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Abstract: As a high performance-cost ratio solution for differential pressure measurement,
piezo-resistive differential pressure sensors are widely used in engineering processes. However, their
performance is severely affected by the environmental temperature and the static pressure applied to
them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential
pressure sensor, compensation actions should synthetically consider these two aspects. Advantages
such as nonlinear approximation capability, highly desirable generalization ability and computational
efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical
task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel
parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the
Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration
experiment at different working pressure levels was conducted within the temperature range to assess
the proposed method. In comparison with other compensation models such as the back-propagation
neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized
support vector machine (PSO-SVM), particle swarm optimization optimized least squares support
vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show
that the presented compensation algorithm exhibits a more satisfactory performance with respect to
temperature compensation and synthetic compensation problems.

Keywords: piezo-resistive pressure sensor; temperature compensation; static pressure effect; KELM;
CSA; simplex

1. Introduction

Due to the fact pressure usually plays an important role in many industrial processes, a widespread
need for pressure sensors has become a reality. One of the most widely used pressure sensors,
called piezo-resistive pressure sensor, is made of monocrystalline silicon and fabricated by standard
Micro-Electro-Mechanical System (MEMS) craft which conforms to the piezo-resistive principle [1–3].
Since the manufacturing process of the pressure sensor is complicated, some temperature-sensitive
defects including inconsistent doping concentration, mismatched thermal expansion coefficients of
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packaging materials and electronics performance may have a dramatic effect on the output if the
environmental temperature varies, i.e., they have a temperature effect [4–6]. Besides the temperature
effect, the static pressure effect is another key problem that should be taken into consideration when
the variable to be measured is differential pressure. Even if the environmental temperature is stable,
static pressure can also yield measurement errors in the asymmetric structure of the sensible part of the
sensor. Consequently, the input–output characteristics of monocrystalline silicon piezo-resistive pressure
sensors becomes non-linear when the environmental temperature or the static pressure change [7].

In order to eliminate the temperature effect in diverse measurement systems, lots of approaches
have been proposed, which can be typically categorized into two groups: hardware compensation
and software compensation. Hardware compensation modifies the measurement circuits by adding
electronical components or develops new structures to achieve more satisfactory performance [8–11].
The complicated debugging process, high cost and relatively limited compensation precision has
restricted the spread of hardware compensation applications in engineering practice.

The software compensation approach deems the temperature compensation as a regression
problem. The conventional software compensation methods of look-up table, spline interpolation
and surface fitting are based on mathematical computation [12–15]. The conventional software
compensation approaches seem easy to implement, but when one notices that the compensation
quality is proportional to the data scale and the ill-condition dilemma in solving the normalization
equation, they become less attractive. On the other hand, their vigorous algorithm robustness and
fault tolerance ability has led researchers to focus a great deal of attention on artificial intelligence
compensation approaches. The most up-to-date software compensation methods are rooted in artificial
intelligence include neural networks [16–19], support vector machines (SVM) and least squares support
vector machine (LSSVM) [20–22]. The classic back-propagation neural networks may suffer from the
dimensionality curse, local minima, under-fitting or over-fitting, etc. Vapnik [23] developed the SVM,
the core of which is the structural risk minimum principle constructed by the empirical risk minimum
principle and confidence intervals. Due to the merits of the structural risk minimum principle, the
SVM is able to resolve classification and regression problems with relatively small samples. Aiming at
alleviating the computational burden of SVM, Suykens [24] proposed the LSSVM, which converts
the inequality constraints in traditional SVM into linear equations. Huang et al. [25] presented a fast
learning single layer network called extreme learning machine (ELM), wherein the weights and biases
of the input layer are randomly assigned within the range of (0, 1) and the weights of the output layer
are calculated by a pseudo inverse operation. In combination of the regularization theory, kernel trick
and the ELM, the kernel extreme learning machine (KELM) is not only a computationally efficient
network, but also has an elegant generalization ability [26].

Although a lot of schemes have been put forward to tackle the issue of temperature compensation,
approaches related to synthetic compensation of the differential pressure sensor which consider both
temperature and static pressure are rarely reported. In an attempt to compensate the temperature error
and static pressure error at the same time, the KELM is adopted in this research. The regularization
parameter and the spread parameter of the kernel function govern the KELM’s actual regression precision,
hence a parameter selection strategy like the coupled simulated annealing (CSA) hybrid Nelder-Mead
simplex searching is employed. Finally, a well-trained synthetic compensation model for differential
pressure measurement under different static pressure and temperature conditions is established.

2. Temperature Effect and Static Pressure Effect

The piezo-resistive pressure sensor used in this research is packaged as shown in Figure 1.
The inside of the packaged differential pressure sensor is filled with a low thermal expansion rate
silicon oil, which serves as the pressure transmission media. The external pressure is applied on the
surface of the isolated steel membrane and transferred to the sensor by the silicon oil. The differential
pressure (Pd) can be calculated by the pressure on the L side (PL) and the pressure on the H side (PH)
of the packaged sensor, which is Pd = PH − PL.
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Figure 1. Schematic of the packaged piezo-resistive differential pressure sensor. 
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Figure 1. Schematic of the packaged piezo-resistive differential pressure sensor.

2.1. Temperature Effect

The configuration of the piezo-resistive pressure sensor is a symmetrical Wheatstone bridge
(R1 = R2 = R3 = R4 = R), which is illustrated in Figure 2. By analyzing this Wheatstone bridge the
output voltage can be expressed as follows [27]:

Uoutput = I f R0π0[1 + (α + β + αβ∆T)∆T]
[

σo +
αs − αgE0∆T

1 + µ
+ θ

]
(1)

where I f is a constant current supplied by a steady current source, R0 and π0 are the resistance value
and piezo-resistive coefficient at room temperature. The contents of the first bracket represent the
temperature influence, where α and β are the temperature coefficients of R and π, respectively, ∆T
is the change in the environmental temperature value. Three items in the second bracket stand for
the total force applied to the sensor, where the first item σo is the original stress applied on the sensor,
the second item characterizes the additional stress when the ambient temperature varies, αs and αg

are the thermal expansion coefficients of silicon and glass, respectively, and E0 is the temperature
coefficient of silicon at the Kelvin temperature, µ devotes the Poisson ratio of the monocrystalline
silicon, the third item θ is an offset item that illustrates the fabrication inconsistencies between every
bridge arm resistance.
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Figure 2. Wheatstone bridge.

It can be observed from Equation (1) that the actual bridge resistance and piezo-resistive coefficient
directly depend on the environmental temperature. Furthermore, the thermal expansion discrepancy
between the sensor cup and the glass base becomes non-ignorable as the environmental temperature
varies a lot. The relationship clearly unveils the essence of the nonlinearity characteristic between
input pressure and output voltage when the environmental temperature changes.
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2.2. Static Pressure Effect

The silicon cup is glued on the glass base, the cross section of which is shown in Figure 3. The the
H side of the silicon cup is set as the reference side and the pressure acting on this side is called
the static pressure. It can be seen that the pressure in the horizental direction can be offset by the
structural symmetry of the silicon cup. Nevertheless, the pressure in the vertical side would cause
the deformation of the silicon cup which means a change of the Wheatstone bridge’s arm resistance.
Then the output of the sensor is determined according to the Wheatstone bridge state. There are two
main aspects that can be taken as the reasons that cause the static pressure effect. On the one hand,
there are distinct differences between the mechanical characteristics of monocrystalline silicon and
glass. On the other hand, the overall structure formed by the silicon cup and the glass base is not
symmetrical. Considering the factors mentioned above, the silicon cup and the glass base may deform
quite differently from each other under the same pressure conditions, which will result in a nonlinear
output of the sensor. Generally, the static pressure is higher than the differential pressure in actual
situations. Moreover, the more the pressure applied on the packaged pressure sensor the more severely
the mismatch deformation between the silicon cup and the glass base is. High static pressure may
force the sensor working out of the ideal working pressure range. Obviously, to maintain the same
high measurement precision as in the condition without static pressure, it is necessary to perform
synthetic compensation for occasions of high static pressure.
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3. Kernel Extreme Learning Machine

As a kind of single layer feedforward network, its structure simplification and computational
efficiency endow the ELM with the ability to sufficiently approximate the actual mapping structure
embedded in the sample at an extremely fast speed. Suppose an independent and identical distributed
sample including N data points as (x1, y1), (xi, yi), (xN, yN) ∈ Rn × R where xi is input, yi is output.
The details of the approximation function can be expressed as:

L
∑

j=1
β1h(ω1x1 + b1) = y1,

· · ·
L
∑

j=1
β jh
(
ωjxi + bj

)
= yi,

· · ·
L
∑

j=1
βLh(ωLxN + bL) = yN .

(2)

where L is the number of the hidden layer, βj represents the output layer weight links the j-th
hidden node to the output, ωj and bj denote the input layer weights and bias of the j-th hidden node,



Sensors 2017, 17, 894 5 of 17

respectively, h(·) is the activation function for ELM. Furthermore, Equation (2) can be written in
matrix form:

Hβ = Y (3)

where H is the hidden layer computation matrix: H =

 h(x1)
...

h(x2)

, β is the output layer weight vector

and Y is the output matrix. Given the randomly generated input layer weights and the specified
activation function, the output layer weight vector can be calculated in terms of the norm least square
method. Then, the output layer weight vector can be represented as follows:

β = H+Y (4)

where H+ is the Moore-Penrose generalized inverse of H.
Huang et al. proposed the unified ELM in pursuit of a more unified framework for classification

and regression. According to the regularization theory, a positive item 1/C (where C is the penalty
parameter) is incorporated into the calculation of the output weight vector and Equation (4) turns into:

β = HT(HHT +
I
C
)
−1

Y (5)

Meanwhile, the regression results with respect of inputs can be defined as:

f (x) = HHT
(

HHT +
I
C

)−1
Y (6)

HHT =



h(x1)h(x1)
...

h(xi)h(x1)
...

h(xN)h(x1)

· · ·
. . .
· · ·
. . .
· · ·

h(x1)h(xj)
...

h(xi)h(xj)
...

h(xN)h(xj)

· · ·
. . .
· · ·
. . .
· · ·

h(x1)h(xN)
...

h(xi)h(xN)
...

h(xN)h(xN)


(7)

In light of the Cover theorem, inputs in a nonlinear separable space become easier to separate
by mapping them into a higher dimensional space. The kernel trick is always the first choice for
the implementation of this work, the KELM thus uses it to replace the elements in Equation (7).
So Equation (7) can be rewritten as:

ΩKELM = HHT =



K(x1, x1)
...

K(xi, x1)
...

K(xN , x1)

· · ·
. . .
· · ·
. . .
· · ·

K(x1, xj)
...

K(xi, xj)
...

K(xN , xj)

· · ·
. . .
· · ·
. . .
· · ·

K(x1, xN)
...

K(xi, xN)
...

K(xN , xN)


(8)

Finally, the KELM regression model can be denoted as:

f (x) =



K(x, x1)
...

K(x, xj)
...

K(x, xN)



T

(
ΩKELM +

I
C

)−1
Y (9)
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Since the kernel function is one of the critical factors that contribute to approximation capability,
a reasonable choice of kernel function is necessary. Actually, kernel that meets the Mercer kernel
condition, namely admissible kernel, can be set as a kernel function. A typical and extensively used
kernel function is the Radial Basis Function (RBF) kernel, which is defined as [28]:

KRBF = exp

(
−‖ x− xi ‖2

2σ2

)
(10)

where the spread σ is the only dependent kernel parameter to be selected. However, the proposed
scheme is also feasible with other kernels in a same manner.

4. Coupled Simulated Annealing and Simplex Search

4.1. Coupled Simulated Annealing (CSA)

Noting that the setting of parameters in KELM is vital to the final model performance, the coupled
simulated annealing (CSA) optimization method proposed by Xavier de Souza et al. [29] is employed
to perform the parameter search. Like a previously published algorithm, simulated annealing [30]
simulates the metal annealing process. According to statistical mechanics, the distribution of atom
energy in the i-th state at a specified temperature level conforms to the Boltzmann formulation:

P(E = Ei) =
1
Z

exp(− Ei
kB

) (11)

where Ei is the energy in the i-th state, kB is the Boltzmann constant, Z is the partition function.
The simulated annealing is a kind of heuristic algorithm that iterates in the decreasing direction of
object function. The Metropolis principle also allows the iteration process to accept the increasing
object function value with a relative small probability which contributes to the dynamics to jump out
of the local minimum. The coupled simulated annealing is developed from the classical simulated
annealing but the parallel mechanism within it is distinct from the latter. The coupled simulated
annealing introduced a multi-start initialization into the probing process over the solution space to
supply more a priori information. The coupled item is created to help decide if the less favorable
solution is accepted and to simplify the computational complexity. The coupled item and acceptance
probability take the following form:

AΘ(γ; xi → yi) =
exp( E(xi)

Tacc
k

)

γ
(12)

γ = ∑
xi∈Θ

exp(
E(xi)

Tacc
k

) (13)

where xi and yi are states belonging to the possible state space, E(xi) denotes the energy in xi, Tacc
k

is the acceptance temperature at the k-th iteration, Θ represents the current state set, AΘ(γ; xi → yi)

illustrates the acceptance probability from state xi to state yi with the coupled item γ. The coupled
simulated annealing algorithm can be depicted as follows:

(1) Initialization: M random solutions are assigned to Θ. Evaluate the energy E(xi) and coupled
term γ. Set Tk as T0, Tacc

k as Tacc
0 and the iteration index k equals to zero. The variance of the

acceptance probability is calculated according to σ2
D = 0.99(m− 1/m2), where m is the number

of all states included in Θ. The rate controls the temperature variation marked as α is set to 0.05.
(2) A new state yi is generated that corresponds to the current state xi in the state space by yi = xi + εi

where εi is independently and randomly sampled from a normal distribution at temperature Tk
as g(εi, Tk). Evaluate all the energy values E(yi), ∀i = 1, · · · , m.
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(3) The new state is accepted if E(yi) ≤ E(xi) or a random number rand is generated by a uniform
distribution in [0, 1] and compared with the acceptance probability AΘ(γ; xi → yi) obtained
by Equation (12) when it satisfies the condition AΘ > rand. Otherwise, the old state remains.
Assess γ and return to step 2 to achieve thermal equilibrium condition.

(4) Adjust the acceptance temperature Tacc
k by the rules: if σ2 < σ2

D, Tacc
k = (1− α) × Tacc

k−1,
if σ2 > σ2

D, Tacc
k = (1 + α)× Tacc

k−1.

(5) Increment the annealing time k and decrease the temperature according to the annealing scheme:
Tk = T0/k.

(6) Terminate the iteration if the current energy value meets the stopping criterion, otherwise, go
back to step 2.

4.2. Simplex Search

The simplex search was developed by Nelder and Mead [31] as a simplex is a geometric figure that
has n + 1 vertices. The expansion operation and the contraction operation along the line of reflection
allow the simplex search to considerably reduce the computation time. Assuming the initial simplex
is X = {x1, x2, · · · , xn+1} so that the output is assigned as X because it is our new simplex. It should
be noted that X is a n × (n + 1) matrix, where each column represents a simplex vertex. The simplex
searching process is described as follows:

1. Build n + 1 vertices of X, evaluate and sort their function values.
2. Compute the reflection point xr by xr = x + α(x− xn+1), where x = 1

n ∑n
i=1 xi is the centroid of

the n points except for the worst point as xn + 1. If f (x1) ≤ f (xr) ≤ f (xn+1), accept the reflected
point xr.

3. If f (xr) < f (x1), perform the expansion operation as xe = x + β(xr − x). If f (xe) ≤ f (xr), accept
the expanded point xe; otherwise accept xr.

4. If f (xr) ≥ f (xn), a contraction should be done utilizing x with the better point of xn + 1 and xr:

(a) If f (xr) < f (xn+1), then outside contraction: xc = x + γ(xr − x). If f (xc) < f (xr), accept
xc; otherwise go to step 5.

(b) If f (xr) ≥ f (xn+1), then inside contraction: xc = x − γ(x − xn+1). If f (xc) ≤ f (xn+1),
accept xc; otherwise go to step 5.

5. Calculate f at the n points vi = x1 + δ(xi − x1), i = 2, · · · , n + 1. The vertices at the next iteration
are made up of X = {x1, v2, · · · , vn+1}.

The flowchart of the temperature and synthetic compensation algorithm is illustrated in Figure 4.
Taking all the merits of CSA and simplex search into account it is reasonable to model the

non-linear relationship between the input and output of the piezo-resistive differential pressure sensor
as follows:

(1) Divide the normalized sample into training set and testing set according to the
engineering requirements.

(2) Initialize the KELM with a random parameter set in an acceptable range.
(3) Initialize the parameters in CSA such as the number of states at a certain temperature M, the

coupled term value γ, the starting temperature T0, the starting acceptance temperature Tacc
0 and

the temperature step regulating rate α.
(4) Evaluate the function iteratively until the maximum iteration number is reached or the fitness is

less than the limit ε1. A suboptimal hyper-parameter set (C1, σ1) is found through this step.
(5) The simplex search is performed with the start solution as (C1,σ1) until the maximum iteration

number is reached or the difference between fitness in two successions is small than the limit ε2.
Finally, a more satisfactory parameter set as (C2,σ2) can be obtained.
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5. Experiments and Result Analysis

5.1. Calibration Experiment Setup

A calibration experiment was performed on a 0.065% grade pressure sensor without
compensation [32] to provide data for modeling the KELM approach. The measurement range of the
pressure sensor used in this calibration is from −1000 kPa to 1000 kPa, and the working temperature
range is from −20 ◦C to 70 ◦C. The environmental temperature and the differential pressure output,
which were marked as TAD and UAD, are converted by an analog-digital (A/D) converter. A two
channel pressure controller exerts the H side pressure (PH) and the L side pressure (PL).

The static pressure (PH) which is denoted by Ps is sampled at 14 levels (0, 1000, 2000, 2500, 3000,
4000, 4500, 5000, 6000, 6500, 7000, 8000, 8500 and 9000 kPa). The differential pressure denoted as DP is
specified in a step of 125 kPa from−1000 kPa to 1000 kPa at each static pressure level. Data calibration is
performed for five temperature preservation processes at temperatures of−20, 0, 20, 50 and 70 ◦C. Every
temperature preservation process takes about 3 h. The input variables used to construct the KELM
include the differential pressure output UAD, the static pressure SP and the environmental temperature
TAD, while the output is the differential pressure DP. A total of 17 × 14 × 5 = 1190 input-output pairs
were collected when the experiments finished. The experimental setup is shown in Figure 5.

The calibration data results without static pressure (SP = 0 kPa) are illustrated as Figure 6a. It can
be seen in Figure 6a that the sensor’s output performance is affected by the environmental temperature
notably without any static pressure participation. To be more specific, relative errors (Errtemp) with
respect to the linear fit characteristic according to data at 20 ◦C are depicted in Figure 6b, which
shows the maximum drift value reaches 1.75%. On the other hand, the maximum measurement
errors caused by the static pressure effect are 0.31%, 0.11%, 0.16%, 0.2% and 0.13% corresponding
to temperature settings of −20, 0, 20, 50 and 70 ◦C, respectively. As demonstrated in Figure 7, the
measurement errors increase gradually with the static pressure and also fluctuate randomly at different
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static pressure levels. As a matter of fact, both the silicon cup and the glass base experience distortion
to a different degree when the force status and temperature conditions change, which might be the
main factor contributing to this phenomenon. To meet the high engineering requirements, a synthetic
compensation strategy should be taken into account to address the remarkable temperature and static
pressure effects.
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5.2. Logarithmic Transformation of Dependent Parameters and Normalization

To speed up and facilitate the search process in the parameter space, the penalty parameter C and
the kernel parameter σ use l n to accomplish a logarithmic transformation. Additionally, features in the
calibration experiment have mismatched levels of magnitude, which would result in an undesirable
solution. Thus, the experiment sample should be normalized into the [−1, 1] space according to
the form:

x̂i =
xi − (xi(max)− xi(min))/2
(xi(max)− xi(min))/2

, (14)

where xi is the i-th variable of a data point, and xi(max) and xi(min) are the upper limit and lower
limit of i-th variable, respectively. After normalizing the experimental data, a training set and a testing
set should be partitioned before modeling.

5.3. Compensation Result Analysis

To evaluate the compensation effectiveness of the CSA and simplex search optimized KELM
(CSA-simplex-KELM) model, several other methods, including BP, RBF, particle swarm optimization
optimized SVM (PSO-SVM), particle swarm optimization optimized LSSVM (PSO-LSSVM) and ELM
were also investigated. The performance measure of all the compensation algorithms is the absolute
relative error, which takes the form of:

Erri =

∣∣∣∣DP′i − DPi

DPFS

∣∣∣∣× 100%, (15)

where i is the index of differential pressure, DP′ is the compensated differential pressure, DP is the
reference differential pressure, and DPFS is the sensor full scale.

Because PSO and CSA are heuristic algorithms, the parameter set (C,σ) is defined as an individual
solution in their search space. To achieve a balance between the regression accuracy and algorithmic
stability, the mean squared error (MSE) of Err is taken as the algorithm fitness function. The parameters
of each method are tabulated in Table 1. Considering the importance of cross validation for the
determination of the model and the computation efficiency, generalized cross validation is adopted to
prevent overfitting [33]. The whole coding is implemented with the help of LS-SVMlab toolbox and
libsvm toolbox on the MATLAB (2015b) platform (The Mathworks, Inc., Natick, MA, USA) [34,35].
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Table 1. Parameters setting of compensation models.

Parameters PSO-SVM PSO-LSSVM CSA-Simplex-KELM

swarm size/state level 30 30 6
iteration number/annealing time 30 30 30

maximum weight 0.9 0.9
minimum weight 0.4 0.4

social factor [1, 3] 2
cognitive factor [1, 3] 2

thermal equibrium steps 5
initial/acceptance temperature 1

regulation rate 0.1
Penalty parameter (C) [1, 1 × 107] [1, 1 × 107] [1, 1 × 107]
Kernel parameter (σ) [1 × 10−3, 10] [1 × 10−3, 10] [1 × 10−3, 10]

maximum interval tolerance (ε) [1 × 10−6, 1]

The differential pressure sensor can work in two ways: with or without static pressure. In the first
case the static pressure effect is neglected, which simplifies the task to a temperature compensation
problem. From a more practical viewpoint, the second case is more complicated as the temperature
and static pressure are coupled. These two cases are discussed in the following subsections.

5.3.1. Temperature Compensation

A training set consists of nine differential pressure levels is uniformly selected from −1000 kPa
to 1000 kPa in the working temperature range, which means 45 data pairs in all. The rest of the data
without static pressure are put into the testing set. The number of hidden layer nodes except for SVM
and LSSVM are determined as in Table 2.

Table 2. Model configuration for temperature compensation.

Temperature Compensation Methods Hidden Layer Node Number and Spread Parameter

BP 8
RBF 37; spread:5.7
ELM 36

CSA-simplex-KELM 10

Four performance indices—minimum (min), maximum (max), mean (mean), variance (var) of
the averaged training set errors (Err)—are taken to evaluate the compensation performance of every
model, and the details are summarized in Tables 3 and 4. Some conclusions can be directly inferred
from the observation of the training set errors in Table 3 and testing set errors in Table 4. The BP neural
network does not perform as well as other models in both the training set and testing set, even with
the simplest structure, which means it falls into a local optimal solution. The RBF neural network is
among the best when merely considering the testing set results, but it may lose some features during
the training period, which makee the maximum error comes to 3.8180 × 10−4.

Table 3. Temperature compensation results of the training set.

Temperature Compensation Methods Err (min) Err (max) Err (mean) Err (variance)

BP 6.1336 × 10−6 4.4261 × 10−4 1.1508 × 10−4 1.3032 × 10−8

RBF 3.9938 × 10−6 3.8180 × 10−4 8.9686 × 10−5 5.3639 × 10−9

PSO-SVM 6.2186 × 10−6 3.0263 × 10−4 1.1494 × 10−4 5.8987 × 10−9

PSO-LSSVM 9.9424 × 10−7 2.1566 × 10−4 3.4931 × 10−5 1.7494 × 10−9

ELM 1.0264 × 10−7 1.2989 × 10−4 2.0954 × 10−5 8.1310 × 10−10

CSA-simplex-KELM 1.5497 × 10−6 2.3419 × 10−4 4.5105 × 10−5 2.0150 × 10−9
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Table 4. Temperature compensation results of the testing set.

Temperature Compensation Methods Err (min) Err (max) Err (mean) Err (variance)

BP 7.3618 × 10−8 5.3030 × 10−4 1.4749 × 10−4 1.6054 × 10−8

RBF 2.3279 × 10−8 2.0774 × 10−4 7.0203 × 10−5 3.5305 × 10−9

PSO-SVM 3.1682 × 10−6 2.9965 × 10−4 1.1040 × 10−4 5.0093 × 10−9

PSO-LSSVM 3.4454 × 10−7 2.8042 × 10−4 3.6780 × 10−5 2.1839 × 10−9

ELM 8.0991 × 10−7 2.5388 × 10−4 3.2806 × 10−5 2.2638 × 10−9

CSA-simplex-KELM 3.5241 × 10−6 2.4787 × 10−4 5.2075 × 10−5 1.8499 × 10−9

Because the PSO-LSSVM model makes use of all the training data to learn the nature of the
mapping relationship, it is not only superior to PSO-LSSVM in all indices, but also gives a rather
similar result compared with the ELM. Obviously, the models within the ELM framework can provide
a more desirable improvement of measurement accuracy and stability than others.

As seen in the compensation results of all the models, shown in Figure 8, the maximum
compensation error occurs at almost 70 ◦C which explains why the temperature effect is vital to
the pressure measurement and difficult to eliminate completely. There is no tendency in any of the
compensation results of all the models, which confirms the validity of these models. The PSO-LSSVM,
the ELM and the KELM share almost the same global compensation performance, while the proposed
KLEM model requires the least number of hidden layer nodes. From the engineering viewpoint, hence,
the KELM presents the most satisfactory comprehensive performance in controlling compensation
error and convenience of implementation.
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5.3.2. Synthetic Compensation

If we note that sensors always work under the influence of the static pressure in most practical
environments, a synthetic compensation strategy is critical. Within the working temperature range
(−20 ◦C–70 ◦C), nine differential pressure levels were uniformly selected from −1000 to 1000 kPa and
seven static pressure levels (1000, 2500, 4000, 5000, 6500, 8000 and 9000 kPa) make up the training set
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for the modeling process, which means we have 315 data points. The rest of the calibration data forms
the testing set. Except for the PSO-SVM and the PSO-LSSVM, the other models’ performance is related
to their topology structure, so the number of hidden layer nodes except for SVM and LSSVM are set as
in Table 5.

Table 5. Model configuration for synthetic compensation.

Temperature Compensation Methods Hidden Layer Node Number and Spread Parameter

BP 8
RBF 176; spread:3.7
ELM 154

CSA-simplex-KELM 5

Like in the temperature compensation, the training set and testing set compensation results are
summarized in Tables 6 and 7, respectively. In comparison with the temperature compensation data,
the overall quality of the synthetic compensation is reduced to a certain extent. This change proves
that the static effect is really vital to the synthetic performance of the sensor. By analyzing the results
in Tables 6 and 7, several conclusions can be reached: firstly, the maximum training error and testing
error of the BP neural network are 8.8874 × 10−4 and 1.4886 × 10−3. This exposes another defect of
BP in that its generalization ability is limited while the training process seems successful; secondly,
the RBF network lacks searching ability as the maximum error obtained by it reaches 1.4557 × 10−3

in the learning period; thirdly, the ELM approach does not perform as well as in the temperature
compensation problem when the sample scale and model complexity increase; fourthly, although
the maximum error of the PSO-LSSVM associated with the testing set is the best, the optimization
method which is the bottleneck to sufficiently explore the parameter space for the maximum error in
the training set reaches 1.2025 × 10−3; lastly, in combination with the advantages of regularization
theory and kernel trick, the maximum errors of the proposed KELM method in the training set and
testing set are 8.2560 × 10−4 and 1.0836 × 10−3, which demonstrates an ideal synthetic compensation
performance at a low computation cost.

Table 6. Synthetic compensation results of training set.

Temperature Compensation Methods Err (min) Err (max) Err (mean) Err (variance)

BP 7.9857 × 10−7 8.8874 × 10−4 1.3630 × 10−4 1.8544 ×10−8

RBF 3.0434 × 10−7 1.4557 × 10−3 1.7424 × 10−4 3.3145 × 10−8

PSO-SVM 5.0338 × 10−7 1.2871 × 10−3 2.9328 × 10−4 4.5771 × 10−8

PSO-LSSVM 6.2260 × 10−7 1.2025 × 10−3 1.4617 × 10−4 2.6931 × 10−8

ELM 7.1578 × 10−7 2.1745 × 10−3 2.4851 × 10−4 1.5724 × 10−7

CSA-simplex-KELM 1.4895 × 10−7 8.2560 × 10−4 1.3599 × 10−4 1.5597 ×10−8

Table 7. Synthetic compensation results of testing set.

Temperature Compensation Methods Err (min) Err (max) Err (mean) Err (variance)

BP 3.5195 × 10−7 1.4886 × 10−3 1.2296 × 10−4 1.4083 × 10−8

RBF 1.9854 × 10−8 1.2708 × 10−3 1.3248 × 10−4 1.6446 × 10−8

PSO-SVM 4.7972 × 10−8 1.2538 × 10−3 2.7009 × 10−4 3.5158 × 10−8

PSO-LSSVM 1.5621 × 10−7 9.6256 × 10−4 9.5755 × 10−5 1.1373 × 10−8

ELM 4.6555 × 10−9 1.8777 × 10−3 1.1114 × 10−4 5.3387 × 10−8

CSA-simplex-KELM 3.2846 × 10−7 1.0836 × 10−3 1.1019 × 10−4 1.0429 × 10−8

All the synthetic compensation details are illustrated in Figure 9, where all the maximum synthetic
compensation errors occur at −20 ◦C except for the ELM, which is due to two facts: the stress between
the silicon cup and the glass becomes higher with the decrease of the environmental temperature; the
ELM model is not suitable for learning the structure contained in this dataset. Since the training set
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lacks information about the sensor performance without static effect, the compensation error of RBF
and PSO-LSSVM in all temperature states without static pressure is the maximum. It also indicates
that the generalization ability of RBF and PSO-LSSVM is not satisfactory for this problem in some way.
However, the KELM alleviates both the temperature effect and the static pressure effect and achieves
a robust and accurate compensation model which fulfils the engineering requirements [30].
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6. Conclusions

A synthetic compensation approach that incorporates optimization methods into the framework
of KELM is presented in this research. Making full use of regularization theory and kernel trick, the
kernel version of the ELM (KELM) is adopted to guarantee the learning and generalization ability of the
compensation model. The CSA and simplex search are applied to perform the search of an appropriate
parameter set for KELM. The proposed synthetic compensation scheme avoids a complex network
topology and speeds up the computation process. The temperature compensation and synthetic
compensation results show that it is an effective and efficient compensation method even when dealing
with distinct datasets.
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