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OBJECTIVE—We evaluated the impact on diabetes-related
intermediary traits of common novel type 2 diabetes—associ-
ated variants in the JAZF1 (rs864745), CDC123/CAMKID
(rs12779790), TSPANS (rs7961581), THADA (rs7578597), AD
AMTS9 (rs4607103), and NOTCHZ2 (rs10923931) loci, which were
recently identified by meta-analysis of genome-wide association
data.

RESEARCH DESIGN AND METHODS—We genotyped the six
variants in 4,516 middle-aged glucose-tolerant individuals of the
population-based Inter99 cohort who were all characterized by
an oral glucose tolerance test (OGTT).

RESULTS—Homozygous carriers of the minor diabetes risk
G-allele of the CDC123/CAMKID rs12779790 showed an 18%
decrease in insulinogenic index (95% CI 10-27%; P = 4 X 10™°),
an 18% decrease in corrected insulin response (CIR) (8.1-29%;
P =4 x 10", and a 13% decrease in the ratio of area under the
serum-insulin and plasma-glucose curves during an OGTT (AUC-
insulin/AUC-glucose) (5.8-20%; P = 4 X 10~%). Carriers of the
diabetes-associated T-allele of JAZFI rs864745 had an allele-
dependent 3% decrease in BIGTT-AIR (0.9-4.3%; P = 0.003).
Furthermore, the diabetes-associated C-allele of TSPANS
rs7961581 associated with decreased levels of CIR (4.5% [0.5—
8.4]; P = 0.03), of AUC-insulin/AUC-glucose ratio (3.9% [1.2-6.7];
P = 0.005), and of the insulinogenic index (5.2% [1.9-8.6]; P =
0.002). No association with traits of insulin release or insulin
action was observed for the THADA, ADAMTS9, or NOTCHZ2
variants.

CONCLUSIONS—If replicated, our data suggest that type 2
diabetes at-risk alleles in the JAZF1, CDC123/CAMKID, and
TSPANS loci associate with various OGTT-based surrogate mea-
sures of insulin release, emphasizing the contribution of abnor-
mal pancreatic B-cell function in the pathogenesis of type 2
diabetes. Diabetes 57:2534-2540, 2008
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ecent discoveries using genome-wide associa-
tion (GWA) studies have led to progression in
the understanding of the molecular genetic
background of type 2 diabetes, dramatically
increasing the number of common validated type 2 diabe-
tes loci with modest impact on relative diabetes risk (1-5).
The Diabetes Genetics Replication and Meta-analysis
(DIAGRAM) consortium recently reported the outcome of
a meta-analysis of data from three GWA studies. Six
additional type 2 diabetes loci reaching genome-wide
significance levels were identified in the JAZF1, CDC123/
CAMKI1D, TSPANS, THADA, ADAMTS9, and NOTCHZ2
loci; all were modestly affecting disease risk with odds
ratios between 1.09 and 1.15 (6).

As for most other findings obtained from GWA studies,
little is known about the function of the putative regional
candidate genes thought to be affected by the at-risk
variants. Recent studies have, however, shown that many
validated type 2 diabetes risk variants confer an impaired
pancreatic B-cell function, which seems to be the case for
risk alleles in the CDKALI, SLC30A8, HHEX/IDE,
CDKNZ2A/2B, IGF2BP2, TCF7L2, and KCNJ11 loci (2,7-
9). Indeed, only the PPARG Prol2Ala variant has so far
displayed a diabetogenic potential through affecting pe-
ripheral insulin sensitivity (10) and variants in F70O by
increasing fat accumulation (11). Of the six novel type 2
diabetes loci (6), the biological function of NOTCHZ2
points to an impact on pancreatic 3-cell function because
of its critical role in fetal pancreatic development (12), yet
little or no prior implication in the pathogenesis of type 2
diabetes or diabetes-related phenotypes can be claimed
for genes in the JAZF1, CDCI123/CAMKI1D, TSPANS,
THADA, or ADAMTS9 regions.

Given the sparse knowledge of the biological functions
of the six novel type 2 diabetes—associated variants, we
have characterized the influence of these variants on
quantitative surrogate measures of oral glucose-stimulated
insulin release, insulin sensitivity, and body fat accumula-
tion in a population-based study of glucose-tolerant mid-
dle-aged Danes who all had undertaken an oral glucose
tolerance test (OGTT).

RESEARCH DESIGN AND METHODS

Studies of quantitative metabolic traits were performed in the Inter99 cohort,
which is a population-based, randomized, nonpharmacological intervention

DIABETES, VOL. 57, SEPTEMBER 2008



N. GRARUP AND ASSOCIATES

TABLE 1

Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,377 middle-aged subjects with normal
glucose tolerance stratified according to genotype of JAZF'1 rs864745

11 (CC) 12 (CT) 22 (TT) PADDITIVE P22 + 12 VS. 11 P22 VS. 12 + 11

n (men/women) 996 (453/543) 2,238 (1,056/1,182) 1,143 (513/630)
Age (years) 455+ 8 45.2 £ 7.8 45.1 £ 7.7
BMI (kg/m?) 25.7 = 4.3 25.6 = 4.1 25.2 £3.9 0.02 0.2 0.008
Waist (cm) 84 £ 13 84 £ 12 83 = 12 0.04 0.2 0.03
Fasting serum insulin

(pmol/l) 33 (23-48) 32 (23-46) 31 (22-44) 0.2 0.1 0.5
Serum insulin at 30 min

(pmol/l) 246 (180-359) 250 (182-347) 235 (168-341) 0.3 0.6 0.2
Serum insulin at 120 min

(pmol/l) 142 (92-219) 141 (87-212) 134 (87-209) 0.7 0.6 0.8
Fasting plasma glucose

(mmol/1) 5.3 (5.0-5.6) 5.3 (5.1-5.6) 5.3 (5.1-5.6) 0.08 0.2 0.1
Plasma glucose at 30 min

(mmol/1) 8.2 (7.2-9.1) 8.1(7.2-9.2) 8.2 (7.2-9.2) 0.7 0.8 0.7
Plasma glucose at 120

min (mmol/l) 5.7 (4.9-6.4) 5.6 (4.7-6.4) 5.6 (4.8-6.3) 0.9 0.6 0.4
ISI 0.13 (0.09-0.18) 0.13 (0.09-0.19) 0.14 (0.09-0.19) 0.3 0.2 0.7
BIGTT-S; 10.2 £ 3.8 10.3 = 3.6 10.5 = 3.7 0.06 0.3 0.06
AUC-insulin/AUC-glucose  28.0 (20.8-38.3) 27.6 (20.8-37.8) 26.5 (19.3-36.9) 0.2 0.5 0.2
CIR 760 (477-1,220) 749 (487-1,210) 747 (462-1,150) 0.4 0.5 0.4
Insulinogenic index 26.1 (18.1-39.1) 26.3 (18.5-38) 25.5 (17-37) 0.4 0.8 0.3
BIGTT-AIR 1,700 (1,370-2,150) 1,690 (1,350-2,120) 1,610 (1,320-2,060) 0.003 0.03 0.007

Data are medians (25% to 75% range) or means = SD (BMI, waist, and BIGTT-S)). Values of BMI, plasma glucose, serum insulin, and derived
indices were logarithmically transformed before statistical analysis. Calculated P values were adjusted for age (BIGTT-S; and BIGTT-AIR),
age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant, or recessive model. Indices of insulin
release and insulin sensitivity were calculated as described in research design and methods. 1, type 2 diabetes—protective allele; 2,

diabetes-associated allele.

study of 6,784 middle-aged subjects for the prevention of ischemic heart
disease, conducted at the Research Centre for Prevention and Health in
Glostrup, Copenhagen (ClinicalTrials.gov ID-no: NCT00289237) (13). An
OGTT was performed in all participants with measurements of plasma glucose
and serum insulin at fasting and at 30 and 120 min, and 6,083 subjects with
available DNA were subsequently classified as individuals with normal glu-
cose tolerance (NGT) (n = 4,516), impaired fasting glycemia (n = 503),
impaired glucose tolerance (n = 692), screen-detected and treatment-naive
type 2 diabetes (n = 253), or previously diagnosed type 2 diabetes (n = 119).
In the analysis of quantitative diabetes-related phenotypes, we included 4,516
subjects with NGT (2,101 men/2,415 women, age 45.2 + 7.9 years and BMI
25.5 + 4.1 kg/m? [mean * SD]). Type 2 diabetes was diagnosed according to
World Health Organization 1999 criteria.

Informed written consent was obtained from all participants. The study
was conducted in accordance with the Declaration of Helsinki II and was
approved by the local ethics committee of Copenhagen.

Biochemical and anthropometrical measures. Height and weight were
measured in light indoor clothing and without shoes. Waist circumference was
measured in the upright position midway between the iliac crest and the lower
costal margin. Blood samples were drawn after a 12-h overnight fast. Plasma
glucose was analyzed by a glucose oxidase method (Granutest; Merck,
Darmstadt, Germany). Serum insulin [excluding des (31,32)] and intact
proinsulin) was measured using the AutoDELFIA insulin kit (Perkin-Elmer,
Wallac, Turku, Finland).

Indexes of insulin release and insulin sensitivity. Oral glucose-stimulated
insulin release was reported as the insulinogenic index, the corrected insulin
response (CIR), the ratio of the area under the curve (AUC) of insulin to the
AUC of glucose during the OGTT (AUC-insulin/AUC-glucose), and the BIGTT-
acute insulin response (AIR) index. The insulinogenic index was calculated as
follows: (serum insuling, ,;, — serum insulin, ,;, [pmol/l])/plasma glucose,,
min [mmol/l]. CIR was calculated as follows: 100 X serum insuling, ,,;,/[plasma
glucosey, . X (plasma glucose;, ... — 3.89)] (14). Indexes of insulin
sensitivity were reported as the insulin sensitivity index (ISI), calculated as
the reciprocal of homeostasis model assessment of insulin resistance {22.5/
[plasma glucose,, ,;, (mmol/) X serum insulin, ,;, (pmol/1)]} (15), and as the
OGTT-derived BIGTT-S;. The BIGTT indexes apply information on sex and
BMI combined with plasma glucose and serum insulin during an OGTT to
provide indexes for AIR and S; that are highly correlated with indexes
obtained during an intravenous glucose tolerance test and were calculated as
reported (16). To construct OGTT-based disposition indexes, we multiplied
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the CIR index with ISI, since these measures are not intrinsically interdepen-
dent. Furthermore, we multiplied the BIGTT-S; index with the BIGTT-AIR
index.

Genotyping. The six gene variants (rs864745, rs12779790, rs7961581,
rs7578597, rs4607103, and rs10923931) were genotyped by TagMan allelic
discrimination (KBiosciences, Hoddesdon, U.K). All genotyping success rates
were above 96% and all mismatch rates were below 1% in 1,090 duplicate
samples. The distributions of genotypes for all variants were in the Hardy-
Weinberg equilibrium (all P > 0.05).

Statistical analysis. A general linear statistical methodology was used to test
quantitative traits in relation to genotype, applying additive, dominant, and
recessive models while adjusting for the effect of age (BIGTT-S; and BIGTT-
AIR), age and sex (BMI and waist), or age, sex, and BMI (all other traits). BMI
and all values of plasma glucose and serum insulin and derived indexes of
insulin release and insulin sensitivity were logarithmically transformed before
analysis. In the main text, parameter estimates (95% CI) of associated
quantitative traits are given, while data in tables are unadjusted medians or
means. The multivariate method, Hotelling’s 7% was applied to test the
simultaneous effect of genotype on insulin release and insulin sensitivity. A P
value of <0.05 was considered significant. All analyses were performed using
RGui, version 2.6.1 (http://www.r-project.org).

Estimation of statistical power. Statistical power for the quantitative traits
was estimated using simulations. We assumed an additive genetic model for
both the simulation of the data and for testing the data using a linear model.
We used the empirical variance of the observed traits to simulate phenotypes
from a normal distribution so that variance across genotypes is drawn from
the estimated variance. Because we also include adjustment factors in our
analysis, we estimated the variance from the residuals of a linear model
containing the adjustment factors. Thus, we assume that the genotype and the
adjustment factors are independent. The power was estimated using 5,000
simulations and a significance threshold of 0.05. Based on the allele frequen-
cies of the six examined gene variants and a sample size of 4,516 subjects, we
estimated the effect sizes per allele of quantitative traits for which we had 80
and 90% statistical power, respectively, to detect an association. Depending on
allele frequency (range 9.5-48.0%) and assuming an additive model, we had
80% power to detect an allele-dependent difference of 0.8-1.4% in BMI,
2.2-3.8% in BIGTT-AIR, 3.2-5.4% in insulinogenic index, and 3.0-5.0% in ISI.
Similarly, we had 90% statistical power to detect a 1.0-1.7% change per allele
in BMI, 2.6-4.3% in BIGTT-AIR, 3.7-6.2% in insulinogenic index, and 3.4-5.9%
in ISI, respectively.
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TABLE 2

Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,395 middle-aged subjects with normal
glucose tolerance stratified according to genotype of CDC123/CAMKI1D rs12779790

11 (AA) 12 (AG) 22 (GG) PADDITIVE P22 + 12 VS. 11 P22 VS. 12 + 11

n (men/women) 2,859 (1,324/1,535) 1,365 (620/745) 171 (88/83)
Age (years) 452 + 7.8 453 £ 7.9 45.2 + 8.1
BMI (kg/m?) 255 £4.1 25.5 + 4.0 25.8 = 4.6 0.8 0.9 0.5
Waist (cm) 84 £ 12 84 £ 12 85 = 12 0.5 0.5 0.6
Fasting serum insulin

(pmol/l) 32 (23-46) 32 (2347) 31 (21-49) 0.7 0.7 0.06
Serum insulin at 30 min

(pmol/l) 246 (178-351) 246 (180-347) 217 (159-299) 0.02 0.3 8§ X 107°
Serum insulin at 120 min

(pmol/) 138 (87-212) 141 (92-216) 139 (80-190) 0.4 0.1 0.2
Fasting plasma glucose

(mmol/1) 5.3 (5.0-5.6) 5.4 (5.1-5.6) 5.3 (5.1-5.6) 0.1 0.07 1
Plasma glucose at 30 min

(mmol/1) 8.2 (7.2-9.2) 8.2 (7.2-9.1) 8.2 (7.4-9.3) 1 0.9 0.7
Plasma glucose at 120

min (mmol/l) 5.6 (4.7-6.3) 5.7 (4.9-6.4) 5.8 (4.8-6.4) 0.01 0.01 0.3
ISI 0.132 (0.09-0.189)  0.131 (0.09-0.188)  0.131 (0.084-0.201) 0.9 0.6 0.08
BIGTT-S; 10.4 + 3.7 10.2 + 3.7 10.4 = 3.7 0.4 0.3 0.8
AUC-insulin/AUC-glucose  27.6 (20.5-37.7) 27.2 (20.3-38.1) 25.4 (18.7-31.7) 0.1 0.6 4 x 1071
CIR 753 (480-1190) 752 (483-1240) 614 (402-926) 0.07 0.5 4 %101
Insulinogenic index 26.0 (18.3-38.3) 26.1 (18.2-37.7) 23.1 (15.3-30.4) 0.01 0.2 4 X107
BIGTT-AIR 1,680 (1,350-2,120) 1,670 (1,350-2,120) 1,620 (1,310-2,040) 0.3 0.5 0.2

Data are median (256% to 75% range) or means = SD (BMI, waist, and BIGTT-S)). Values of BMI, plasma glucose, serum insulin, and derived
indices were logarithmically transformed before statistical analysis. Calculated P values were adjusted for age (BIGTT-S; and BIGTT-AIR),
age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant, or recessive model. Indices of insulin
release and insulin sensitivity were calculated as described in research design and methods. 1, type 2 diabetes—protective allele; 2,

diabetes-associated allele.

RESULTS

We investigated the JAZF1 rs864745, CDC123/CAMKI1D
rs12779790, TSPANS rs7961581, THADA rs7578597, AD
AMTS9 rs4607103, and NOTCHZ2 rs10923931 variants for
association with type 2 diabetes-related quantitative traits
in a population-based sample of 4,516 glucose-tolerant
subjects. Assuming an additive genetic model, carriers of
the major diabetes-associated T-allele of JAZF1 rs864745
had a 0.21 kg/m?> decreased BMI (0.048-0.39 kg/m?% P =
0.02), a 0.47 cm decreased waist circumference (0.03—0.90
cm; P = 0.04), and a 2.6% (0.9-4.3%; P = 0.003) decreased
insulin release per allele as assessed by the BIGTT-AIR
index. The variant did not associate with other measures
of insulin release (Table 1). Homozygous carriers of the
minor diabetes risk G-allele of the CDCI123/CAMKID
rs12779790 showed a 15% decreased serum insulin at 30
min during an OGTT (7.8-23%, P = 8 X 10~ °), an 18%
decreased insulinogenic index (10-27%; P = 4 X 10~ °), an
18% decreased CIR (8.1-29%; P = 4 X 10™%), and a 13%
decreased AUC-insulin/AUC-glucose (5.8-20%; P = 4 X
10~%) (Table 2). When applying a dominant genetic model,
the minor diabetes risk C-allele of the TSPANS rs7961581
associated with a modest decrease in serum insulin at 30
min during OGTT (4.9% [1.9-7.9]; P = 0.001), a decrease in
CIR (4.5% [0.5-8.4]; P = 0.03), a decrease in AUC-insulin/
AUC-glucose (3.9% [1.2-6.7]; P = 0.005), and a decrease in
insulinogenic index (5.2% [1.9-8.6]; P = 0.002) (Table 3).

The THADA rs7578597 did not associate with measures
of obesity (BMI: P = 0.4), insulin response (insulinogenic
index: P = 0.4), or insulin sensitivity (BIGTT-Si: P = 1)
(Supplementary Table 1 [available in an online appendix at
http://dx.doi.org/10.2337/db08-0436]). Similarly, the AD-
AMTS9 rs4607103 and NOTCHZ2 rs10923931 variants did
not significantly associate with measures of oral glucose-
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stimulated insulin response (all P = 0.5), insulin sensitivity
(P = 0.1), or obesity (P = 0.1) in the Inter99 cohort
(Supplementary Tables 2 and 3). Similar results were
found when including all 5,964 treatment-naive individuals
from the Inter99 cohort (data not shown).

Because the insulin response to glucose is highly depen-
dent on the level of insulin sensitivity, we constructed two
OGTT-based disposition indexes by combining existing
indexes of insulin response and insulin sensitivity and
tested association with the six genotyped variants. Ho-
mozygous carriers of the CDCI123/CAMKID diabetes-as-
sociated G-allele showed a nominal association with a 13%
decrease in a disposition index based on CIR and ISI
(1.1-24%; P = 0.03). A disposition index based on BIGTT-
AIR and BIGTT-S; did, however, not differ significantly
between genotype groups for any of the six variants,
although a tendency toward an allele-dependent decrease
in minor G-allele carriers of the CDC123/CAMKI1D variant
was observed (P = 0.05).

To further evaluate the relationship between insulin
release, insulin sensitivity, and genetic predispositions of
the type 2 diabetes—associated variants, we applied the
multivariate Hotelling’s 72 method to simultaneously test
the effect of genotype on a combination of CIR and ISI as
well as BIGTT-AIR and BIGTT-S; (Fig. 1). We demon-
strated statistically significant multivariate associations of
the JAZF1 and CDC123/CAMKI1D variants with the com-
bination of CIR and ISI (Psppirve = 0.04 and Prpcrssive =
0.002, respectively). Furthermore, borderline association
was observed for the TSPANS variant (Ppoynant = 0-09
and Prpcrssive = 0.05). The multivariate analysis did not
show any influence of genotype on the combination of
BIGTT-AIR and BIGTT-S; (data not shown).
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TABLE 3

Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,410 middle-aged subjects with normal
glucose tolerance stratified according to genotype of TSPANS rs7961581

11 (TT) 12 (TC) 22 (CC) PADDITIVE P22 + 12 VS. 11 P22 VS. 12 + 11

n (men/women) 2,404 (1,129/1,275) 1,686 (771/915) 320 (147/173)
Age (years) 453 = 7.7 452+ 7.9 44.6 = 8.0
BMI (kg/m?) 255 £4.1 255 4.1 25.6 £ 4.3 0.9 0.7 0.7
Waist (cm) 84 £ 12 84 £ 12 84 = 12 0.9 0.9 0.7
Fasting serum insulin

(pmol/l) 32 (23-47) 32 (23-46) 31 (22-44) 0.05 0.2 0.03
Serum insulin at 30 min

(pmol/l) 251 (181-352) 238 (175-343) 245 (173-359) 0.003 0.001 0.3
Serum insulin at 120 min

(pmol/l) 141 (88-217) 137 (87-202) 140 (90-225) 0.2 0.2 0.6
Fasting plasma glucose

(mmol/1) 5.3 (5.1-5.6) 5.3 (5.0-5.6) 5.3 (5.1-5.6) 0.6 0.3 0.7
Plasma glucose at 30 min

(mmol/1) 8.1(7.2-9.1) 8.2 (7.2-9.3) 8.2 (7-9) 0.3 0.7 0.08
Plasma glucose at 120

min (mmol/l) 5.6 (4.8-6.3) 5.6 (4.8-6.4) 5.6 (4.7-6.4) 0.4 0.3 0.9
ISI 0.134 (0.089-0.192) 0.133 (0.092-0.193) 0.136 (0.095-0.211) 0.05 0.2 0.04
BIGTT-S; 10.3 £3.7 10.4 = 3.6 10.2 = 3.6 0.4 0.2 0.7
AUC-insulin/AUC-glucose  27.9 (20.4-38.2) 26.6 (20.3-36) 28.2 (20.1-39.0) 0.02 0.005 0.7
CIR 754 (494-1,210) 738 (464-1,130) 741 (469-1,330) 0.1 0.03 0.4
Insulinogenic index 26.7 (18.3-38.6) 25.1 (17.8-36.7) 25.4 (18.3-39.3) 0.01 0.002 1
BIGTT-AIR 1,670 (1,360-2,130) 1,660 (1,330-2,080) 1,720 (1,330-2,140) 0.4 0.2 0.5

Data are medians (25% to 75% range) or means = SD (BMI, waist, and BIGTT-S)). Values of BMI, plasma glucose, serum insulin, and derived
indices were logarithmically transformed before statistical analysis. Calculated P values were adjusted for age (BIGTT-S; and BIGTT-AIR),
age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant, or recessive model. Indices of insulin
release and insulin sensitivity were calculated as described in research design and methods. 1, type 2 diabetes—protective allele; 2,

diabetes-associated allele.

DISCUSSION

We report the association testing of six recently discov-
ered type 2 diabetes risk variants (6) with intermediary
diabetes-related phenotypes. Our results, if replicated in
independent and statistically well-powered studies, sug-
gest an impairment of pancreatic B-cell function for dia-
betes risk alleles in or near JAZF'1, CDC123/CAMKI1D, and
TSPANS, since these variants were associated with vari-
ous surrogate measures of insulin release during an OGTT.
Further support of the role of the CDC123/CAMKID and
TSPANS variants in altered pancreatic B-cell function was
provided when analyzing an OGTT-based disposition in-
dex and for JAZF1 and CDC123/CAMKID variants when
doing multivariate analysis of estimates of insulin sensi-
tivity and insulin release. The observed associations for all
three variants are concordant with an impaired oral glu-
cose-stimulated insulin release in subjects carrying the
reported type 2 diabetes risk alleles (6).

In the analyses, we primarily focused on glucose-toler-
ant subjects to avoid the confounding influence of distur-
bances in glucose homeostasis and to circumvent the risk
that associations with especially impaired insulin response
were driven by the known association with type 2 diabe-
tes. We did, however, observe similar results when includ-
ing subjects with impaired fasting glycemia, impaired
glucose tolerance, or screen-detected type 2 diabetes.

rs864745 resides in intron 1 of the JAZF'1 (juxtaposed
with another zinc finger gene 1) gene, which encodes a
transcriptional repressor of the nuclear receptor subfamily
2, group C, member 2 (NR2C2) gene (17). NR2C2 (also
known as TR4) is a member of the nuclear hormone
receptor family and acts as a ligand-activated transcription
factor (18). NR2C2 is widely expressed and Nr2c2 '~
knockout mice display a phenotype of growth retardation,
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hypoglycemia, and reduced gluconeogenesis by decreased
activation of PEPCK (19,20); however, no obvious involve-
ment in pancreatic -cell function has been demonstrated.
Yet, since JAZF'I is expressed in the pancreas (17), one
might speculate that a gain-of-function variant in JAZF'1
may lead to postnatal growth restriction also affecting
pancreatic B-cell mass and function.

rs12779790 is located ~90 kb from CDC123 and ~63.5
kb from CAMKID. CDC123 (cell division cycle 123 ho-
molog [S. cerevisiae]) encodes a protein involved in cell
cycle regulation and nutritional control of gene transcription
with no known relation to type 2 diabetes pathogenesis (21).
Because CAMKID (calcium/calmodulin-dependent protein
kinase I delta) regulates granulocyte function (22), it is also
possible that a causative variant in this region is related to
CAMKID and affects pancreatic B-cell function through
increased apoptosis.

Lastly, rs7961581 resides ~110 kb upstream of TSPANS
(tetraspanin 8), which encodes a widely expressed cell
surface glycoprotein known to form complexes with inte-
grins to regulate cell motility in cancer cell lines (23).
Because a6-integrin binding to laminin has been shown to
negatively affect pancreatic B-cell mass maintenance (24),
it is possible that variation in TSPANS biologically influ-
ences pancreatic B-cell function.

In this article, we have performed a thorough evaluation
of a range of OGTT-based surrogate estimates of insulin
release and insulin sensitivity. The associations of exam-
ined gene variants to various measures of pancreatic 3-cell
function highlight the need for cautious interpretation of
outcomes. Variants in the CDC123/CAMKI1D and TSPANS
regions associate with the insulinogenic index, the cor-
rected insulin response, and the ratio of AUC-insulin to
AUC-glucose, which are widely used and well-documented
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rs12779790 (P pprrive = 0.04 and Prpcpssive = 0.002, respectively). Further-
more, borderline association was observed for TSPANS8 rs7961581 (PponvinanTt =
0.09 and Pypcpssive = 0.05).

estimates of insulin release (25,26), yet not with the
recently described BIGTT-AIR index (16), and the oppo-
site is true for the JAZF'I variant. These discrepancies may
be caused by different accuracy and/or sensitivity of the
applied surrogate indexes or the possibility that the differ-
ent indexes capture particular and diverse roles of the
encoded proteins in specific steps of insulin biosynthesis,
insulin secretion, or insulin elimination. However, we
cannot exclude that the associations to various measures
are caused by statistical type I or II errors. Although we
analyzed a range of OGTT-based surrogate indexes of
insulin release, we acknowledge that application of more
precise measures of insulin release, such as estimates
based on an intravenous glucose tolerance test, may have
modified the outcome of our analyses.

Type 2 diabetes—associated variants in the THADA,
ADAMTS9, and NOTCHZ2 loci did not associate with
metabolic traits in the Inter99 cohort. Lack of statistical
power is a possible explanation, since these variants
confer a modestly increased risk of type 2 diabetes. Based
on 95% CIs of effect size estimates, we can with confidence
exclude an allele-dependent effect in the current study on
BM]I, insulinogenic index, BIGTT-AIR, and ISI above 4.5%
for THADA rs7578597, 3% for ADAMTS9 rs4607103, and 4%
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for NOTCHZ2 rs10923931. However, we are unable to
estimate potential associations below these effect sizes.

We recognize that since no correction for multiple
hypothesis testing was applied, the present results are of
an explorative nature and call for validation in statistically
powered and well-characterized cohorts. If, however,
stringent Bonferroni correction for multiple testing (252
tests) was performed, only the associations of the
CDC123/CAMKID rs12779790 variant with measures of
insulin response (insulinogenic index and serum insulin at
30 min during the OGTT) would remain statistically signif-
icant, underlining the need for replication. Based on the
effect sizes of the current study, we estimate that ~3,300,
6,100, and 3,900 subjects are needed for future studies to
achieve 80% statistical power to replicate associations of
JAZF1 1s864745 with BIGTT-AIR (additive model),
CDC123/CAMKID rs12779790 with insulinogenic index
(recessive model), and TSPANS rs7961581 with insulino-
genic index (dominant model), respectively.

In conclusion, we report data suggesting an impaired
pancreatic B-cell function in glucose-tolerant carriers of
novel type 2 diabetes risk alleles in the JAZF'1, CDC123/
CAMKI1D, and TSPANS regions. No associations of com-
mon variants in THADA, ADAMTS9, and NOTCH2 with
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quantitative measures of insulin release or insulin sensi-
tivity could be shown in the cohort of middle-aged people.
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