressed as the salt form of the
drug, with the exception of MDL 11,939, which refers to the
freebase. Lisuride and LSDwere dissolved in nitrogen-purged
isotonic saline. MDL 11,939 was dissolved in saline (pH 5.0)
containing 0.75% Tween 80. All other drugs were dissolved in
isotonic saline. All drugs were administered subcutaneously
in the nape of the neck in a volume of 1 ml/kg.

Results

Experiment 1: lisuride dose response

As shown in Fig. 1, administration of lisuride significantly
reduced PPI [F(3,34)=12.74, p<0.0001]. Post hoc compar-
isons confirmed that all three doses of lisuride decreased
PPI (p<0.05, 0.01). There was a significant main effect of
prepulse intensity [F(2,68)=7.82, p=0.0009; this effect was
observed in all subsequent experiments], and there was a
significant interaction between lisuride and prepulse intensity
[F(6,68)=3.11, p<0.01]. Inspection of the data revealed
significant effects of 37.5 µg/kg lisuride only for the 68- and
71-dB prepulse intensities (3 and 6 dB over background; p<
0.05, 0.01), whereas 75 µg/kg lisuride significantly decreased

PPI only at the 71- and 77-dB prepulse intensities (p<0.01).
Administration of 75 µg/kg lisuride decreased PPI at the 68-
dB prepulse intensity, and this effect approached but did not
reach significance (p<0.1). The highest dose of lisuride
tested (150 µg/kg) decreased PPI at all three prepulse
intensities (p<0.01). There was an effect of lisuride on startle
amplitude during block 2 [F(3,34)=4.16, p<0.02]. Post hoc
comparisons revealed that 37.5 µg/kg lisuride significantly
decreased startle magnitude (p<0.05; Table 1). To confirm
that the effect of lisuride on PPI is independent of changes in
startle, we examined the effect of lisuride on PPI in subgroups
of rats that were matched for block 2 startle magnitude
(mean ± SEM=320.32±24.68, 261.72±17.98, 257.28±14.68,
and 299.88±21.23). Although lisuride had no effect on startle
magnitude in those animals [F(3,16)=2.32, p<0.2 NS], PPI
was still significantly reduced [F(3,16)=4.97, p<0.02].

Experiment 2: lisuride versus the 5-HT2A antagonist MDL
11,939

As expected, 75 µg/kg lisuride produced a significant decrease
in PPI [F(1,41)=34.62, p<0.0001]. However, there was no
significant interaction between pretreatment and treatment,
indicating that the effect of lisuride was not blocked by
pretreatment with 0.3 mg/kg MDL 11,939 (Fig. 2a). The
dose of MDL 11,939 used was previously demonstrated to
block 5-HT2A receptor-mediated behavioral effects com-
pletely (Halberstadt et al. 2008). Pretreatment with MDL
11,939 had no effect on PPI. Neither pretreatment nor
treatment significantly affected startle magnitude (Table 1).

Experiment 3: lisuride versus the D2/3 antagonist raclopride

Administration of lisuride produced a significant decrease in
PPI [F(1,42)=14.39, p=0.0005]. There was a significant

Fig. 1 Left panel Effects of
lisuride (0.0375, 0.075, and
0.15 mg/kg, s.c.) on prepulse
inhibition. Right panel Effects of
lisuride averaged across the
three prepulse intensities. Values
represent mean ± SEM for each
group. Drug doses are in milli-
gram per kilogram. *p<0.05,
**p<0.01, significantly different
from vehicle control
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interaction of pretreatment and treatment [F(1,42)=6.18, p<
0.02]. As shown in Fig. 2b, 0.1 mg/kg raclopride blocked the
reduction of PPI induced by 75 µg/kg lisuride (p<0.05).
There was a trend toward a main effect of pretreatment on
PPI [F(1,42)=2.90, p<0.1], but this effect was not confirmed
by post hoc analysis. There were also trends toward main
effects of pretreatment [F(1,42)=3.74, p<0.06] and treat-
ment [F(1,42)=3.58, p<0.07] on startle amplitude during
block 2 (Table 1). However, there was no interaction
between treatment and pretreatment for startle amplitude.
To confirm that the ability of raclopride to block the lisuride-
induced decrease in PPI is independent of changes in startle,
we examined the effect of raclopride and lisuride on PPI in
subgroups of rats that were matched for block 2 startle
magnitude. Startle magnitude in that subset of animals was
not affected by either pretreatment [F(1,20)=0.00, NS] or
treatment [F(1,20)=0.63, NS], and there was no pretreat-
ment×treatment interaction [F(1,20)=1.39, NS]. Nonethe-
less, for PPI, there was still a significant effect of treatment
[F(1,20)=5.76, p<0.03], and a significant interaction be-
tween pretreatment and treatment [F(1,20)=6.68, p<0.02].

Experiment 4: lisuride versus the 5-HT1A antagonist
WAY-100635

There was a significant decrease in PPI after treatment
with 75 µg/kg lisuride [F(1,46)=22.75, p<0.0001], but
there was no significant interaction between pretreatment
and treatment, indicating that the effect of lisuride was
not blocked by pretreatment with 1.0 mg/kg WAY-
100635 (Fig. 2c). There were main effects of pretreatment
[F(1,46)=8.37, p<0.006] and treatment [F(1,46)=5.78, p<
0.03] on startle amplitude, but no interaction between
pretreatment and treatment. Post hoc comparisons dem-
onstrated that startle amplitude was only significantly
reduced in the WAY-100635–lisuride treatment group
(Table 1).

Experiment 5: LSD dose response

Confirming a previous report (Ouagazzal et al. 2001), there
was a significant main effect of LSD on PPI [F(3,43)=6.60,
p=0.0009]. There was no treatment×intensity interaction.

Pretreatment (mg/kg) Treatment (mg/kg) n Startle magnitude (mean ± SEM)

Vehicle 9 457.95±67.80

Lisuride 0.0375 10 221.68±45.98*

Lisuride 0.075 10 247.43±36.41

Lisuride 0.15 9 389.55±69.80

Vehicle Vehicle 11 275.30±36.60

MDL 11,939 0.3 Vehicle 12 300.94±44.15

Vehicle Lisuride 0.075 10 178.96±30.63

MDL 11,939 0.3 Lisuride 0.075 12 202.83±29.89

Vehicle Vehicle 12 437.63±83.94

Raclopride 0.1 Vehicle 11 260.07±29.69

Vehicle Lisuride 0.075 11 262.48±53.36

Raclopride 0.1 Lisuride 0.075 12 218.04±43.22*

Vehicle Vehicle 12 397.60±86.39

WAY 100635 1.0 Vehicle 13 300.35±56.09

Vehicle Lisuride 0.075 12 327.423±46.89

WAY 100635 1.0 Lisuride 0.075 13 103.69±12.20**

Vehicle 12 543.67±110.96

LSD 0.05 12 320.74±64.62

LSD 0.1 12 287.22±65.86

LSD 0.2 11 252.93±40.19

Vehicle Vehicle 11 261.74±34.75

MDL 11,939 0.3 Vehicle 12 224.07±26.19

Vehicle LSD 0.1 12 248.88±22.57

MDL 11,939 0.3 LSD 0.1 11 262.89±40.53

Table 1 Effect of drug treat-
ment on startle magnitude

*p<0.05, **p<0.01 versus ve-
hicle or vehicle–vehicle control
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Figure 3 shows that the two highest doses of LSD (100 and
200 µg/kg) significantly decreased PPI (p<0.01). There
was an overall effect of LSD on startle amplitude [F(3,43)=
2.99, p<0.05]. Tukey’s test revealed that 100 and 200 µg/kg
LSD induced a nonsignificant decrease in startle magni-
tude (p<0.1). However, when subgroups of rats were
matched for startle magnitude [F(3,20)=0.57, NS], LSD
was still capable of decreasing PPI [F(3,20)=3.60,
p<0.04].

Experiment 6: LSD versus the 5-HT2A antagonist MDL
11,939

There was an interaction between pretreatment and treat-
ment [F(1,42)=4.23, p<0.05]. Figure 4 shows that the
disruption of PPI produced by 100 µg/kg LSD was
significantly attenuated by 0.3 mg/kg MDL 11,939 (p<
0.01). As expected, there was a main effect of treatment
[F(1,42)=12.86, p=0.0009]. Post hoc analysis revealed that
100 µg/kg LSD significantly decreased PPI (p<0.01).
There was also a main effect of pretreatment [F(1,42)=
10.05, p<0.003], but this effect was not confirmed by post
hoc analysis. There was no significant effect of either
pretreatment or treatment on startle magnitude (Table 1).

Discussion

The present study demonstrated that lisuride produced a
dose-dependent disruption of PPI in rats. The selective
dopamine (DA) D2/D3 receptor antagonist raclopride
blocked the lisuride-induced PPI disruption. Conversely,
the selective 5-HT2A antagonist MDL 11,939 did not
prevent the disruption of PPI by lisuride. Although lisuride
is a potent and highly efficacious agonist at the 5-HT1A

receptor (Marona-Lewicka et al. 2002) and activation of 5-
HT1A receptors has previously been shown to disrupt PPI in
rats (Sipes and Geyer 1995b), we were unable to block the
effect of lisuride with the selective 5-HT1A antagonist
WAY-100635. These results strongly indicate that the effect
of lisuride on PPI is mediated by D2/D3 receptors and not
by 5-HT2A or 5-HT1A receptors. We also tested the effect of
LSD and found that LSD disrupts PPI, confirming a
previous report (Ouagazzal et al. 2001). Ouagazzal et al.
(2001) also reported that the ability of LSD to reduce PPI is
blocked by pretreatment with the selective 5-HT2A antag-
onist M100907 but is unaffected by pretreatment with the
D2/D3 antagonist haloperidol. Likewise, we found that
MDL 11,939 blocked LSD-induced disruption of PPI.
Thus, although LSD and lisuride both disrupt PPI, they
do so by different receptor mechanisms.

The finding that lisuride disrupts PPI by activating D2/
D3 receptors is consistent with previous evidence demon-
strating that lisuride is a dopaminergic drug. Lisuride binds
to D2 and D3 receptors with high affinity (Ki values of 0.3
and 1.7 nM, respectively; Piercey et al. 1996) and acts as a
partial agonist at recombinant D2 and D3 receptors
(Newman-Tancredi et al. 2002a). Autoradiography has
confirmed that [3H]lisuride binds to D2-like receptors in
the striatum, nucleus accumbens, and olfactory tubercle in
rat brain (Kimura et al. 1991). Lisuride has also been shown
to directly inhibit the firing of A10 dopaminergic neurons
in the ventral tegmental area (White and Wang 1983, 1984),

Fig. 2 Effects of a the selective 5-HT2A antagonist MDL 11,939,
b the D2/D3 antagonist raclopride, and c the 5-HT1A antagonist WAY-
100635 on the disruption of PPI induced by lisuride. Values represent
mean ± SEM for each group. *p<0.05, **p<0.01, significantly
different from vehicle control, and #p<0.05, significantly different
from lisuride-treated animals
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indicating that it activates DA autoreceptors. Behavioral
studies also demonstrate that lisuride has DA agonist
activity. For example, lisuride induces contralateral turning
in rats with unilateral 6-hydroxydopamine-induced lesions
of the nigrostriatal DA pathway (Pieri et al. 1978), an effect
that is consistent with direct activation of postsynaptic DA
receptors. The effects of lisuride on locomotor activity are
also similar to those of the DA agonist apomorphine and
different from those of LSD (Adams and Geyer 1985).
Furthermore, in drug discrimination studies, lisuride pro-
duces symmetrical generalization with the D2 agonists
apomorphine and terguride (Holohean et al. 1982; Kimura
et al. 1991; Yamaguchi et al. 1991).

LSD, like lisuride, is a dopaminergic agent. LSD binds
to D1, D2, D3, D4, and D5 receptors (Nichols et al. 2002)
and has been reported to act as a partial agonist at D1

receptors (Watts et al. 1995). Although we did not test
whether raclopride blocks the effect of LSD on PPI, it was
previously reported that haloperidol fails to attenuate the

PPI-disruptive effect of LSD (Ouagazzal et al. 2001). Drug
discrimination studies have also shown that dopaminergic
activity does not contribute to the behavioral effects of LSD
(Kuhn et al. 1978). However, recent evidence indicates that
the dopaminergic effects of LSD may be time-dependent.
Studies that have trained rats to discriminate LSD have
typically used pretreatment times ranging from 15 to
30 min and have reliably shown that 5-HT2A antagonists
block LSD-induced stimulus control. When a longer
pretreatment time of 90 min is used, however, the resulting
LSD cue is mediated by DA receptors rather than by 5-
HT2A receptors (Marona-Lewicka et al. 2009). This finding
raises the possibility that LSD may disrupt PPI via a
dopaminergic mechanism if long pretreatment times are
used.

As was noted earlier, lisuride has been tested in
numerous clinical trials, but it has never been shown that
the drug can produce hallucinogenic effects in normal
individuals. Parkinsonism patients treated chronically with
high daily doses of lisuride have been reported to
experience CNS side effects, including confusion and
hallucinations (Schachter et al. 1979; Lieberman et al.
1981; Gopinathan et al. 1981; Vaamonde et al. 1991).
However, chronic administration of equivalent doses of
lisuride to non-parkinsonian patients does not produce any
significant CNS sequelae (Verde et al. 1980; Gillin et al.
1994; Schmidt et al. 2002). The DA agonist bromocriptine
is also known to elicit hallucinations in Parkinsonism
patients, an effect that is not observed when the drug is
used to treat endocrine disorders (Vance et al. 1984). It is
therefore likely that the ability of lisuride to induce
hallucinations in Parkinsonism patients is due to its potent
dopaminergic activity combined with underlying neuropa-
thology, rather than to a LSD-like effect (Vaamonde et al.
1991).

Although both LSD and lisuride produce PPI disruption,
we found that the receptors involved in the effects of these

Fig. 4 Effect of the selective 5-HT2A antagonist MDL 11,939 on the
disruption of PPI induced by LSD. Values represent mean ± SEM for
each group. **p<0.01, significantly different from vehicle control,
and ##p<0.01, significantly different from LSD-treated animals

Fig. 3 Left panel Effects of
LSD (0.05, 0.1, and 0.2 mg/kg,
s.c.) on prepulse inhibition.
Right panel Effects of LSD
averaged across the three pre-
pulse intensities. Values repre-
sent mean ± SEM for each
group. Drug doses are in milli-
gram per kilogram. *p<0.05,
**p<0.01, significantly different
from vehicle control
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two drugs are distinct. Despite the fact that lisuride is a 5-
HT2A agonist, it did not disrupt PPI via a mechanism
involving 5-HT2A receptors, indicating that PPI can be used
to differentiate hallucinogenic and non-hallucinogenic 5-
HT2A agonists. This is an important finding because PPI is
a cross-species behavioral paradigm that is altered by
hallucinogens in animals and in humans. Tests with HTR
have also demonstrated that there are behavioral differences
between LSD and lisuride, but unfortunately HTR is not
analogous to any behavior induced by hallucinogens in
humans. The finding that the 5-HT2A receptor is not
involved in the effect of lisuride on PPI provides additional
support for the classification of lisuride as a nonhallucino-
genic 5-HT2A agonist.

Several explanations have been proposed to account for
the fact lisuride is not hallucinogenic. There has been
speculation that the potent interaction of lisuride with 5-
HT1A receptors may be acting to functionally antagonize
the response to 5-HT2A receptor activation (Marona-Lewicka
et al. 2002), but recent findings do not support this
hypothesis (González-Maeso et al. 2007). Data have also
been published, indicating that LSD is a 5-HT2C agonist,
whereas lisuride acts as a 5-HT2C antagonist (Burris et al.
1991; Fitzgerald et al. 1999), and it has been proposed
that lisuride may be non-hallucinogenic because it fails
to activate the 5-HT2C receptor (Burris et al. 1991;
Sanders-Bush 1994). However, other studies have dem-
onstrated that lisuride acts as an agonist at the 5-HT2C

receptor (Egan et al. 1998, 2000; Newman-Tancredi et al.
2002b; Marona-Lewicka et al. 2002; Cussac et al. 2008). It
is therefore unlikely that differences between the effects of
LSD and lisuride on 5-HT2C receptors account for the
inactivity of the latter drug.

González-Maeso et al. (2007) suggested that differences
in the behavioral effects of LSD and lisuride may be due to
agonist-directed trafficking of 5-HT2A responses. Agonist-
directed trafficking, or functional selectivity, refers to the
phenomenon where receptors can couple independently to
multiple effector mechanisms, and agonists may selectively
activate a subset of the signaling pathways (Kenakin 1995).
Both LSD and lisuride activate Gq/11 signaling via the 5-
HT2A receptor. Conversely, LSD but not lisuride
increases the cortical expression of egr-1 and egr-2 by
activating pertussis toxin-sensitive Gi/o proteins and Src
(González-Maeso et al. 2007). These workers also found
that lisuride does not induce the HTR in mice and proposed
that LSD and other hallucinogens are capable of inducing
this behavioral response because they activate specific
signaling mechanisms that are not recruited by lisuride.

Two key findings in the literature, however, do not
support the agonist-directed trafficking hypothesis. First,
although lisuride does not induce the HTR in rats (Gerber et
al. 1985) or mice (González-Maeso et al. 2007), it does

evoke the behavior in the least shrew (Cryptotis parva;
Darmani et al. 1994). Thus, lisuride can induce head twitch
under certain conditions (administration to a species that is
highly sensitive to the behavioral effects of 5-HT2A agonists).
Second, the ability of DOI to induce the HTR is markedly
attenuated in Gq −/− knockout mice (Garcia et al. 2007),
indicating that the Gq/11 pathway is involved in mediating the
HTR to 5-HT2A activation. The latter finding is significant
because both LSD and lisuride activate the Gq/11 pathway.

Recently, Cussac et al. (2008) compared the efficacies of
LSD and lisuride for Gq/11 activation and calcium mobili-
zation in CHO cells transfected with the human 5-HT2A

receptor. LSD activated both pathways with high efficacy,
whereas lisuride was less efficacious, having only 57% of
the efficacy of LSD. Based on the fact that Gq plays a role
in transducing the behavioral effects of 5-HT2A receptor
activation (Garcia et al. 2007), these workers proposed that
lisuride may have insufficient efficacy at the 5-HT2A

receptor to induce HTR and other behavioral effects. Thus,
lisuride may fail to recruit Gi/o not because of agonist-
directed receptor trafficking but rather because it has very
low intrinsic efficacy at the 5-HT2A receptor.

Results obtained using the drug discrimination paradigm
are consistent with the hypothesis that lisuride fails to
induce hallucinogenic effects because it has relatively weak
efficacy at the 5-HT2A receptor in vivo. Even though the
DOM stimulus completely generalizes to lisuride (Glennon
and Hauck 1985; Fiorella et al. 1995b), DOM-induced
stimulus control is attenuated when the training drug is co-
administered with lisuride (Glennon 1991). Thus, the
effects of lisuride in the drug discrimination paradigm are
consistent with the behavior of a partial agonist. As would
be expected for a partial agonist, lisuride is active when
administered alone but acts as an antagonist when admin-
istered in combination with a more efficacious agonist (e.g.,
DOM). Indeed, using formation of [3H]inositol phosphates
as a measure of 5-HT2A agonist efficacy, lisuride is only
20% as efficacious as DOM (Rabin et al. 2002).

Regardless of the underlying mechanism, there is
substantial evidence that LSD and lisuride evoke distinct
neurochemical and behavioral effects. It has been demon-
strated that lisuride fails to mimic fully the effects of LSD
on the activity of neurons in prefrontal cortex (Arvanov et
al. 1999) and facial nucleus (McCall and Aghajanian 1980).
Furthermore, there are marked differences in the effects of
lisuride and LSD on gene expression (González-Maeso et
al. 2003, 2007). Studies with head twitch indicate that this
behavior is sensitive to LSD but not lisuride, at least in
certain species. The present investigation extends those
previous findings by demonstrating that different receptor
mechanisms are responsible for the effects of LSD and
lisuride on PPI. Further work is needed to clarify how these
findings relate to the effects of LSD and lisuride in humans.

186 Psychopharmacology (2010) 208:179–189



Nevertheless, this study demonstrates that PPI can serve as
a useful tool to compare hallucinogenic and non-
hallucinogenic 5-HT2A agonists.
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