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Abstract: Cadmium is a nonessential metal that has heavily polluted the environment due to hu-
man activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory
tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium
accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can
induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and
production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH
oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to
DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this
article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines,
and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model
of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying
mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable,
further studies using animal models are warranted for a detailed understanding of the mechanism
underlying cadmium induced ROS production, and for the identification of more therapeutic targets.

Keywords: cadmium; kidney injury; renal toxicity; mitochondria; oxidative damage; proximal tubule

1. Introduction

The kidney is a vital organ that performs critical physiological functions by actively
filtering excess fluid and secreting waste products including urea, uric acid, and creati-
nine [1,2]. It is through the process of filtration and reabsorption that the kidneys maintain
homeostasis of water, acid-base and, electrolytes [3]. Moreover, the kidney also secretes
hormones that participate in the control and regulation of hemodynamics, red blood cell
production, and vitamin D maturation [3]. Under abnormal conditions such as fasting and
insulin resistance, the kidney can also make glucose via the gluconeogenic pathway [4–6]
using noncarbohydrate precursors such as pyruvate, alanine, lactate, and glycerol [7].

The kidney is also vulnerable to injuries caused by numerous challenges such as is-
chemia [8–12], drug toxicity [13–19], environmental heavy metal exposure [20–27], hyper-
tension [28–30], immune injury [31,32], and diabetes [33–36]. In terms of environmental risk
factors, human kidney disease caused by environmental pollutants and occupational-linked
toxins is a major public health issue [37]. Cadmium is a toxic heavy metal mainly derived from
chemical stabilizers, pigments, nickel-cadmium batteries, and metal coatings and alloys [38].
It is also a toxic element in cigarettes [38]. Accordingly, contaminated soil, air, drinking
water, food chains [39,40], and cigarettes, as well as children’s plastic toys [41], are the major
sources of human cadmium exposure. Numerous studies focusing on cadmium toxicity have
established that the kidney is a primary organ site for cadmium accumulation [42,43]. Indeed,
cadmium exposure has been tightly associated with renal dysfunction and kidney damage,
causing polyuria and proteinuria [23,24]. The proximal tubule is the major site of cadmium
deposition, accumulation, and damage because of the development of proximal tubular
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epithelial cell hypertrophy with occurrence of polyuria and proteinuria [44–46]. Therefore,
it is important to counteract cadmium-induced kidney injury to safeguard kidney function.

2. Cadmium Absorption, Transportation, and Accumulation in the Kidney

Cadmium has a high affinity toward thiol groups and can selectively form complexes with
proteins and peptides whose cysteine residues are available for cadmium binding [47,48]. After
ingestion of cadmium-contaminated water, food, and/or cigarette smoking, cadmium can be
absorbed into circulation via the gastrointestinal tract, respiratory tract, or the skin [49–51].
Once in the blood, cadmium binds to albumin and other cysteine-containing proteins and
peptides such as glutathione [37] and gets transported via many avenues to the liver [37]
whereby the heavy metal is then released and induces the expression of metallothionein that
then binds tightly to cadmium [52,53]. This binding serves the purpose of detoxification as
the cadmium-metallothionein complex is usually considered nontoxic [54]. The cadmium-
metallothionein complex can be released into the bloodstream and is then filtered at the
glomerulus and reabsorbed by the proximal tubular epithelial cells [55]. This is followed by
release of cadmium from the degradation of the cadmium-metallothionein complex [55]. The
free form of cadmium in the proximal tubular region of the nephron can then bind to pre-
existing renal metallothionein and induce further renal expression of metallothionein [50].
When renal metallothionein is exhausted [56,57], the nonmetallothionein bound cadmium
accumulates and induces nephrotoxicity [49–51,58,59], primarily in the proximal tubular
region (Figure 1) via generation of oxygen free radicals [60–62]. As up to 50% of the body’s
cadmium pool can deposit in the kidney [37] and the half-life of cadmium in the kidney
is approximately 45 years [63–67], cadmium-caused renal toxicity can pose a major threat
to human health, particularly in countries where environmental control and regulation
are lacking. It should be noted that while the binding of cadmium to metallothionein
is a well-established mechanism, other thiol-containing proteins and peptides such as
albumin and glutathione can also bind cadmium, leading to functional impairment of these
cadmium bound target proteins and peptides [50].
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Figure 1. Diagram showing the proximal convoluted tubule as the major site of cadmium accumula-
tion and toxicity in the nephrons “*”.

3. Cadmium-Induced Animal Models of Kidney Injury

Given the fact that human cadmium exposure is a chronic process at a very low level,
any investigation of cadmium renal toxicity would require many years of monitoring and
follow-up studies. Therefore, animal models using mice or rats have been widely used to
replicate the pathophysiological mechanisms of cadmium renal toxicity [39,40,42,68]. In
numerous cases, high doses of cadmium were applied in these animal models to shorten the
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duration of the studies and facilitate the process of obtaining insights into the mechanisms
of cadmium renal toxicity. As mentioned above, studies using rodent models as well
as results from human subjects have established that the primary target of cadmium in
the nephron is the proximal tubule, whereby cadmium causes overall dysfunction of the
epithelial cells [51,69,70], resulting in polyuria and proteinuria [50,51]. There is also an
increase in urinary excretion of amino acids, glucose, and electrolytes such as Na+. K+,
and Ca2+ [50,51]. Increasing evidence also indicates that a variety of risk factors such as
aging [71], malnutrition [72], obesity [73–75], and diabetes [27,76] can further superimpose
on cadmium renal toxicity and aggravate cadmium-induced renal dysfunction.

It should be stressed that in animal model studies of cadmium renal injury, a variety
of doses, routes, and duration of exposures have been performed. The purpose of all
these approaches is to try to replicate or recapitulate the toxico-kinetics and underlying
mechanisms of long-term, low-level exposure that commonly occur in humans [50].

4. Mechanisms of Cadmium-Induced Renal Toxicity

What is the proposed mechanism of cadmium-induced kidney injury? Based on numer-
ous studies, all injurious pathways converge on ROS production and culminate in oxidative
stress [77–81], which suggests that oxidative damage is a unifying mechanism of cadmium-
induced renal toxicity and injury. We also think that the major sources of ROS causing
oxidative damage in this context are mitochondria and NADPH oxidase, described as follows.

5. Sources of Reactive Oxygen Species
5.1. Mitochondria

Mitochondria are well known as the intracellular site of ROS production [82–85].
Among the electron transport chain components complexes I, II and III have all been
established as major sites of ROS production [86–89]. These sites are not perfect even
under normal conditions and can leak electrons out of the transport chain [90,91] (Figure 2).
The leaked electrons can then partially reduce oxygen to form superoxide anion, which is
the precursor of all other reactive oxygen species including H2O2, hydroxyl radical, and
peroxynitrite [92,93] (Figure 3). Additionally, dihydrolipoamide dehydrogenase involved
enzyme complexes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and
branched chain amino acid dehydrogenase can also produce superoxide anion in a variety
of experimental and pathological conditions [94–97].
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Figure 3. Production of other reactive oxygen species and reactive nitrogen species from the initial species superoxide.
Superoxide can be dismutated by superoxide dismutase to form H2O2, which can be further detoxified by catalase. In the
presence of metal ions such as iron, H2O2 can also generate very reactive species hydroxyl radical. Additionally, superoxide
can react with nitric oxide to form peroxynitrite that is also very reactive toward macromolecules.

5.2. NADPH Oxidase

NADPH oxidase (NOX) can generate superoxide anion using NADPH as its reducing
agent [99]. So far, seven NOXs have been identified (NOX 1-5, Duox1 and DuoX2) [99].
These isoforms differ in many aspects including catalytic oxidase subunit, tissue distri-
bution, intra-cellular location, and mechanisms of regulation [100,101]. All NOXs are
composed of multiple subunits. Upon stimulation, these subunits will come together and
assemble to form a membrane-associated complex to generate superoxide at the expense of
NADPH [102]. Figure 4 shows a representative diagram of NOX assembly upon stimula-
tion whereby the major site of ROS production is the gp91phox subunit with other proteins
being the ancillary units required for the regulation and functioning of the whole enzyme
complex. It should be noted that Figure 4 only shows the assembly of NOX2. The structural
and compositional variations of other NOX isoforms [103] and their potential interaction
with cadmium may also play a role in cadmium induced renal toxicity. Under normal
conditions, these NOXs function in a beneficial way by regulating kidney metabolism
and homeostasis including glucose transport, gluconeogenesis, renal hemodynamics, and
electrolyte transport and balance [99]. Under pathophysiological conditions, these NOXs,
in particular NOX2 and NOX4 in the kidney, can overgenerate ROS that are damaging to
cellular components including DNA, proteins, and lipids, causing cell death and kidney in-
jury [99,104–106]. It has been reported that cadmium exposure can increase the expression
of NOX1 subunits, leading to increased ROS production from the enzyme [107]. Never-
theless, it is not known exactly which subunit in the NADPH oxidase physically interacts
with cadmium at the present time. It should be noted that xanthine oxidase [108,109] and
nitric oxide synthase [110–112], although not a major source of ROS in the kidney, may
also contribute to renal oxidative stress under a variety of pathological and experimental
conditions including cadmium exposure. It should also be pointed out that comprehensive
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evaluations of the roles of NADPH oxidases, xanthine oxidase, and nitric oxide synthase in
cadmium-induced kidney injury remain to be conducted.

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 17 
 

These isoforms differ in many aspects including catalytic oxidase subunit, tissue distribu-
tion, intra-cellular location, and mechanisms of regulation [100,101]. All NOXs are com-
posed of multiple subunits. Upon stimulation, these subunits will come together and as-
semble to form a membrane-associated complex to generate superoxide at the expense of 
NADPH [102]. Figure 4 shows a representative diagram of NOX assembly upon stimula-
tion whereby the major site of ROS production is the gp91phox subunit with other pro-
teins being the ancillary units required for the regulation and functioning of the whole 
enzyme complex. It should be noted that Figure 4 only shows the assembly of NOX2. The 
structural and compositional variations of other NOX isoforms [103] and their potential 
interaction with cadmium may also play a role in cadmium induced renal toxicity. Under 
normal conditions, these NOXs function in a beneficial way by regulating kidney metab-
olism and homeostasis including glucose transport, gluconeogenesis, renal hemodynam-
ics, and electrolyte transport and balance [99]. Under pathophysiological conditions, these 
NOXs, in particular NOX2 and NOX4 in the kidney, can overgenerate ROS that are dam-
aging to cellular components including DNA, proteins, and lipids, causing cell death and 
kidney injury [99,104–106]. It has been reported that cadmium exposure can increase the 
expression of NOX1 subunits, leading to increased ROS production from the enzyme 
[107]. Nevertheless, it is not known exactly which subunit in the NADPH oxidase physi-
cally interacts with cadmium at the present time. It should be noted that xanthine oxidase 
[108,109] and nitric oxide synthase [110–112], although not a major source of ROS in the 
kidney, may also contribute to renal oxidative stress under a variety of pathological and 
experimental conditions including cadmium exposure. It should also be pointed out that 
comprehensive evaluations of the roles of NADPH oxidases, xanthine oxidase, and nitric 
oxide synthase in cadmium-induced kidney injury remain to be conducted. 

 
Figure 4. NADPH oxidase assembly and superoxide production at the expense of NADPH. Upon 
stimulation, each individual subunit of the enzyme is recruited to the membrane and form a mem-
brane-associated complex. Only one subunit GP91 catalyzes partial reduction of oxygen. This fig-
ure is adapted from reference [102]. Please not that shown here is NOX2 assembly. For structures 
and components of other NXO isoforms, please refer reference [103]. 

6. Effects of Cadmium on Mitochondrial Function 
Cadmium can enter mitochondria and accumulate therein [113,114]. This is likely fa-

cilitated by mitochondrial membrane channels, and solute molecule carriers and receptors 
[114]. Once inside the mitochondria, cadmium can bind thiol-containing proteins and im-
pair the corresponding protein function [80]. Studies have demonstrated that upon expo-
sure to cadmium, kidney mitochondria displayed deformation, swelling, and vaculation, 
concurrent with increased SOD1 expression and decreased SOD2 and catalase expression 

Figure 4. NADPH oxidase assembly and superoxide production at the expense of NADPH. Upon
stimulation, each individual subunit of the enzyme is recruited to the membrane and form a
membrane-associated complex. Only one subunit GP91 catalyzes partial reduction of oxygen. This
figure is adapted from reference [102]. Please not that shown here is NOX2 assembly. For structures
and components of other NXO isoforms, please refer reference [103].

6. Effects of Cadmium on Mitochondrial Function

Cadmium can enter mitochondria and accumulate therein [113,114]. This is likely
facilitated by mitochondrial membrane channels, and solute molecule carriers and recep-
tors [114]. Once inside the mitochondria, cadmium can bind thiol-containing proteins and
impair the corresponding protein function [80]. Studies have demonstrated that upon
exposure to cadmium, kidney mitochondria displayed deformation, swelling, and vac-
ulation, concurrent with increased SOD1 expression and decreased SOD2 and catalase
expression [115]. Additionally, the anti-apoptotic protein BCL-2 was also found decreased
by cadmium exposure [115]; so was the ratio between reduced glutathione and oxidized
glutathione [60]. All these could be a generalized cadmium mitochondrial toxicity and the
ultimate outcome would be reflected by overproduction of mitochondrial ROS, disruption
of mitochondrial metabolic pathways, and impairment of mitochondrial pores, membrane
channels and transporters [80]. It has been reported that complex II and complex III may
be the major sites impaired by cadmium in the nephrons [98] while the effects of cadmium
on proximal tubular mitochondrial complex I (NADH-ubiquinone oxidoreductase) remain
unclear. Disruption of all these processes by cadmium would increase mitochondrial ROS
production and eventually lead to cell death and kidney injury [80,114,116–119]. An outline
of cadmium induced ROS production, oxidative damage to macromolecules, cell death,
and kidney injury is shown in Figure 5, highlighting the concept that oxidative damage is
a unifying mechanism of cadmium-induced kidney injury.
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Figure 5. ROS can damage DNA, proteins, and lipids. Damage of the molecules impairs the biological
function of each molecule, leading to cell death and kidney injury. Cell death may include both
necrosis and apoptosis.

7. Counteracting Effects of Natural Products, Chemicals and Pharmacological Agents
on Cadmium-Induced Kidney Injury

In further support of the notion that oxidative stress and oxidative damage are the
universal mechanisms underlying renal toxicity by cadmium, we herein tabulate evidence
that numerous natural products such as plant extracts and herbal medicines have been used
to counteract the oxidative, deleterious effects of cadmium on the kidney. Many of these
studies used cadmium-induced animal models of kidney injury as a platform [120]. Table 1
selectively shows some of the reported plant extracts and herbs as well as exogenous
chemicals and pharmacological agents that can attenuate cadmium-induced oxidative
stress involved in kidney injury. Additionally, many of these approaches can also induce
the activation of endogenous cellular defense systems such as Nrf2, superoxide dismutase,
glutathione peroxidase, and catalase [74,121–124]. Some studies using kidney cell lines
such as HEK293 are also included in the table. It should be pointed out that among all the
compounds and chemicals listed in Table 1, it is very difficult to identify which one would
be the most efficient in terms of combating confirmed cadmium-induced kidney injury as
cross examination and comparison of these natural products on a same platform under
exactly the same experimental conditions have not been conducted. In addition, whether
administration of these natural antioxidants could increase the efflux of cadmium out of
the body remains to be investigated.
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Table 1. Counteracting effects of exogenous compounds such as plant extracts, herbs, chemicals and pharmacological
agents on cadmium induced renal toxicity.

Plant/Extract/Chemical Rodent Model Mechanism Reference

Allium hirtifolium boiss Rats Anti-oxidative stress [125]
Apple juice Rats Anti-oxidative stress [126]

Arctium lappa Rats Anti-oxidative stress [127]
Carnosic acid Mice and cells Anti-oxidative damage [128]

Catechin Rats Anti-oxidative damage [129]
Caffeic acid phenethyl ester Rats Anti-oxidative stress [130,131]

Chelidonium majus leaves Rats Antidiuretic [132]
Chorella pyrenoidosa Rats Antihyperglycemic [133]

Cleistocalyx nervosum var. paniala Rats Increasing antioxidation power [134]
Coriandrum sativum leaf Mice Anti-oxidative stress [135]

Curcumin Rats Anti-oxidative stress [136]
Edaravone Mice/Cells Inhibiting oxidative stress [137]
Elderberry Rats Increasing antioxidant enzymes [138]

Epigallocatechin-3-gallate Rats Increasing antioxidant defense [139]
Eucommia ulmoides bark Rats Anti-oxidative damage [140]

Ferulic acid Rats Anti-oxidative stress [78]
Fragaria ananassa Rats Anti-oxidative stress [141]

Ginger Rats Decrease lipid peroxidation [142]
Glutathione Rats Anti-oxidative stress [143]

Glycyrrhiza glabra Rats Anti-oxidative stress [144]
Grape seed procyanidin Mice Antioxidants [145]

Grape skin/purple carrot Rats Anti-oxidative damage [146]
Green/black/red/white tea Rats Anti-oxidative damage [147]

Green olive leaf Renal cells (MCD4) Anti-oxidative stress [148]
Herbal adaptogens Chicken Anti-oxidative damage [21]

Ipomoea aquatic/Enhydra fluctuans Mice Anti-oxidation/anti-apoptosis [149]
Irvingia gabonesis stem bark Rats Increasing antioxidant defense [150]

Licorice Rats Anti-oxidative damage [151] **
Ligustrazine Rats Restoring renal function [152]
Lipoic acid Rats Anti-apoptosis [68,153]

Onion/garlic Rats Anti-oxidative stress [154]
Origanum majorana L. Rats Anti-oxidative damage [155]
Persea americana seeds Rats Mitigating oxidative stress [156]

Physalis peruviana L Rats Anti-oxidation/Anti-apoptosis [157]
Picroliv Rats Anti-oxidative stress [158]

Plantamajoside Rats Decrease oxidative damage [159]
Pleurotus ostreatus Rats (female) Mitigating oxidative damage [160]
Potentilla anserine Mice and cells Anti-oxidative stress [161]

Puerarin Rat proximal tubule cells Restoring mitochondrial function [162]
Quercetin Rats Suppressing ER stress [163]

Resveratrol Chickens Anti-oxidative stress [164]
Roflumilast Rats Increasing antioxidant defense [165]

Rosmarinic acid Mice Anti-oxidative damage [166]
Royal jelly Mice (male) Antioxidation/Nrf2 activation [39]

Rutin Rats Inhibiting oxidative stress [167]
Salvia officinalis Rats Anti-oxidative damage [168]

Salvia miltiorrhiza Rats Anti-oxidative injury [169]
Sana Makki Rats Anti-oxidative stress/Nrf2 [170]

Selenium yeast Chicken Mitigating necroptosis [171]
Sesamol Rats Inhibiting oxidative stress [172]

SInapic acid Rats Inhibiting oxidative stress [173]
Solanum torvum Swartz Rats Anti-oxidative stress [174]

Spinacia oleracea polysaccharides HEK293 cells Anti-oxidative stress [175]
Telmisartan Mice Suppressing oxidative stress [176]

Tetrahydrobiopterin Rats Maintaining mitochondria integrity [177]
Thunbergia laurifolia leaf Kidney cells Increasing antioxidant enzymes [178]



Biomolecules 2021, 11, 1575 8 of 17

Table 1. Cont.

Plant/Extract/Chemical Rodent Model Mechanism Reference

Thymus serrulatus essential oil Rats Anti-oxidative stress [179]
Thymoquinone Rats Increasing glutathione [180]

Tinospora cordifolia Rats Anti-oxidative stress [181]
Trehalose Rats Inhibiting oxidative stress [182]

Tribulus terrestris linn Rats Anti-oxidation [183]
Vitamin C Rabbits Anti-oxidative stress [184]
Vitamin E Rats Enhancing antioxidant defense [185]

** Please note that licorice could also pose renal toxicity under certain conditions [186].

8. Other Potential Interventional Approaches

In addition to the plant extracts, herbs and pharmacological agents as shown in Table 1,
there are other approaches that have also been applied to counteract cadmium-induced
kidney injury. For example, caloric restriction as an established interventional approach
for aging and age-related diseases [187–190] has been demonstrated to mitigate cadmium-
induced renal toxicity and kidney dysfunction [191]. Dietary restriction of calcium intake
has also been shown to enhance cadmium-induced expression of metallothionein, which
could minimize cadmium toxicity [192]. The protective effects of preconditioning and
postconditioning observed in numerous studies [193–195], if any, elicited by a variety of
approaches including ischemia, hypoxia, chemicals or pharmacological agents are yet to
be investigated. Additionally, metal chelation using specific chelating agents may also
be considered as an interventional approach [196]. Recent findings that persulfide and
polysulfide can bind to cadmium thereby decreasing cadmium toxicity [197–199] may also
provide potential approaches for counteracting cadmium-induced kidney injury.

9. Postulated Model of Cadmium-Induced Proximal Tubule Lesion

Prozialeck and Edwards proposed a model of proximal convoluted tubular cell in-
jury in 2012 [50] that we think elaborates very well the mechanism of cadmium-induced
kidney injury in terms of oxidative damage as a unifying mechanism. This model is
similar to what has been proposed to explain the mechanisms of ischemic acute kidney
injury [8,10,200,201]. Essentially, as diagramed in Figure 6, under healthy conditions and
in the absence of cadmium deposit and accumulation, epithelial cells in the proximal
tubule are closely associated with each other via specialized junctional structures. These
epithelial cells align orderly and tightly on the tubular basement membrane via local
adhesion molecules to collectively achieve filtration and reabsorption. In the presence
of cadmium, which can accumulate in the cytosolic and mitochondrial compartments,
cadmium binds thiol-containing proteins and peptides, leading to functional impairment
of these cadmium-bound proteins and peptides. Consequently, such impairments cause
mitochondrial electron leakage or NADPH oxidase dysfunction, resulting in enhanced
production of ROS and elevated levels of oxidative stress. If the oxidative stress is mild,
the tubular cells can repair themselves and resume normal function. It should be noted
that this self-repair is likely achieved by de-differentiated tubular epithelial cells instead
of differentiated and fixed tubular progenitor cells [202,203]. However, if the oxidative
stress is severe and overwhelms cellular repair capacity, an irreversible damage process
occurs and cells die by means of apoptosis, necrosis or both [204,205], leading to cell-cell
and cell-basement membrane dissociations. This would lead to proteinuria, polyuria, and
a progressive decline in kidney function. This functional decline, however, may be inter-
vened and halted by the antioxidative approaches shown in Table 1 if applied appropriately.
It should be pointed out that in order to distinguish cadmium-induced proteinuria from
primary glomerular lesion, the magnitude of proteinuria and a cadmium concentration
dependent manner will need to be characterized.
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Figure 6. Schematic diagram depicting cadmium-induced injury to proximal tubular epithelial cells. When oxidative
damage is mild, the cells can mobilize their repair defense system and self-repair, leading to maintenance of cellular function.
When oxidative damage is severe, cells lose their self-repair capacity and die, leading to widespread cell death and kidney
injury. (Adapted from reference [50]).

10. Diagnosis of Cadmium-Induced Kidney Injury

While diagnosis of cadmium-induced kidney injury is complicated by factors such as
dosage of exposure, duration of exposure, early stage injury or late stage irreversible injury
as well as whether there does any exist underlying disease, a series of parameters could
be combined to indicate whether a kidney injury is caused by cadmium exposure. These
parameters include measurements of blood and urine cadmium, urinary metallothionein,
urinary β2-microglobulin and N-acetyl-β-glucosaminidase. In addition, kidney injury
molecule-1 (Kim-1) could also be used to indicate early stage of cadmium-induced proximal
tubular injury [50]. Moreover, severe cadmium poisoning could also cause pains in the
spine and joints [24]. Collectively, measurements of these biomarkers or indices should
provide good evidence that a cadmium-caused kidney injury has occurred. It should be
noted that once these biomarkers appear and are detectable, cadmium induced kidney
injury might be at an advanced stage that is irreversible. Therefore, novel biomarkers of
cadmium-induced early stage kidney injury remain to be explored.

11. Summary

Cadmium exposure and cadmium-induced kidney disease are major public health
issues. Mitochondria and NADPH oxidase can be impaired by cadmium that accumulates
in the proximal tubular site of nephrons, and thus, are the major sources of ROS. Therefore,
the main underlying mechanism of cadmium renal toxicity is enhanced oxidative stress
and associated damage to DNA, proteins, and lipids, eventually leading to cell death,
kidney injury, and decline in kidney function (Figure 5). Given that cadmium exposure is
inevitable in the foreseeable future, cadmium-induced animal models of kidney disease
should continue to play an important role in investigating the etiological, pathological,
pharmacogenetic, pharmacological, and therapeutic aspects of cadmium-induced kidney
disorders. Finally, in addition to elucidating the detailed mechanisms of cadmium-caused
mitochondrial oxidative stress and redox imbalance, future studies should also explore
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novel biomarkers that can be used to diagnose early kidney injury by cadmium exposure.
Moreover, whether administration of natural products such as those listed in Table 1 could
increase the efflux of cadmium out of the body remains to be investigated.
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