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Background: Immune dysfunction is the main characteristic of severe acute pancreatitis
(SAP), and the timing of immune regulation has become a major challenge for SAP
treatment. Previous reports about the time point at which the immune status of SAP
changed from excessive inflammatory response to immunosuppression (hypo-
inflammatory response) are conflicting.

Purposes: The aims of this study are to explore the immunological dynamic changes in
SAP rats from the perspective of intestinal mucosal immune function, and to determine the
immunoswitching point from excessive inflammatory response to immunosuppression.

Methods: Retrograde injection of sodium taurocholate into the pancreaticobiliary duct
was applied to establish a SAP model in rats. The survival rate and the activities of serum
amylase and pancreatic lipase in SAP rats were measured at different time points after
model construction. The pathological changes in the pancreas and small intestines were
analyzed, and the levels of intestinal pro- and anti-inflammatory cytokines and the
numbers of intestinal macrophages, dendritic cells, Th1, Th2, and T regulatory cells
were assessed. Meanwhile, the SAP rats were challenged with Pseudomonas aeruginosa
(PA) strains to simulate a second hit, and the levels of intestinal inflammatory cytokines and
the numbers of immune cells were analyzed to confirm the immunoswitching point.

Results: The time periods of 12–24 h and 48–72 h were the two death peaks in SAP rats.
The pancreas of SAP rats showed self-limiting pathological changes, and the switching
period of intestinal cytokines, and innate and adaptive immunity indexes occurred at 24–
48 h. It was further confirmed that 48 h after SAP model construction was the
immunoswitching point from excessive inflammatory response to immunosuppression.
org May 2022 | Volume 13 | Article 8761681
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Conclusion: The SAP rats showed characteristics of intestinal mucosal immune
dysfunction after model construction, and the 48th h was identified as the
immunoswitching point from excessive inflammatory response to immunosuppression.
The results are of great significance for optimizing the timing of SAP immune regulation.
Keywords : severe acute pancreat i t is , in test ina l mucosal immune funct ion , inflammat ion ,
immunosuppression, immunoswitching
INTRODUCTION

Severe acute pancreatitis (SAP) is an acute abdominal disease with a
high mortality. Immune dysfunction has been recognized as the
predominant cause leading to severe SAP and SAP-related death
(1–3). The immune response of SAP is characterized by excessive
inflammatory response in the early stage, duringwhich inflammation
damages both tissues and immune cells. The pro-inflammatory and
anti-inflammatory responses are counterbalanced in themiddle stage.
Along with increased inflammatory damage, immune function is
decreased and eventually developed into immunosuppression (4).
Immunomodulatory therapies via anti-inflammation and immuno-
stimulation or both have been suggested as promising treatment of
SAP, which can modulate the uncontrolled inflammatory response,
reduce organ damage, and ameliorate prognosis of SAP patients.
Notably, as pro-inflammatory and anti-inflammatory responses
simultaneously occur in SAP (5), the timing of anti-inflammatory
or immune-stimulatory intervention is an important factor for
successful SAP treatment. Therefore, it is of much significance to
monitor the immune status of SAP patients in order to determine the
optimal timing of treatment.

The intestine as the largest immune organ and bacterial
repository in the body is one of the most vulnerable target
organs of SAP (6). During SAP, the excessive release of
inflammatory cytokines and the impairment of intestinal
microcirculation accompanied by massive apoptosis of immune
cells lead to the inhibition of intestinal mucosal immune function
and the injury of intestinal mucosal barrier (7–9). Uncontrolled
inflammatory response and excessive apoptosis of intestinal
immune cells are the main characteristics of mucosal immune
dysfunction in SAP (10). Gut-derived endotoxemia and
secondary infection due to intestinal bacterial translocation are
accepted as important contributors towards increased mortality
in SAP patients (11, 12). It is well acknowledged that the severity
of SAP is positively correlated with mucosal immune
dysfunction (10).

Cytokine level is one of the most essential indicators reflecting
the immune status of SAP patients (2). Gut-derived endotoxins
and cytokines mainly enter the systemic circulation through the
intestinal lymphatic pathway and induce systemic inflammatory
response, while blocking the mesenteric lymphatic vessels can
reduce the systemic inflammatory response (13). Therefore,
there is a positive correlation between intestinal and systemic
inflammation through the intestinal–lymphatic pathway.
However, few studies have explored the dynamic changes in
intestinal mucosal immune function and inflammatory response
during SAP.
org 2
In order to reveal the dynamic changes in intestinal mucosal
immune function during SAP, the levels of intestinal pro- and
anti-inflammatory cytokines and the numbers of innate and
adaptive immune cells were monitored and analyzed in SAP rats
at different time points after model construction to preliminarily
determine the immunoswitching period. Moreover,
Pseudomonas aeruginosa (PA) is one of the main pathogens of
later systemic infectious complications of SAP, and has been
applied to the study of sepsis-induced immunosuppression in a
mouse model (14–16). Hence, the immunoswitching point was
confirmed in SAP rats with a second hit of PA, which would
provide reference for the research on the optimal timing of
subsequent immunomodulatory drug intervention.
MATERIALS AND METHODS

Reagents and Kits
Amylase, lipase, D-lactate, soluble tumor necrosis factor-a
receptor (sTNF-aR), and secretory immunoglobulin A (sIgA)
enzyme-linked immunosorbent assay (ELISA) kits were
purchased from Nanjing Jiancheng Biological Engineering
Institute (Nanjing, China). The chromogenic limulus
amebocyte lysate kit was purchased from Bioendo Technology
Co., Ltd (Xiamen, China). Rat interleukin-1beta (IL-1b) and
transforming growth factor-b (TGF-b) ELISA kits were
purchased from ExCell Biotech Co., Ltd (Shanghai, China). Rat
TNF-a and IL-10 ELISA kits were purchased from Cusabio
Biotech Co., Ltd (Wuhan, China). Rat IL-6 and IL-18 ELISA kits
were purchased from Elabscience Biotech Co., Ltd (Wuhan,
China). The rat IL-8 ELISA kit was purchased from
Neobioscience Technology Co., Ltd (Shenzhen, China). The rat
IL-4 ELISA kit was purchased from Invitrogen (Carlsbad, CA,
USA). The specific antibodies against FITC anti-rat CD4, Alexa
fluor®647, anti-rat IFN-g, PE anti-rat IL-4, and Alexa fluor® 647
anti-rat Foxp3 were purchased from BioLegend (San Diego, CA,
USA). Rabbit anti-rat CD68 and rabbit anti-rat CD103 were
purchased from Abcam (Cambridge, MA, UK). PE anti-rat
CD25 was purchased from BD Biosciences (San Jose, CA,
USA). The sources of other reagents were indicated in the
specified methods.

Animals
All animal experiments were conducted strictly in accordance
with the guidelines and regulations of Southwest Medical
University and preapproved by the Animal Ethics Committee
May 2022 | Volume 13 | Article 876168
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of Southwest Medical University (approval numbers:
20180309063, Luzhou, China). The specific pathogen-free
grade Sprague–Dawley rats (male, 6 weeks old, weight 200 ±
220 g) were purchased from the Dossy Experimental Animals
Co., Ltd (permit number: SCXK 2013-24, Chengdu, China). The
rats were housed in a specific pathogen-free environment (23 ±
1°C, 40%–70% relative humidity, and 12 h/12 h light–dark cycle),
with free access to water and standard rodent diet.

Experimental Protocol
The rats were randomly assigned to three groups: Normal group,
Sham group, and SAP group. The Sham group and the SAP
group were allocated into 11 subgroups according to time points
of 1, 3, 6, 12, 24, 36, 48, 72, 120, 168, and 336 h after surgery. Rats
were fasted for 12 h and anesthetized with 2.0% sodium
pentobarbital (Sinopharm Chemical Reagent Co., Ltd., China).
The animal model was established according to existing studies
(17, 18). In brief, an abdominal incision was made along the
midline to expose the biliopancreatic duct, and the liver hilum
was temporarily closed with a microvascular clamp. Then, the
biliopancreatic duct was cannulated using an intravenous
indwelling trocar (Fenglin Medical Devices Co., Ltd., Jiangxi,
China) with a catheter through the duodenum. The SAP rat
model was established by a retrograde injection of 3.5% sodium
taurocholate (Sigma-Aldrich, St. Louis, MO, USA) into the
biliopancreatic duct using a micro-infusion pump. The
microvascular clamp and intravenous indwelling trocar were
removed 3 min later, and the abdominal incision was sutured.
Postoperatively, 5 ml of normal saline was subcutaneously
injected to compensate for fluid loss. The Sham group was
injected with equal doses of normal saline, and the Normal
group was not treated. Rats in each group were sacrificed at the
above indicated time points. For survival analysis, the survival
rate was recorded for 14 days after surgery.

The blood samples were obtained through the abdominal
aorta, kept at room temperature for 10 min, and centrifuged at
2,500 rpm for 15 min to collect serum, which was then stored at
−80°C until further analysis. The pancreas and small intestines
Frontiers in Immunology | www.frontiersin.org 3
were harvested, washed in ice-cold normal saline, and stored at
−80°C for further analysis. A small piece of pancreas and small
intestines were fixed in 4% paraformaldehyde for pathological
analysis. The mesenteric lymph nodes (MLNs) were harvested
and gently ground with the inner core of a 5-ml syringe to make
it pass through the 40-mm cell strainer to prepare a single-cell
suspension of MLNs. Centrifugation was conducted at 1,000 rpm
for 10 min, and the supernatant was discarded. Cell pellets of
MLNs were resuspended in complete medium, and the
concentration was adjusted to 106/ml by cell counting plate for
flow cytometry. An experiment flowchart is shown in Figure 1A.

Pathological Observation
Pancreas and small intestines were fixed in 4% paraformaldehyde,
dehydrated, and embedded in paraffin. Slices (5 µm) of the paraffin-
embedded tissue were stained with hematoxylin and eosin. All the
slices were graded by two experienced pathologists who were blind
to the experimental protocol under a light microscope (Olympus
Corporation, Tokyo, Japan). Inflammation, edema, hemorrhage,
and acinar cell necrosis of pancreas were scored according to
Schmidt’s standard (19). The severity of the small intestines was
assessed as previously described by Chiu (20).

Serum Amylase and Pancreatic
Lipase Analysis
The activities of serum amylase and pancreatic lipase were
determined with the corresponding assay kits according to the
manufacturer’s instructions.

Serum D-Lactate, Endotoxin, and
Intestinal Cytokine Analysis
The levels of serum D-lactate and endotoxin were assayed using
the commercially available detection kits, and the levels of pro-
and anti-inflammatory cytokines including IL-1b, TNF-a, IL-6,
IL-8, IL-18, TGF-b, IL-10, IL-4, and sTNF-aR in the small
intestines were quantified using the relevant ELISA kits
according to the manufacturer’s instructions. Absorption at
A B

FIGURE 1 | Flowchart of experimental schemes and survival situation of SAP rats. (A) Flowchart presenting the experimental schemes of this study. (B) The 14-day
cumulative survival rate of rats. Differences are statistically analyzed using the Log-rank test (n = 10). ***p < 0.001 compared with the Sham group.
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450 nm was examined using an Epoch 2 microplate reader (Bio-
Tek Instruments, Winooski, VT, USA).

Immunohistochemical Staining
Immunohistochemical staining was performed to determine
the expressions of intestinal CD68 and CD103 to observe the
changes in intestinal macrophages and dendritic cells. The paraffin-
embedded slices were dewaxed, rehydrated, and treated for antigen
retrieval according to standard procedures. Endogenous peroxidase
was blocked by 3% hydrogen peroxide. After blocking the
nonspecific antigens, the slices were incubated overnight at 4°C
with anti-rat CD68 antibody or anti-rat CD103 antibody, followed
by incubation with polymer adjuvant and horseradish peroxidase-
labeled anti-rabbit IgG polymer (Bioss Biotech Co., Ltd., Beijing,
China). Finally, the slices were stained with DAB (Beyotime
Biotech Co., Ltd., Shanghai, China), and nuclei were
counterstained with hematoxylin (Solarbio Technology Co., Ltd.,
Beijing, China). The samples were observed, and pictured under a
Leica DMi8 inverted microscope (Leica Microsystem Ltd., Wetzlar,
Germany). Images were analyzed using ImageJ software (National
Institutes of Health, Bethesda, MD, USA).

Th1/Th2 Cells Analysis
MLN cells were placed in a sterile 6-well plate with complete
medium, and cultured with cell activation cocktail (BioLegend,
San Diego, CA, USA) for 5 h in an incubator (Thermo Scientific,
Waltham, MA, USA) with 5% CO2, at 37°C. After culturing for
2 h with brefeldin A solution (BioLegend), the cells were
collected, centrifuged at 1,000 rpm for 5 min, and resuspended
in PBS. Next, the cells were incubated with FITC anti-rat CD4
antibody for 15 min at room temperature in darkness, and then
washed twice with PBS. Stained cells were fixed with fixation
buffer (BioLegend) for 20 min at room temperature and washed
twice with PBS. For intracellular staining of IFN-g and IL-4, fixed
cells were permeabilized using a permeabilization buffer
(BioLegend) for 20 min at room temperature and incubated
with Alexa fluor 647® anti-rat IFN-g antibody or PE anti-rat IL-4
antibody for 15 min at room temperature in darkness. After
washing twice with cell staining buffer (BioLegend), the cells
were suspended in cell staining buffer and the ratio of Th1/Th2
was determined by a FACSCalibur flow cytometer (BD
Biosciences, San Diego, CA, USA) as previously described (21).

T Regulatory Cells Analysis
The expression of Tregs from the MLNs was detected by a flow
cytometer after staining with anti-rat-specific Abs conjugated with
FITC, PE, and Alexa fluor 647®. To detect the proportion of CD4+

T cells in MLN cells and CD25 expression on the surface of CD4+

T cells, the cells were stained with FITC anti-rat CD4 antibody and
PE anti-rat CD25 antibody for 30 min at room temperature.
Simultaneously, for the measurement of intranuclear Foxp3,
stained cells were washed with PBS and reacted with true-
nuclear™ 1× fix working solution (BioLegend) for 60 min at
room temperature. After washing twice with true-nuclear™ 1×
perm buffer (BioLegend), the cells were stained with Alexa fluor
647® anti-rat Foxp3 antibody for 30 min. After washing, the cells
were suspended in cell staining buffer (BioLegend) and analyzed
Frontiers in Immunology | www.frontiersin.org 4
by a FACSCalibur flow cytometer (BD Biosciences) as previously
described (22).

Determination of the Immunoswitching
Point From Excessive Inflammatory
Response to Immunosuppression in SAP
Rats
Rats were randomly assigned to four groups: Sham group,
Sham + PA group, SAP group, and SAP + PA group. The
Sham + PA group and the SAP + PA group were injected with
2.0×108 CFU/kg of PA via the tail vein at 0, 12, 24, 36, 48, and
72 h after Sham or SAP construction, and the other groups were
injected with equal doses of normal saline. Rats were sacrificed
at 2 h after injection, and small intestines were collected. The
levels of intestinal inflammatory cytokines were measured
according to the manufacturer’s instructions. Meanwhile, the
numbers of macrophages and dendritic cells were analyzed as
previously described.

Statistical Analysis
Data were analyzed by GraphPrism 8.0 software (San Diego, CA,
USA) and expressed as mean ± standard deviation (SD). The
comparison was conducted by Student’s t-test between two
groups, and the comparison between multiple groups (including
two factors with different time and model processing) was
conducted using two-way analysis of variance (two-ANOVA).
Counting data were tested by the chi-square test. The survival
curves were analyzed using the Log-rank test. p < 0.05 was
considered statistically significant.
RESULTS

Death Peaks of SAP Rats Were Observed
at 12–24 h and 48–72 h
There was no dead rat in the Sham group and Normal group,
while the rats in the SAP group developed drowsiness,
abdominal pain, and distension, and started to die at 12 h after
model construction. A total of 11 rats died at 12–24 h and 5 rats
died at 48–72 h. The 14-day cumulative survival rate of SAP rats
was 65.72% (Supplemental Table 1; Figure 1B). The mortality
rule of SAP rats was basically consistent with previous reports
(23, 24). The results suggested that 12–24 h and 48–72 h were the
two death peaks of SAP rats.

The Pancreas of SAP Rats Presented the
Self-Limiting Pathological Changes
To further clarify whether the SAP rat model was successfully
established, we observed the pathological changes in pancreas,
and measured the activit ies of serum amylase and
pancreatic lipase.

The results showed that the pancreas exhibited intact
pancreatic characteristics with normal structures in the Sham
and Normal groups. However, the pancreas in the SAP group
showed a small amount of inflammation infiltration, edema,
hemorrhage, and acinar cell necrosis (black arrow) at 1–3 h, and
May 2022 | Volume 13 | Article 876168
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these pathological changes further deteriorated at 6–48 h. The
pancreas of SAP rats were in a self-healing state with massive
fibrous hyperplasia and granulation tissue formation (red arrow)
at 72–336 h (Figure 2A). The pancreatic pathological score in the
SAP group was markedly greater than that in the Sham group at
different time points (Figure 2B). Compared with the Sham
group, the activities of serum amylase and pancreatic lipase in
the SAP group were evidently elevated at 1–48 h and at 3–24 h,
respectively (Figures 2C, D). Overall, these results illustrated
that the SAP rat presented self-limiting pathological changes
from the early injury aggravation (1–48 h) to later continuous
repair (72–336 h), indicating that the SAP rat model was
successfully established.
Intestinal Mucosal Barrier Dysfunction
Occurred in the Early Stage After SAP
Model Construction
The intestinal mucosal barrier function helps maintain intestinal
homeostasis (25). As an intestinal metabolite, the serum D-
Frontiers in Immunology | www.frontiersin.org 5
lactate level can reflect the changes in intestinal mucosal
permeability (7, 17). The changes in intestinal mucosal barrier
function of SAP rats can be determined by observing
pathological changes in the small intestines and detecting the
serum D-lactate level.

The results showed that the small intestines were structurally
intact in the Sham and Normal groups. However, the small
intestine in the SAP group showed obvious changes in
morphology and structure, such as intestinal dilatation,
epithelial cell shedding, and inflammatory infiltration (black
arrow) at 6 h, and the tissue damages were further aggravated
at 12–48 h, but gradually ameliorated at 48–336 h (Figure 3A).
The intestinal pathological score in the SAP group was
meaningfully higher than that in the Sham group after 12 h,
which increased at 6 h, basically kept a higher level at 12–48 h,
but gradually decreased at 48–336 h (Figure 3B). The serum D-
lactate level in the SAP group gradually increased at 12 h, and
slightly decreased after maintaining a higher level at 48–120 h
(Figure 3C). The aforementioned results suggested that the
intestinal mucosal barrier function was partially impaired, and
A

B DC

FIGURE 2 | Damage changes in the pancreas at different time points. (A) Pathological observation of pancreas (n = 3,200 × magnification, scale bar = 100 µm; the
black arrow represents inflammation infiltration, edema, hemorrhage, and acinar cell necrosis, and the red arrow represents fibrous hyperplasia and granulation tissue).
(B) Pancreatic pathological scores from 0 to 5. (C) Serum amylase activity. (D) Pancreatic lipase activity. Data are expressed as the mean ± SD (n = 6). **p < 0.01,
***p < 0.001 compared with the Sham group.
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the gut permeability was markedly increased in the early stage
after SAP model construction.

Counterbalance of Pro- and
Anti-Inflammation Occurred at 24–48 h
After SAP Model Construction
Given that inflammation is the main initiator of intestinal injury
caused by SAP, we sought to explore the dynamic changes in
intestinal pro- and anti-inflammatory cytokine levels to reflect
changes in intestinal mucosal immune function during SAP.

The detection of intestinal pro-inflammatory cytokines found
that, compared with the Sham group, the level of IL-1b in the
SAP group increased at 12 h, peaked at 24 h, and hereafter
gradually decreased until it dropped to normal levels at 120 h
(Figure 4A). Compared with the Sham group, the level of TNF-a
in the SAP group was slowly elevated at 1–12 h, then quickly
increased at 12 h, and kept at a higher level at 24–48 h, which
rapidly declined to normal levels at 120 h (Figure 4B).
Compared with the Sham group, the levels of IL-6, IL-8, and
Frontiers in Immunology | www.frontiersin.org 6
IL-18 in the SAP group considerably increased at 6 h and peaked
at 24 h. Then, the levels of IL-6 and IL-8 gradually decreased
at 24 h, and the former fell to normal levels at 168 h, while
the latter dropped to normal levels at 72 h (Figures 4C, D). The
level of IL-18 in the SAP group after maintaining a higher level
at 24–48 h gradually decreased at 48–336 h, which was still
higher than that in the Sham group (Figure 4E). Compared
with the Sham group, the level of serum endotoxin in the SAP
group increased at 12 h, peaked at 24 h, remained at a higher level
at 24–48 h, and gradually decreased to normal levels at
72 h (Figure 4F).

The results of intestinal anti-inflammatory cytokines showed
that, compared with the Sham group, the level of intestinal TGF-
b in the SAP group slowly increased at 1 h, remained basically
unchanged at 1–48 h, and then slowly declined at 48–168 h until
it eventually decreased to normal levels at 336 h (Figure 4G).
Interestingly, the level of intestinal IL-10 in the SAP group
showed the double peaks, which gradually increased at 1–36 h,
greatly decreased at 36–72 h, and then gradually increased again
A

B C

FIGURE 3 | Damage changes in the small intestines at different time points. (A) Pathological observation of small intestines (n = 3,200 × magnification, scale bar =
100 µm; the black arrow represents intestinal dilatation, epithelial cell shedding, and inflammatory infiltration). (B) Intestinal pathological scores from 0 to 4. (C) Level
of serum D-lactate. Data are expressed as the mean ± SD (n = 6). **p < 0.01, ***p < 0.001 compared with the Sham group.
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at 72–336 h (Figure 4H). The levels of intestinal IL-4 and sTNF-
aR in the SAP group gradually decreased at 3 h, remained low at
6–36 h, then gradually increased at 36 h until they finally
returned to normal levels at 48 h (Figures 4I, J).

Taken together, these data demonstrated that the
inflammatory response of SAP rats was developed at 1–12 h,
during which the pro-inflammatory and anti-inflammatory
cytokines gradually increased. Subsequently, the inflammatory
Frontiers in Immunology | www.frontiersin.org 7
cytokine storm was observed at 12–24 h, during which the pro-
inflammatory response became dominant. Then, both pro-
inflammatory and anti-inflammatory cytokines reached their
peak levels at 24–48 h and were counterbalanced by each
other. Eventually, a hypo-inflammatory response was
dominant after 48 h. As a result, the counterbalance of pro-
and anti-inflammation occurred at 24–48 h after SAP
model construction.
A

B

D

E

F

G

I

H

J

C

FIGURE 4 | Dynamic changes in pro- and anti-inflammatory cytokines. (A–E) Levels of pro-inflammatory cytokines in the small intestines. (A) IL-1b. (B) TNF-a.
(C) IL-6. (D) IL-8. (E) IL-18. (F) Serum endotoxin. (G–J) Levels of anti-inflammatory cytokines in the small intestines. (G) TGF-b. (H) IL-10. (I) IL-4. (J) sTNF-aR. Data
are expressed as the mean ± SD (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Sham group.
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Intestinal Innate and Adaptive Immune
Switch Occurred at 24–48 h After SAP
Model Construction
Innate immune cells in the small intestines activate inflammasome
signaling pathways via pattern recognition receptors, rapidly
initiating inflammatory responses (26, 27). Macrophages and
dendritic cells in the small intestines are the main inflammatory
Frontiers in Immunology | www.frontiersin.org 8
cells involved in intestinal innate immune response (28, 29). CD68
and CD103 are regarded as specific markers of macrophages and
dendritic cells, respectively (30, 31). An immunohistochemical
staining method was used to analyze the dynamic changes in
intestinal macrophages and dendritic cells in each group.

The results showed that the expression of intestinal CD68 in
the SAP group gradually increased at 1–6 h, greatly decreased at
A

B

DC

FIGURE 5 | Dynamic changes in intestinal innate immune cells. (A, B) Measurement of macrophages and dendritic cells in the small intestines. Representative images
of macrophages (A) and dendritic cells (B) for immunohistological staining (200 × magnification, scale bar = 50 µm). (C, D) Average optical density of macrophages and
dendritic cells. (C) Macrophages. (D) Dendritic cells. Data are expressed as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Sham group.
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12–72 h, and gradually increased again at 120–336 h compared
with the Sham group (Figures 5A, C). Compared with the Sham
group, the expression of intestinal CD103 in the SAP group
gradually increased at 1–3 h, slowly reduced at 6–72 h, and
gradually rose again at 120–336 h (Figures 5B, D). The above
results verified that the number of intestinal innate immune cells
increased and the inflammatory response was enhanced at 1–3 h.
At 6–72 h, the number of intestinal innate immune cells
decreased, resulting in declined cellular immune function and
intestinal immune barrier dysfunction. After 120 h, the number
of intestinal innate immune cells returned to normal levels.

Th cells, Tregs, and sIgA are indispensable parts in the
adaptive immune response (32). Thus, we further evaluated
their changes in SAP rats. We firstly investigated the changes
in intestinal Th cells in SAP rats. Th cells are the central cells of
the body’s adaptive immune response (32). The expressions of
CD4+/IFN-g+ and CD4+/IL-4+ serve to quantify the activations
of Th1 cells and Th2 cells, respectively (13). The results revealed
that the expression of Th1 cells in the SAP group was
significantly higher than that in the Sham group at 6–72 h,
which did not significantly change at 1–3 h, gradually increased
at 6–24 h, peaked at 24 h, and gradually decreased until it
dropped to normal levels at 120 h (Figures 6A, D). The
expression of Th2 cells in the SAP group was significantly
lower than that in the Sham group at 48–336 h. Th2 cells did
not obviously change at 1–36 h, but slowly declined at 48–336 h
(Figures 6B, E). The ratio of Th1/Th2 in the SAP group was
significantly higher than that in the Sham group at 12–336 h,
which did not significantly change at 1–3 h, gradually elevated at
6–24 h, peaked at 24 h, and then gradually downregulated at 24–
336 h (Figure 6F). As a result, severely imbalanced Th1/Th2 was
observed in SAP rats.

Next, we studied the changes in Tregs in SAP rats. Tregs,
which are regarded as suppressive T cells, play a crucial role in
maintaining the balance between immune activation and
tolerance (13). The expression of CD4+/CD25+/FOXP3+ is
identified as the most specific marker of Tregs (13). The results
showed that Tregs in the SAP group were obviously higher than
those in the Sham group at 24–120 h, which greatly increased at
12 h, slowly declined at 24–48 h after peaking at 24 h, gradually
decreased at 48–120 h, until it finally returned to normal levels at
168 h (Figures 6C, G).

Finally, we also detected the changes in intestinal sIgA, which is
the first line of intestinal mucosa defense and exerts a key role in
humeral immunity (33). The results showed that the level of
intestinal sIgA in the SAP group was evidently lower than that in
the Sham group at 3–36 h, which gradually decreased at 1 h,
remained at a lower level at 3–36 h, gradually upregulated at 36 h,
and finally returned to normal levels at 48 h (Figure 6H). All the
above results indicated that intestinal innate and adaptive immune
switch occurred at 12–48 h after SAP model construction.

Confirmation of the Switching Point for
Immunosuppression in SAP Rats
Obviously, there were still some differences in the immunoswitching
points of changes in various intestinal inflammatory cytokine levels
Frontiers in Immunology | www.frontiersin.org 9
and immune cell numbers. Hence, in further experiments, PA was
selected as a second hit to further confirm the immunoswitching
point from excessive inflammatory response to immunosuppression
in SAP rats.

The rats were injected with a sublethal dosage of PA (2.0×108

CFU/kg; Supplemental Table 2) via the tail vein at 0–72 h after
Sham or SAP model construction, followed by sacrifice at 2 h
post injection (Supplemental Figures 1A, B). The detection of
pro- and anti-inflammatory cytokines of Sham or SAP rats
challenged with or without PA is shown in Figure 7. The
results showed that the levels of IL-1b, TNF-a, IL-6, IL-8, IL-
18, and serum endotoxin significantly increased in Sham + PA,
SAP, and SAP + PA groups compared with the Sham group at 0–
72 h. The same trend was also found in TGF-b level, while the
level of IL-4 presented a trend of first gradually decreasing (0–36
h) and then gradually increasing (48–72 h). Compared with the
SAP group, most of the cytokines in the SAP + PA group showed
a different degree of increase at 0–36 h, but turned around at
48 h, during which even if rats were challenged with PA, their
levels did not increase (Figures 7A–H).

We also analyzed the changes in macrophages and dendritic
cells. The results found that after challenge with PA, the number of
macrophages in the Sham + PA group and the SAP-0 h + PA
group significantly increased. Then, the number of macrophages
in the SAP + PA group gradually decreased, which was
significantly higher than that in the SAP group at 0–24 h, but
with a reversal at 48 h. The changing pattern of dendritic cells was
obviously different. Except for the SAP-0 h + PA group, there was
no significant increase in other groups. Compared with the Sham
group, the number of dendritic cells in the SAP group and the SAP
+ PA group greatly decreased from 48 h (Figures 8A–D). These
data confirmed that the rats after challenge with PA showed
excessive activation of immune cells and further secretion of
cytokines, but the SAP rats changed their immune status into an
immunosuppressive one at 48 h, where the immune cells were
exhausted, showing a hypo-inflammatory response.
DISCUSSION

SAP is an acute abdominal disease with a high mortality rate,
showing characteristics of immune dysfunction (1–3). Early
death due to systemic inflammatory response and multiple
organ failure triggered by SAP, and later death as a result of
infection caused by immunosuppression are two death peaks in
the course of the disease (34). In this study, the SAP rat model
was established by a retrograde injection of 3.5% sodium
taurocholate into the biliopancreatic duct. The results of
pancreatic pathological changes and the activities of serum
amylase and pancreatic lipase proved that SAP rats showed
self-limited pathological changes from early injury aggravation
to later continuous repair, which was consistent with previous
reports (35, 36). It was confirmed that 12–24 h and 48–72 h were
two death peaks in SAP rats.

The intestine is one of the most vulnerable target organs in
SAP (37). The intestinal mucosal barrier dysfunction can promote
May 2022 | Volume 13 | Article 876168
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the progression of systemic inflammatory response and multiple
organ failure of SAP patients (38). It was found that intestinal
dilatation, epithelial cell shedding, and inflammatory infiltration
occurred at 12 h in SAP rats. The severity of SAP patients is
closely related to intestinal mucosa permeability (12, 39), and
intestinal mucosal permeability is commonly known as the most
direct and accurate element that reflects intestinal mucosal barrier
Frontiers in Immunology | www.frontiersin.org 10
function (40, 41). D-lactate, which is a kind of the intestinal
metabolite, enters the blood circulation and significantly increases
when the intestinal mucosal barrier function is seriously damaged
(42). In this study, the serum D-lactate level in SAP rats gradually
increased at 12 h, but slightly reduced after maintaining a higher
level at 48–120 h. Interestingly, this result conformed to the time
point at which early death occurred at 12 h after SAP model
A

B
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F

G

H

C

FIGURE 6 | Dynamic changes in intestinal adaptive immune cells. (A–G) Detection of T-cell differentiation (Th1 and Th2 cells) and Tregs by flow cytometry in MLN
cells. Representative images of Th1 cells (A), Th2 cells (B), and Tregs (C) for cytometry results. Quantified analyses of Th1 cells (D) and Th2 cells (E). (F) Ratio of
Th1/Th2 cells. (G) Quantified analyses of Tregs. (H) Level of sIgA in the small intestines (n = 5). Data are expressed as the mean ± SD (n = 3). *p < 0.05, **p < 0.01,
***p < 0.001 compared with the Sham group.
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construction, suggesting that the early death of SAP rats could be
related to intestinal mucosal barrier dysfunction caused by
increased intestinal mucosal permeability. Therefore, the
severity of SAP could be suppressed by improving the intestinal
mucosal barrier function, which is of great significance for the
development of new therapeutic options for SAP.

The intestinal immune system is considered as the most
important line of defense against invasion of enteric
Frontiers in Immunology | www.frontiersin.org 11
microorganisms and exerts a vital role in the development
of SAP (32, 43). There is a dynamic and complex change rule
from excessive inflammatory response to immunosuppression in
the SAP immune system (44). However, the possible reason why
the immunoswitching point from excessive inflammatory
response to immunosuppression was different in different
laboratories was the lack of clinically validated indicators
and complete assessment for monitoring the immune function
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C

FIGURE 7 | Immune-inflammatory profile with immunosuppressed rats. (A–F) Levels of pro-inflammatory cytokines in the small intestines. (A) IL-1b. (B) TNF-a.
(C) IL-6. (D) IL-8. (E) IL-18. (F) Serum endotoxin. (G, H) Levels of anti-inflammatory cytokines in the small intestines. (G) TGF-b. (H) IL-4. Data are expressed as the
mean ± SD (n = 5). *p < 0.05, ***p < 0.001 compared with the Sham group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the SAP group.
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of SAP. In the early stage of SAP, locally damaged pancreatic
tissue and inflammatory cells cause damage to the intestinal
mucosal barrier function, translocation of bacteria and
endotoxins, and further activation of intestinal epithelial cells,
macrophages, and other innate immune cells, leading to the
release of a large number of cytokines and eventually triggering
Frontiers in Immunology | www.frontiersin.org 12
inflammatory cascades (45). IL-1b, TNF-a, IL-6, IL-8, and IL-18
are widely reported pro-inflammatory cytokines that are key
indicators for the early prediction and diagnosis of pancreatitis
(46–48). Endotoxin is a component of the cell wall of Gram-
negative bacteria, and large amounts of endotoxin into the blood
can cause endotoxemia and even trigger the systemic
A

B

D

C

FIGURE 8 | Change of immune cells with immunosuppressed rats. (A, B) Measurement of macrophages in the small intestines. (A) Representative images of
macrophages for immunohistological staining (200 × magnification, scale bar = 50 µm). (B) Average optical density of macrophages. (C, D) Measurement of dendritic
cells in the small intestines. (C) Representative images of dendritic cells for immunohistological staining. (D) Average optical density of dendritic cells. Data are expressed
as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Sham group; ##p < 0.01, ###p < 0.001 compared with the SAP group.
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inflammation response (49, 50). TGF-b, IL-10, IL-4, and sTNF-
aR are well-known anti-inflammatory cytokines (24). In
general, we found that intestinal pro-inflammatory cytokines
(including IL-1b, TNF-a, IL-6, IL-8, IL-18, and serum
endotoxin) and anti-inflammatory cytokines (including TGF-b
and IL-10) in SAP rats were at a higher level at 12 h after model
construction, which was consistent with the time point of the
early death peak of SAP rats, suggesting that the early death of
SAP rats was due to an inflammatory storm caused by the
excessive release of pro-inflammatory cytokines and anti-
inflammatory cytokines. The results were in line with a
previous report (34). The possible reasons for the double peaks
of the intestinal IL-10 level in SAP rats were as follows: the
inflammatory response was enhanced at 1–36 h, the innate
immune cells that released IL-10 were damaged at 48 h, and
the immune function of the rats gradually recovered after 72 h.
Interestingly, the levels of intestinal IL-4 and sTNF-aR in SAP
rats were opposite to those of pro-inflammatory cytokines,
showing a trend of first decreasing and then increasing,
which could be closely related to the early suppression of
Th2 cells and the over-secretion of competing sTNF-aR by
TNF-a. In summary, we believed that although some anti-
inflammatory cytokines were also elevated in the early stage of
SAP, pro-inflammation response was dominant. In the later
stage, all of the pro-inflammatory and some of the anti-
inflammatory cytokines were relatively reduced as a result of
the death of immune cells, resulting in a hypo-inflammatory
response status in SAP rats.

The immune cells that secrete inflammatory cytokines also
play an important role during SAP. Excessive activation of
inflammatory immune cells results in the cascade release of
inflammatory cytokines (51). Intestinal mucosal immune
function mainly depends on the innate and adaptive immunity
of intestinal mucosal immune cells, and their role in the
development of SAP has been widely discussed (52). The
innate immune system is the first line of defense against
intestinal pathogen infections (43). Macrophages are the main
inflammatory cells involved in the pathogenesis of SAP, secreting
inflammatory cytokines such as IL-1b and TNF-a, and the
number and activation of macrophages determine the severity
of SAP (28, 53, 54). Dendritic cells are potent antigen-presenting
cells that drive both adaptive and innate immunity, secreting
inflammatory cytokines including TNF-a and IL-6 (55, 56). It
was hypothesized that the increase in the number of intestinal
macrophages and dendritic cells at 1–3 h could be related to the
activation of pancreatic enzymes in pancreatic cells, which led to
a large number of immune cells activated and chemoattracted to
the intestine, further activating the intestinal innate immune
cells, and ultimately resulting in an enhanced inflammatory
response. However, the number of intestinal macrophages and
dendritic cells was decreased at 6–72 h, when the intestinal
innate cells could trigger pyroptosis, causing a more intense
inflammatory cascade with massive death of immune cells (57).
After 120 h, the number of intestinal macrophages and dendritic
cells gradually returned to normal levels, and the SAP rats were
in a self-healing state.
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Th cells, Tregs, and sIgA are indispensable parts in the adaptive
immune response (32). The ratio of various subtypes of T cells can
reflect the immune status of SAP patients (58). Th1 cells mainly
produce pro-inflammatory cytokines to mediate cellular
immunity, while Th2 cells mainly produce anti-inflammatory
cytokines to regulate humoral immunity (59, 60). It was found
that the ratio of Th1 cells in SAP rats was significantly higher than
that in Sham rats at 6–72 h, while the ratio of Th2 cells in SAP rats
was obviously lower than that in Sham rats at 48–336 h, suggesting
that Th1 cells participated in the early inflammatory response of
SAP by releasing pro-inflammatory cytokines and Th2 cells
mainly secreted anti-inflammatory cytokines to counter
excessive inflammatory response. Th1 cells inhibit Th2 cells
after their activation by antigens to induce Th1/Th2 cytokine
dynamic imbalance, resulting in a series of inflammatory response,
aggravating intestinal injury, and further triggering the systemic
inflammatory response and other serious consequences in SAP
patients (61). The balance of Th1/Th2 is crucial for maintaining
homeostasis in the body (62, 63). Flow cytometry results from
MLNs showed that the ratio of Th1/Th2 in SAP rats was
significantly higher than that of Sham rats at 12–336 h,
indicating that Th1/Th2 is seriously imbalanced in SAP rats;
inflammatory responses leaned towards pro-inflammatory ones,
which was inconsistent with the changes in intestinal
inflammatory cytokines. The results suggested that the changes
in cytokines could also be affected by other intestinal immune cells
such as Peyer’s patches, which will be our future research
direction. Tregs exert immunosuppressive effects by inhibiting
INF-g secretion and promoting IL-4, IL-10, and TGF-b secretion
(64, 65). A study has proved that Tregs were decreased and
inversely associated with the serum concentration of TNF-a in
SAP mice (66). In this study, Tregs in SAP rats were obviously
higher than those in Sham rats at 24–120 h, which was positively
correlated with intestinal TGF-b and IL-10 levels. SIgA is a main
immunoglobulin protein on the intestinal mucosal surface
secreted by B lymphocytes after differentiating into plasma cells
via antigen stimulation and activation, and its expression is
negatively correlated with the severity of SAP (67, 68). Clinical
research found that the sIgA level was clearly decreased in the
peripheral blood of SAP patients (69). We also found that the
intestinal sIgA level in SAP rats was evidently lower than that in
Sham rats at 3–36 h, when the function of B lymphocyte in SAP
rats was severely destroyed. The result was supported by a
previous study (32).

The above results elucidated that the immunoswitching period
from excessive inflammatory response to immunosuppression
occurred at 24–48 h after SAP model construction, but there
were still some differences in the immunoswitching points of
changes in various intestinal inflammatory cytokine levels and
immune cell numbers. In the stage of immunosuppression, the
body’s ability to release inflammatory cytokines decreases and the
re-stimulation will not cause an increase in pro-inflammatory
cytokines, which is characterized by low immune response or no
response (70, 71). Immunosuppression mainly manifests as
decreased immune cell numbers and functions, including
macrophage inactivation and decreased antigen presentation
May 2022 | Volume 13 | Article 876168
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ability (72). We found that the levels of intestinal inflammatory
cytokines and the numbers of immune cells turned around at 48 h,
which could be related to the immunosuppression of SAP rats,
showing that 48 h after SAP model construction was the
immunoswitching point from excessive inflammatory response
to immunosuppression in SAP rats.

This study systematically explored the immunoswitching point
from excessive inflammatory response to immunosuppression in
SAP rats. Although this study has indicated that 24 h after SAP
model construction was the immunoswitching point (73), it only
evaluated SAP immune status from the changes in pro-
inflammatory cytokines. In a sepsis-immunosuppressed mouse
model, only pro-inflammatory cytokine and bacterial clearance
changes were measured. Therefore, we believe that it is more
meaningful to combine the changes in anti-inflammatory cytokine
levels and immune cell numbers to assess the immune function
of SAP. Importantly, therapeutics targeting immunoswitching
point hold significant potential to reverse sepsis-induced
immunosuppression and preserve host immunity against
primary and secondary infections (74). The physiological and
pathological process of SAP is similar to that of sepsis, and it is
speculated that this special phenomenon also exists in the SAP
model. Although clinical studies on the immunoswitching point
from excessive inflammation to immunosuppression are currently
lacking, researchers have confirmed that inflammatory cytokines
increased in the early stage and decreased in the later stage during
SAP. The results of this study will lay a solid foundation for the
follow-up assessment of the course of SAP and the search for the
optimal timing of immunomodulatory drugs.
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