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Tau K321/K353 pseudoacetylation 
within KXGS motifs regulates 
tau–microtubule interactions 
and inhibits aggregation
Yuxing Xia1,2,3, Brach M. Bell1,2,3 & Benoit I. Giasson1,2,3*

Alzheimer’s disease is the leading cause of dementia and a defining hallmark is the progressive brain 
deposition of tau aggregates. The insidious accumulation of brain tau inclusions is also involved in a 
group of neurodegenerative diseases termed frontotemporal dementias. In all of these disorders, tau 
aggregates are enriched in post-translational modifications including acetylation, which has recently 
been identified at multiple sites. While most evidence suggest that tau acetylation is detrimental and 
promotes tau aggregation, a few studies support that tau acetylation within the KXGS motif can be 
protective and inhibit tau aggregation. To model site-specific acetylation at K259, K290, K321, and 
K353, acetylmimetics were created by mutating lysine to glutamine residues, which approximates size 
and charge of acetylation. HEK293T cells were transfected to express wild type tau, tau pathogenic 
mutations (P301L and P301L/S320F) or tau acetylmimetics and assessed by cell-based assays for 
microtubule binding and tau aggregation. Acetylmimetics within the KXGS motif (K259Q, K290Q, 
K321Q, K353Q) leads to significant decreased tau–microtubule interactions. Acetylmimetics K321Q 
and K353Q within the context of the pathogenic P301L tau mutation strongly inhibited prion-
like seeded aggregation. This protective effect was confirmed to decrease intrinsic aggregation 
of P301L/S320F tau double mutation. Surprisingly, K321Q and K353Q acetylmimetics altered the 
conformational structure of P301L/S320F tau to extensively impair Thioflavin S binding. Site-specific 
acetylation of tau at K321 and K353 could represent a natural protective mechanism against tau 
aggregation and could be a potential therapeutic target.

Brain pathological tau inclusions are one of the major defining hallmark in Alzheimer’s disease (AD), fronto-
temporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and other 
neurodegenerative disorders called tauopathies1. Tau inclusions can be post-translationally modified and are 
often found to be hyperphosphorylated in late-stage disease2,3. In addition to phosphorylation, tau acetylation 
has emerged as another prominent post-translational modification3–5. Enzymes with acetylation activity includ-
ing p300 acetyltransferase and acetyltransferase Creb-binding protein (CBP) have been identified to acetylate 
full length tau protein in vitro5,6. Additionally, tau also contains auto-acetylation activity mediated by catalytic 
cysteine residues C291 and C3227.

In AD brains, insoluble tau aggregates are enriched by acetylation at multiple sites3. Antibodies against acety-
lated K280 can detect tau pathology in different tauopathies such as AD, FTD, PSP, and CBD, which includes 
both familial and sporadic cases8,9. Likewise, acetylated K274 can label tau aggregates in AD, FTD, PSP, and 
CBD brains, but not argyrophilic grain disease (AGD)10. Tau acetylation at K174, K274, and K281 have been 
demonstrated to inhibit synaptic transmission and promote memory deficits in vivo11,12. Tau acetylation can 
also regulate its degradation with acetylation of K274 and K281 selectively targeting macroautophagy, while 
increased pseudoacetylation of these sites exacerbate pathogenesis in some disease models13. Overall reduction 
of tau acetylation also improve outcomes in models of traumatic brain injury14.

While most evidence suggests tau acetylation contributes to disease, several studies provided evidence that 
specific acetylation sites within the KXGS motifs (K259, K290, K321, K353) could be protective15,16. In rTg4510 
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tau transgenic mice and in AD brains, tau acetylation at KXGS motifs are decreased and may help inhibit tau 
phosphorylation15 . The KXGS motifs are well-conserved residues located in each of the four microtubule (MT)-
binding repeats of tau (Fig. 1). Acetylation of KXGS motifs can be mediated by p300 acetyltransferase5,16 and 
deacetylated by histone deacetylase 6 (HDAC6)15.

One method to model site specific acetylation is to use pseudoacetylation mutations that substitute lysine 
for glutamine, which approximates the size and charge of acetylated tau4,13–17. In vitro studies indicate that 
quadruple acetylmimetic mutations at K259Q/K290Q/K321Q/K353Q are resistant to tau filament assembly15. 
Tau with either K290Q or K321Q acetylmimetics are less likely to aggregate in vitro16. However, it is unknown 
if these acetylation sites could regulate MT binding or if individual sites are sufficient to inhibit both intrinsic 
and prion-like seeded aggregation in a cellular context.

In this study, we expressed tau with acetylmimetics K259Q, K290Q, K321Q, and K353Q in HEK293T cells 
and assessed the effects on the modulation of tau-MT interactions in a cell-based MT binding assay. All four 
of these sites significantly decreased MT binding and we determined that K321Q and K353Q acetylmimetics 
can inhibit prion-like seeded aggregation in the context of the P301L tau mutation. This protective effect also 
decreased intrinsic aggregation of P301L/S320F double tau mutations, indicating that K321Q and K353Q are 
overall protective against tau aggregation.

Results
Tau acetylmimetics modulate tau‑MT interactions.  Previous studies reported that acetylmimetics 
of multiple different sites can reduce MT bundling or impair MT binding6,17. Here we wanted to systematically 
assess the impact of acetylation sites (K259, K290, K321, and K353) within the KXGS motifs that are located 
within the MT-binding region (Fig. 1). These tau amino acid residues are numbered according to the 2N4R 
441 amino acid human tau isoform, which is the most common nomenclature although we used the 0N4R 383 
amino acid isoform for all the studies. MT binding of tau acetylmimetics compared to wild type (WT) human 
tau was assessed using a cell-based MT cosedimentation assay, which has been previously used to investigate the 
effects of tau pathogenic mutations and phosphomimetics18,19. In this assay, Paclitaxel can be added to cell lysates 
to promote tubulin polymerization into MTs. Without Paclitaxel, both tubulin and WT tau are mostly found in 
the soluble fraction (Fig. 2A). After adding Paclitaxel, soluble tubulin polymerizes into MTs that can be isolated 
in the pellet fraction after centrifugation. As a baseline, up to ~ 40% of WT tau can be found in the pellet fraction 
in the presence of Paclitaxel (Fig. 2B,F). Surprisingly, acetylmimetics K259Q, K290Q, K321Q, and K353Q all 
significantly decreased tau-MT interactions to around ~ 15% (Fig. 2C–G). This finding suggests that acetylation 
of any KXGS motifs can be involved in regulate tau MT binding. In this assay, full length tau in the supernatant 
fractions is likely more phosphorylated as it runs slightly slower on SDS-PAGE than tau in the MT-bound frac-
tions. It is well established that higher tau phosphorylation levels are associated with reduced MT binding20,21 
and tau more highly phosphorylated reduced its mobility on SDS-PAGE2,22–24.

Figure 1.   Tau protein structure and overview of pseudoacetylation and mutation sites. (A) Illustration 
shows the general structure of the tau protein with major domains: N-terminal domain, proline-rich region, 
MT-binding region consisting of four major repeats, and C-terminal domain. (B) Amino acid sequences of four 
MT binding repeats R1 to R4 are shown. Acetylation sites K259, K290, K321, and K353 are within conserved 
KCGS or KIGS motifs in each of the four major repeats, respectively, and numbered according to the 2N4R 
human tau isoform. Additionally, P301L and S320F MAPT missense mutations that are depicted were used as a 
model of intrinsic tau aggregation.
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Tau acetylmimetics K321Q and K353Q are aggregation‑resistant and inhibit prion‑like seeded 
P301L aggregation.  Previous in vitro experiments showed that tau with quadruple acetylmimetics of the 
KXGS motifs (K259Q/K290Q/K321Q/K353Q) can decrease tau fibrillization15. Specifically, K290Q and K321Q 
decreases in vitro tau filament formation induced by dextran sulfate16. To test these sites individually in a cel-
lular context, tau acetylmimetics were expressed in HEK293T cells and tau aggregation measured in a cell-based 
tau inclusion assay. WT tau and tau acetylmimetics K259Q, K290Q, K321Q, and K353Q were expressed in 
HEK293T cells and fractionated into Triton-soluble and Triton-insoluble fractions (Fig. 3). Without seeding, all 
four tau acetylmimetics did not significantly aggregate (Fig. 3). Even upon the addition of K18 seeds, none of 
the acetylmimetics showed aggregates within the Triton-insoluble fraction, suggesting that they do not directly 
promote aggregation as compared to tau with the P301L mutation that can be readily induced to aggregate in 
the presence of K18 seeds (Fig. 3F)19,25,26 and that is associated with familial FTD27,28. In this assay full length 
tau in the insoluble fractions display a slight shift to higher apparent molecular weight as it run slower on SDS-
PAGE than tau in the soluble fractions. It is well established that increased tau phosphorylation is prone to 
aggregation29–32 and highly phosphorylated tau has reduced mobility on SDS-PAGE2,22–24.

Next, we evaluated whether acetylmimetics can modulate prion-like seeded aggregation in the context of the 
tau mutation P301L. K259Q, K290Q, K321Q, and K353Q acetylmimetics were combined with P301L and seeding 
was induced with K18 tau preformed fibrils. WT tau did not significantly aggregate with or without K18 seeding 
(Fig. 4A). By contrast, P301L robustly aggregated after K18 seeding (Fig. 4B). Compared with P301L, K259Q/
P301L and K290Q/P301L mutations did not present with significantly altered seeded aggregation (Fig. 4C,D,G). 
However, K321Q/P301L and K353Q/P301L tau displayed significant resistance to tau aggregation with > 50% 
reduction in Triton-insoluble tau compared to P301L tau (Fig. 4E–G) in the presence of exogenous K18 tau pre-
formed fibrils. Hence, K321Q and K353Q acetylmimetics are protective against prion-like seeded aggregation, 
even in the context of a pro-aggregant mutation like P301L.

Tau acetylmimetics K321Q and K353Q inhibit intrinsic aggregation and alter conformational 
amyloid structure of P301L/S320F tau aggregates.  Since K321Q and K353Q acetylmimetics may 
be protective against seeded tau aggregation, these acetylmimetics were also tested in a model of intrinsic 
aggregation. Our lab has previously discovered that P301L/S320F double mutation robustly aggregates without 
seeding19,26. K321Q and K353Q were combined with P301L/S320F tau to assess whether these acetylmimet-
ics can also inhibit intrinsic aggregation. Compared to WT tau, P301L/S320F aggregates up to ~ 80% without 
seeding (Fig. 5A,B,F). Both P301L/S320F/K321Q and P301L/S320F/K353Q had decreased aggregation with lev-
els ~ 60%, showing a relative 25% reduction (Fig. 5C,D,F). K321Q and K353Q were combined with P301L/S320F 
(P301L/S320F/K321Q/K353Q), which had aggregation levels comparable to P301L/S320F/K321Q and P301L/
S320F/ K353Q (Fig. 5E,F). While K321Q and K353Q acetylmimetics both protect against intrinsic aggregation, 
they do not appear to have an additive effect.

Figure 2.   Pseudoacetylation of KXGS motif impairs MT binding. (A,B) A cell-based MT binding assay 
performed on lysate from HEK293T cells transfected with 0N4R WT tau or (C–F) 0N4R tau acetylation 
mimetics. Without Paclitaxel, most of the tubulin is unpolymerized and in the soluble fraction (A). With 
Paclitaxel, tubulin monomers polymerize as MTs in the pellet fraction (B). In the presence of Paclitaxel, 
tau acetylation mimetics (C) K259Q, (D) K290Q, (E) K321Q, and (F) K353Q lead to significant impairment 
of MT binding compared to WT tau. Immunoblots with antibody specific for β-tubulin (clone TUB 2.1) 
used to track tubulin polymerization or 3026 antibody specific for total tau. S  supernatants; P  pellet fractions. 
The relative molecular weight markers are shown on the left. (G) One-way ANOVA with Dunnett’s test was 
performed with N = 3 for each group. ****p < 0.0001.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17069  | https://doi.org/10.1038/s41598-021-96627-7

www.nature.com/scientificreports/

Figure 3.   Pseudoacetylation at KXGS motifs do not lead to significant aggregation even with K18 seeds. 
HEK293T cells were transfected with 0N4R WT tau and 0N4R tau acetylmimetics K259Q, K290Q, K321Q, 
and K353Q. Cell lysates were fractionated into Triton soluble and insoluble fractions to isolate potential tau 
aggregates. Immunoblots were probed with tau antibody 3026. (A) WT tau does not aggregate with or without 
K18 seeds. (B) K259Q, (C) K290Q, (D) K321Q, and (E) K353Q 0N4R tau are also resistant to aggregation with 
or without K18 seeding. (F) P301L 0N4R tau was used as a positive control. The relative molecular weight 
markers are shown on the left.

Figure 4.   K321Q and K353Q tau acetylmimetics inhibit prion-like seeded aggregation in the context of P301L 
mutation. Cell-based tau inclusion assays were used to determine aggregation and prion-like seeding of (A) 
0N4R WT tau, and (B) P301L, (C) K259Q/P301L, (D) K290Q/P301L, (E) K321Q/P301L/, and (F) K353Q/ 
P301L 0N4R tau. Immunoblots were probed with tau antibody 3026. The relative molecular weight markers 
are shown on the left. (G) One-way ANOVA with Dunnett’s test was performed with N = 3 for WT tau and all 
mutations. ****p < 0.0001 and ns not statistically significant.
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To directly visualize tau aggregates, cells transfected to express these various acetylmimetics in the context of 
P301L/S320F were stained with Thioflavin S, which is a fluorescent dye that strongly binds beta-pleated sheets 
of amyloid structures33,34 (Fig. 6, Supplemental Fig. 2). Since WT tau did not form aggregates, green Thioflavin 
S signal was not detected in cells transfected with WT tau. Approximately 60% of cells transfected to express 
P301L/S320F tau contained Thioflavin positive aggregates (Fig. 6A,B). Surprisingly, combining K321Q with 
P301L/S320F tau mutants decreased Thioflavin positivity to ~ 15% (Fig. 6A,B). Almost no Thioflavin signal was 
found in cells expressing P301L/S320F/K353Q and P301L/S320F/K321Q/K353Q tau (Fig. 6, Supplemental Fig. 2). 
This finding suggests that K321Q and K353Q can alter the conformational amyloid structure of P301L/S320F 
tau aggregates and prevent Thioflavin S dye from binding, which were more pronounced than the differences in 
biochemical aggregation (Fig. 5).

Discussion
Tau acetylation has been recently confirmed to be a major post-translational modification and is elevated in 
tauopathies3–5. However, different studies suggest that tau acetylation can both promote and inhibit tau aggre-
gation depending on the modified site. Thus studies of overall tau acetylation are complicated by the offsetting 
impact of simultaneous acetylation of different amino acid residues. One approach to investigate the role of site 
specific acetylation is to use pseudoacetylation mutations that substitute lysine for glutamine, which approximates 
the size and charge of acetylated tau4,13–17 with the caveat that this substitution is not identical to acetylated lysine. 
Unlike most acetylation sites, acetylation of KXGS motifs appear to be decreased in transgenic tau models and in 
post-mortem tissue from AD patients16. In this region, acetylmimetics K290Q and K321Q have been previously 
shown to inhibit tau aggregation in vitro16. Using cell-based assays in transfected HEK293T cells, we examined 
MT binding and aggregation of tau acetylmimetics at the conserved KXGS motifs (K259, K290, K321, and 
K353). All four of these sites are located within the MT-binding region in each of the four repeats (Fig. 1). Tau 
acetylmimetics at any of these sites displayed decreased tau-MT interactions by > 50% relative to WT to levels 
comparable to the effects of many pathogenic tau mutations19. This type of effect on tau-MT interaction was 
also found for some phosphomimetics like S26220,21, implying that both acetylation and phosphorylation are 
involved in regulation of MTs. Decreased MT binding of tau may indirectly facilitate protein degradation while 
tau acetylation of K274, K290, K321 and K353 is also involved in regulating tau chaperone interactions and tau 
degradation35 that could contribute to the removal of pathogenic forms of tau.

Tau acetylmimetics at K321 and K353, but not K259 and K290, inhibited prion-like aggregation of P301L 
tau mutant seeded with exogenous K18 tau preformed fibrils. This protective effect was confirmed to a lesser 
extent in the context of P301L/S320F tau double mutant, which robustly aggregates without seeding19,26. Based 
on Cryo-EM studies, R3 and R4 repeats of tau (306–378 residues) form the core of tau aggregates36. Both K321 
and K353 are potential acetylation sites within this region and may directly affect tau filament formation.

Figure 5.   Acetylmimetics K321Q and K353Q inhibit self-aggregation of P301L/S320F tau double mutants. 
Cell-based tau inclusion assays were used to assess intrinsic aggregation of (A) WT 0N4R tau, or 0N4R tau 
mutants (B) P301L/S320F, (C) P301L/S320F/K321Q, (D) P301L/S320F/K353Q, and (E) P301L/S320F/K321Q/
K353Q. Immunoblots were probed with tau antibody 3026. The relative molecular weight markers are shown 
on the left. (F) Graph shows percent aggregation of WT tau and different tau mutations. One-way ANOVA with 
Dunnett’s Test was performed with N = 3 for WT tau and all mutations. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Our data indicate that K321Q and K353Q significantly altered the conformational structure of mutant tau 
(P301L/S320F) as their presence almost completely prevented the binding of fluorescent Thioflavin S dye, which 
is specific for amyloid structure of protein aggregates33,34. This is unexpected since these tau aggregates are 
still detergent insoluble despite being Thioflavin negative. The actual protein structure and sequence required 
for Thioflavin S binding is still not well defined although Thioflavin S is routinely used as a marker of protein 
amyloid formation. However, a similar effect was also found in K280 acetylmimetic in P301S transgenic mice 
where K280Q significantly decreased tau filament formation and Thioflavin S reactivity37. Tau acetylation within 
the MT-binding region likely interferes with packing of beta-pleated sheets involved in amyloid formation and 
thus either tertiary or/and quaternary structures resulting in polymorphs, but that are still permissive to protein 
inclusion formation. The inhibition of Thioflavin S reactivity due to the K321Q and K353Q amino acid substitu-
tions is also akin to structure prion-like conformation changes. For example, it was recently shown that during 
fibrillization of α-synuclein Thioflavin-negative polymorphs can arise and that these can be transmitted with 
prion-like properties that are maintained during passaging38.

One limitation of this study is that tau mutations were used to model aggregation and prion-like seeding, and 
most patients with tauopathies do not have tau missense mutations. However, these findings can be used as a 

Figure 6.   In the context of the P301L/S320F aggregation mutations, K321Q and K353Q acetylmimetics 
disrupt conformational amyloid structure as shown by reduced Thioflavin reactivity. (A) HEK293T cells 
were transfected to express WT, P301L/S320F, P301L/S320F/K321Q, P301L/S320F/K353Q, or P301L/S320F/
K321Q/K353Q 0N4R tau. Cells were plated onto slides and labeled for fluorescence with DAPI for nuclei, 3026 
antibody/Alexa 594 for total tau (red), and Thioflavin S for amyloid structure (green). (B) Graph shows the 
ratio of thioflavin positive to tau positive cells calculated from 10 different ×20 fields for each group. One-
way ANOVA with Dunnett’s test was performed with N = 10 for WT tau and mutations. ****p < 0.0001. Scale 
bar = 50 µm.
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model of how tau aggregation could potentially be inhibited if WT tau adopts similar pathogenic conformation 
in patients with sporadic tauopathies.

Overall, pseudoacetylation of KXGS motifs have protective effects against tau aggregation. Specifically, K321Q 
and K353Q strongly inhibited both intrinsic and prion-like seeded aggregation of different tau mutations. How-
ever, this effect did not appear to be additive, which suggests single acetylation sites at either K321 or K353 could 
be sufficient to prevent or slow the formation of tau filaments. Paradoxically, increased pseudoacetylation of these 
same sites also decreased MT binding, which is thought to be a detrimental effect associated with many tau mis-
sense mutations19,39. Pseudoacetylation is a model of constitutive acetylation and physiologic baseline levels of tau 
acetylation may be low enough that normally MTs are minimally affected. In addition, acetylation is a reversible 
modification so that it can be involved in regulating MT-tau interaction. Transient hyper-acetylation could be 
used to temporally inhibit tau aggregation, while the lost of tau-MT interaction could be reserved by subsequent 
deacetylation. When tau aggregates begin to form, tau acetylation of specific sites like K321 and K353 may be 
elevated as a compensatory response to inhibit additional tau aggregation and would also facilitate and promote 
proteasomal degradation of these tau aggregates35. Future studies on tau acetylation could better elucidate the 
complex relationships between tau acetylation and its effects on MTs and tau aggregation.

Methods
Protein purification of K18 tau and fibrillization.  K18 amyloid tau seeds were generated from the tau 
protein fragment K18, which contains the MT binding repeats from Q244 to E372 (numbering based on 2N4R 
full length tau) as previously described19,26,39.

Plasmid cloning and site‑directed mutagenesis.  The 0N4R human tau cDNA isoform was cloned 
into mammalian expression vector pcDNA3.1 ( +). Tau acetylmimetics were created with QuikChange site-
directed mutagenesis (Agilent Technologies, Santa Clara, CA) using partially overlapping oligonucleotides40. 
Correct tau sequences were verified and sequenced by Genewiz (South Plainfield, NJ).

Cell culture and calcium phosphate transfection.  HEK293T cells were grown in Dulbecco’s modified 
eagle media with 10% fetal bovine serum (FBS) and antibiotics (100 U/ml penicillin, 100 µg/ml streptomycin) 
at 37 ºC and 5% CO2. Cell transfection was performed by using calcium phosphate precipitation as previously 
described19,41. For cell seeding studies, 1 µM of K18 tau fibrils were added one hour after transfection as previ-
ously described19,41. At 16 h after transfection, cells were exchanged and maintained in media with only 3% FBS. 
Cells were harvested 48 h after the media change.

Cell‑based tau aggregation assay.  Cell lysates were prepared in 200 µL of Triton Lysis Buffer (25 mM 
Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 20 mM NaF) with a mix of protease inhibitors 
(1 mM phenylmethylsulfonyl and 1 mg/ml each of pepstatin, leupeptin, N-tosyl-l-phenylalanyl chloromethyl 
ketone, N-tosyl-lysine chloromethyl ketone and soybean trypsin inhibitor) like previous studies18,19,26. These 
solutions were centrifuged at 100,000 × g and 4 ºC for 30 min. The Triton soluble fractions were collected sepa-
rately. The Triton insoluble fractions were washed with additional buffer and centrifuged again at 100,000 × g 
and 4 ºC for 30 min. After the wash step, the pellet was resuspended in Triton Lysis Buffer. SDS loading buffer 
(10 mM Tris, pH 6.8, 1 mM EDTA, 40 mM DTT, 0.005% bromophenol blue, 0.0025% pyronin yellow, 1% SDS, 
10% sucrose) was added to both soluble and insoluble fractions and boiled for 10 min. The Triton insoluble frac-
tion was probe-sonicated and boiled again for 10 min. Percent aggregation was calculated as a ratio of insoluble 
tau/(soluble tau + insoluble tau) × 100.

Cell‑based MT binding assay.  Cells were lysed in 200 µL of PEM buffer (80 mM PIPES, pH 6.8, 1 mM 
EGTA, 1 mM MgCl2) supplemented with 0.1% Triton X-100, 2 mM GTP, 20 µM Paclitaxel, and a mix of protease 
inhibitors (1 mM phenylmethylsulfonyl and 1 mg/ml each of pepstatin, leupeptin, N-tosyl-l-phenylalanyl chlo-
romethyl ketone, N-tosyl-lysine chloromethyl ketone and soybean trypsin inhibitor) as previously described18,19. 
Cell lysates were incubated in a 37 ºC water bath for 30 min and then centrifuged at 100,000 × g for 30 min to 
isolate MTs in the pellet. Supernatant was transferred to a new tube and the pellet (MT fraction with bound pro-
teins) was resuspended in PEM buffer. The pellet fraction was homogenized and SDS loading buffer was added 
to both fractions. Equal amounts of supernatant and pellet were loaded on acrylamide gels for immunoblotting. 
Percent MT bound tau was calculated as pellet/(supernatant + pellet) × 100.

Western blotting.  Equal proportions of each sample were loaded on 10% polyacrylamide gels and sepa-
rated by SDS-PAGE. After transfer, the membranes were blocked in 5% milk with Tris-buffered saline (TBS) 
for an hour. The membranes were incubated in primary antibody overnight at 4 ºC at dilutions of 1:1000 for 
β-tubulin and tau antibodies. Anti-β-tubulin (Clone TUB 2.1) is a mouse monoclonal antibody (Sigma-Aldrich, 
St. Louis, MO) and 3026 tau antibody is a rabbit polyclonal antibody that was raised against full length 0N3R 
human tau but also reacts with 0N4R human tau (Supplemental Fig. 1)26,42,43. After TBS washes, goat anti-rabbit 
or anti-mouse secondary antibodies conjugated to horseradish peroxidase (Jackson Immuno Research labs, 
Westgrove, PA) were added to the membranes at 1:4000 dilution for an hour. After several washes, the mem-
branes were exposed and imaged after adding Western Lightning Plus ECL reagents (PerkinElmer, Waltham, 
MA). Each lane was semi-quantitatively measured in ImageJ by densitometric analysis. Statistical tests were 
performed on GraphPad Prism version 8.4.3 for one way analysis of variance (ANOVA) with post hoc analysis 
and Dunnett’s test.
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Immunofluorescence with thioflavin staining.  HEK293T cells were rinsed in phosphate-buffered 
saline (PBS) and fixed in 4% paraformaldehyde for 10 min. After washing, autofluorescence eliminator reagent 
(Millipore, Burlington, MA) was added for five minutes and washed with 40% ethanol. Under dark conditions, 
slides with cells were incubated in 0.0125% Thioflavin S dissolved in 50% ethanol/PBS for 3 min. Thioflavin S 
was washed off with 50% ethanol and PBS. Slides were then placed in blocking solution (2% FBS/0.1% Triton-
X-100 in PBS) for 30 min. Primary antibody (3026 antibody against total tau42) in 2% FBS/PBS was added for 
one hour. After PBS washes, Alexa 594-conjugated anti-rabbit secondary antibodies (1:500 dilution) (Invitrogen, 
Carlsbad, CA) were added for one hour. Slides were washed in PBS and stained with 0.5 µg/ml 4’,6-diamidino-
2-phenylindole (DAPI, Invitrogen, Carlsbad, CA) in PBS for 5 min. After PBS washes, the slides were mounted 
using Fluoromount-G (Invitrogen, Carlsbad, CA). Fluorescent images were taken using a BZ-X700 Keyence dig-
ital microscope (Itasca, Il). Cell counting was performed by BMB using ImageJ. Percent Thioflavin reactivity was 
calculated from a ratio of Thioflavin positive to tau positive cells, as determined by the total tau antibody 3026.
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