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Abstract

Background and Aims: Gestational diabetes mellitus (GDM) is characterized by

glucose intolerance that occurs during pregnancy. This study aimed to identify key

ubiquitination‐related genes associated with GDM pathogenesis.

Methods: Microarray data from GSE154377 was analyzed to identify differentially

expressed genes (DEGs) in GDM vs normal pregnancy samples. Weighted gene

co‐expression network analysis was performed on ubiquitination‐related genes. Func-

tional enrichment, protein‐protein interaction network, and TF‐mRNA‐miRNA interaction

network analyses were conducted on differentially expressed ubiquitination‐related

genes (DE‐URGs).

Results: We identified 2337 DEGs and 65 DE‐URGs in GDM. Functional enrichment

analysis of the 65 DE‐URGs revealed involvement in protein ubiquitination and

ubiquitin‐dependent catabolic processes. Protein‐protein interaction network anal-

ysis identified 8 hub genes, including MAP1LC3C, USP26, USP6, UBE2U, USP2,

USP43, UCHL1, and USP44. ROC curve analysis showed these hub genes have high

diagnostic accuracy for GDM (AUC > 0.6). The TF‐mRNA‐miRNA interaction net-

work suggested USP2 and UCHL1 may be key ubiquitination genes in GDM.

Conclusion: In conclusion, this study contributes to our understanding of the

molecular landscape of GDM by uncovering key ubiquitination‐related genes. These

findings may serve as a foundation for further investigations, offering potential

biomarkers and therapeutic targets for clinical applications in GDM management.
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1 | INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as glucose intolerance

that begins or is first diagnosed during pregnancy.1 The prevalence of

GDM is increasing worldwide due to risk factors such as advanced

maternal age and obesity.2 GDM poses threats to both maternal and

fetal health, and is associated with adverse pregnancy outcomes

including pre‐eclampsia, cesarean delivery, macrosomia, and perinatal

mortality.3 Moreover, a history of GDM predisposes mothers and

offspring to developing type 2 diabetes, metabolic syndrome, and
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cardiovascular disease later in life.4 The pathophysiology of GDM is

not fully understood but likely involves both insulin resistance and

impaired insulin secretion.5

Pregnancy hormones including placental lactogen, prolactin,

and cortisol, as well as adipokines from adipose tissue can antago-

nize insulin action and contribute to insulin resistance.6 Protein

ubiquitination is a dynamic posttranslational modification that reg-

ulates diverse cellular processes.7 Ubiquitin chains linked through

different lysine residues create distinct topological signaling plat-

forms that determine protein fate and function.8 Previous study

demonstrated that the ubiquitin‐proteasome system (UPS) plays

crucial roles in maintaining cellular homeostasis, and their dysre-

gulation has been implicated in various metabolic diseases, including

obesity, insulin resistance, and diabetes mellitus.9–11 Aye ILMH

et al. identified adiponectin ubiquitination as a critical mechanism

through which obesity diminishes adiponectin secretion during

pregnancy to influencing maternal insulin resistance and fetal

growth in pregnancy.12 A transcriptomic profiling study of tropho-

blast isolated from GDM patients showed that 8 ubiquitin‐

conjugating enzymes (UBE) splice variants were associated with

increased maternal fasting plasma glucose.13 Another study showed

that the genetic variants of UBE2E2 were associated with GDM.14

However, the connection between ubiquitination and gestational

diabetes remains poorly studied.

In this study, we aimed to identify key ubiquitination‐related

genes associated with the pathogenesis of GDM using an inte-

grated bioinformatics approach. Microarray data were analyzed to

detect differentially expressed genes (DEGs), followed by

weighted gene co‐expression network analysis (WGCNA) to

identify significant modules and hub genes related to GDM. En-

richment analysis revealed involvement of ubiquitination pathways

in GDM. Upstream regulation analysis also provided insights into

potential mechanisms underlying ubiquitination mediated GDM.

These findings may help elucidate the complex ubiquitination

mediated molecular events underlying GDM and reveal novel

biomarkers or therapeutic targets for GDM treatment.

2 | MATERIALS AND METHODS

2.1 | Microarray data processing and DEG
screening

The microarray data set GSE154377 was downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/).15 GEO

belong to public databases. Users can download relevant data for

free for research and publish relevant articles. Our study is based

on open source data, so there are no ethical issues and other

conflicts of interest. And according to the statements of the da-

tabase source article, the Ethics Committee had authorized con-

struction of this database, and informed consents of all patients

were obtained. This data set analyzed the cell‐free RNA

content of 44 normal pregnant patients, 33 GDM patients,

40 pre‐eclampsia or gestational hypertension patients, 10 chronic

hypertension patients, and 7 nonpregnant patients. It covers samples

from early, middle, and late pregnancy, as well as at delivery, providing

comprehensive time‐series data, which aligns with our objective of

investigating GDM molecular mechanisms and allowing us to identify

potential biomarkers and pathways involved in GDM pathogenesis. In

the present study, we only adopted normal pregnant and GDM

samples to analyze.

2.2 | Data processing and differential gene
screening

The Count data was converted to TPM data using R language

as the previous study mentioned.16 Briefly, we used the

following formula: TPM = (read_counts * 10^6)/(gene_length*sum

(read_counts/gene_length)). Gene symbols were converted to

standard official gene symbols, taking the average values when

multiple ENSG IDs mapped to the same symbol. DEGs were

identified by DEseq. 2 with thresholds of |log2FC | > 1 and adjusted

p‐value < 0.05 consisted with the previous mentioned study.

2.3 | Acquisition of ubiquitination‐related genes

A total of 1342 ubiquitination‐related genes were obtained from the

iUUCD 2.0 database (http://iuucd.biocuckoo.org/index.php).17

2.4 | WGCNA analysis

The R packageWGCNAwas used to further process the 1342 discovered

ubiquitination‐related genes to construct a weighted gene co‐expression

network for the ubiquitination‐related genes in GDM and normal sam-

ples.18 The goodSamplesGenes function was used to screen the GDM

and normal expression matrices and remove unqualified genes and

samples. Next, the h‐clust was used to cluster samples to remove outliers.

We found that GSM4669966 and GSM4669901 were outliers and re-

moved them from subsequent analysis.

Studies have shown that co‐expression networks conform to

scale‐free networks,19,20 that is, the logarithm log(k) of

the degree of connection k of nodes appears negatively corre-

lated with the logarithm log(P(k)) of the probability that nodes

of degree k occur, with a correlation coefficient greater than 0.9.

To ensure that the network was scale‐free, we chose the optimal

soft threshold of 6. The next step was to transform the expres-

sion matrix into an adjacency matrix, and then transform the

adjacency matrix into a topological matrix. Based on TOM, we

used average linkage hierarchical clustering to cluster genes and

set the minimum number of genes in each gene network module

to 30 using the cutreeDynamic algorithm. After determining the

gene modules with the dynamic tree cut, we calculated the ei-

gengene value for each module at a time, then clustered the

2 of 10 | DAI ET AL.

https://www.ncbi.nlm.nih.gov/geo/
http://iuucd.biocuckoo.org/index.php


modules to merge modules with close distances into new mod-

ules, setting the height at 0.25. In total 5 modules were obtained.

We then calculated the Pearson correlation coefficients

between these 5 modules and GDM and normal samples. We

found that the yellow module was significantly negatively cor-

related with GDM and the turquoise module was significantly

positively correlated with GDM. These two modules were the top

two modules that were significantly correlated with clinical fea-

tures. The yellow and turquoise modules showed significant

positive correlations between the MM and GS of the target

genes. Therefore, the yellow and turquoise modules were con-

sidered to be key modules. Next we took the intersection of

genes in the key modules and differential genes, whereby

intersection genes were considered differentially expressed

ubiquitination‐related genes (DE‐URGs). The “ggplot2” package

was used to display the expression of DE‐URGs in heatmaps.

2.5 | GO and KEGG functional enrichment analysis
of DE‐URGs

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes

(KEGG) enrichment analysis for DE‐URGs was performed using the R

package clusterProfiler to determine potential biological functions.21

Functional enrichment analysis was performed using the R package

clusterProfiler. Enrichment results were sorted according to adjusted

P values. The bar plot shows the first 10 results.

2.6 | Construction of DE‐URG PPI interaction
network

The online database STRING (https://string-db.org/) was used to

construct a protein‐protein interaction network for DE‐URGs.22

In this process, “Homo sapiens” was selected as the biological

species, the network type was set to “full STRING network”, the

required score was set to “low confidence”, and the strictness of

FDR (False Discovery Rate) was set to 0.05. The network was

visualized using Cytoscape.23 Hub genes were defined as

the intersection of the top 10 nodes ranked by maximal

clique centrality (MCC), maximum neighborhood component

(MNC), degree, edge percolated component (EPC), and closeness

centrality. ROC curve analysis was done to evaluate the diag-

nostic performance of hub genes.

2.7 | Construction of TF‐gene‐miRNA interaction
network

The RNA Interactome Database (RNAInter) collects over 40 million

entries of various types of RNA interactions from the literature and

more than 30 RNA‐related databases. It combines annotation infor-

mation such as RNA editing, localization, modification, target areas,

structure, and homologous interactions. We obtained transcription

factors regulating hub genes (score > 0.1) from the RNAInter data-

base (http://www.rna-society.org/rnainter/). In addition, we also

F IGURE 1 Volcano plot of differentially expressed genes. (A) Blue represents downregulated genes, red represents upregulated genes,
and gray represents non‐significantly differentially expressed genes. (B) Heatmap of the top 50 differentially expressed genes. Red represents
genes with higher expression values and blue represents genes with lower expression values.
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F IGURE 2 WGCNA analysis of ubiquitination‐related genes. (A) Sample clustering tree to check outliers. (B) Mean connectivity and scale‐
free fit index for various soft‐thresholding powers. (C) Cluster dendrogram based on topological overlap matrix. (D‐E) Heatmaps of module
eigengene correlation with GDM patients or controls. (F‐G) Scatterplots of module membership vs gene significance for yellow and turquoise
modules.
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obtained hub gene‐miRNA interaction data (score > 0.2) from

RNAInter.24 Finally, we used Cytoscape to visualize the TF‐mRNA‐

miRNA interaction network.23

3 | RESULTS

3.1 | Identification of differentially expressed
genes

This study used the GSE154377 data set downloaded from the GEO

database, including 44 normal pregnant samples and 33 GDM samples.

We identified 2337 DEGs (SupplementaryTable 1) in GDM versus normal

pregnancies using the R package DEseq. 2. Of these, 2192 were highly

expressed in GDM and 145 were lowly expressed in GDM (|log2FC | > 1,

p value < 0.05) (Figure 1A). The heat map shows the distribution of the

top 50 DEGs in normal pregnancy and GDM (Figure 1B). Among them,

HNF4G was reported to be associated with beta cell development and

may be responsible for a decrease in beta cell mass.25 The polymorphism

at the IFI30 locus was associated with the risk of hyperglycemia/diabetes

in severely obese individuals.26 However, the potential function of these

genes underlying GDM were poorly understood and need more studies.

3.2 | WGCNA analysis

The WGCNA package in R was used to further process the 1342 dis-

covered ubiquitination‐related genes. In constructing the sample tree,

GSM4669966 and GSM4669901 were abnormal samples, so they were

removed in subsequent analysis (Supplementary Figure S1, Figure 2A). A

scale‐free network of R2 >0.9 was established with a soft threshold of 6

(Figure 2B). The gene set was divided into 5 modules with a minimum

module size of 30 genes (Figure 2C). The correlation of each module with

GDM was determined (Figures 2D and 2E). The yellow and turquoise

modules were the most negatively and positively related modules to

GDM, respectively. These two modules were the first two modules that

were significantly correlated with clinical features. The yellow and tur-

quoise modules showed significant positive correlations between theMM

and GS of the target genes (Figures 2F and 2G). Therefore, the yellow and

turquoise modules were considered to be key modules. The detailed

biological significance of the yellow and turquoise modules were repre-

sented in supplementary materials Figure S2 and Figure S3.

3.3 | Identification of differentially expressed
ubiquitination‐related genes (DE‐URGs)

The 2337 differential genes identified by DEseq. 2 were crossed with the

genes in key modules to determine DE‐URGs. A total of 65 differentially

expressed ubiquitination‐related genes were identified, including 64

positively correlated genes and 1 negatively correlated gene (Figure 3).

3.4 | Functional enrichment analysis of
differentially expressed ubiquitination‐related genes

The R package clusterProfiler was used to perform GO and KEGG en-

richment analysis on DE‐URGs to determine their potential physiological

functions. Bar plots show the top 10 results. The most significant en-

richment items were protein autoubiquitination, protein ubiquitination,

protein deubiquitination, protein catabolic process of proteolysis,

modification‐dependent macromolecule catabolic process, ubiquitin‐

dependent protein catabolic process, protein polyubiquitination

(Biological Process), cullin‐RING ubiquitin ligase complex (Cellular Com-

ponent), deubiquitinating enzyme activity, ubiquitin‐like protein conju-

gating enzyme activity, ubiquitin‐protein transferase activity, ubiquitin‐like

protein transferase activity, ubiquitin‐specific peptidase activity, zinc ion

binding, thiol‐dependent peptidase activity, thiol‐type deubiquitinase

activity, ubiquitin‐protein transferase activity, thiol‐type endopeptidase

activity (Molecular Function) (Figure 4).

F IGURE 3 Intersection of differentially expressed genes with positively and negatively correlated module genes.
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3.5 | Construction of PPI interaction network for
differentially expressed ubiquitination genes

To demonstrate the interactions between DE‐URGs, we created a

protein‐protein interaction network (Figure 5). We obtained a PPI

network with 68 nodes and 324 edges (Figure 5A). Table 1 shows the

top 10 hub genes obtained by five algorithms (MCC, MNC, Degree,

EPC, Closeness). Intersecting genes from the five algorithms were

taken as hub genes. They were MAP1LC3C, USP26, USP6, UBE2U,

USP2, USP43, UCHL1, USP44. Among them, these eight genes were

all positively correlated genes.

We explored the diagnostic ability of these 8 genes in different

patients and plotted the ROC curves. The results showed that the

AUC of MAP1LC3C, USP26, USP6, UBE2U, USP2, USP43, UCHL1,

USP44 were 0.3843, 0.4105, 0.6336, 0.3912, 0.6102, 0.6894,

0.6481, 0.6577, respectively (Figure 5B). The results indicate that the

5 genes USP6, USP2, USP43, UCHL1, USP44 have relatively high

diagnostic accuracy as new biomarkers. And we compared the AUC

F IGURE 4 Functional enrichment analysis of DE‐URGs.
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of several existing GDM biomarkers in this data set (showed in

Figure. S4), the results showed that our 5 hub genes had the

no‐inferior predictive value.

3.6 | Construction of TF‐mRNA‐miRNA interaction
network

TF‐genes‐miRNA interactions were collected through network anal-

ysis. Screening for interacting miRNAs and TFs of Hub genes

(MAP1LC3C, USP26, USP6, UBE2U, USP2, USP43, UCHL1, USP44)

(Figure 6). MAP1LC3C is regulated by 21 miRNAs, USP26 is regu-

lated by 17 miRNAs, USP6 is regulated by 134 miRNAs, UBE2U is

regulated by 12 miRNAs, USP2 is regulated by 91 miRNAs, USP43 is

regulated by 25 miRNAs, UCHL1 is regulated by 84 miRNAs, USP44

is regulated by 76 miRNAs (Supplemental table 2). In the TF regula-

tion network, USP26 is regulated by 1 transcription factor, USP6 is

regulated by 1 transcription factor, UBE2U is regulated by 1 tran-

scription factor, USP2 is regulated by 174 transcription factors,

UCHL1 is regulated by 78 transcription factors, and USP44 is regu-

lated by 2 transcription factors, indicating a high degree of interaction

between TFs and hub genes.

4 | DISCUSSION

The ubiquitination signaling pathway is a ubiquitous protein modifi-

cation pathway that regulates protein stability, function, interactions

and localization, thereby affecting various cellular processes.27 The

role of the ubiquitination signaling pathway in gestational diabetes

mellitus (GDM) has been partially studied. Studies have shown that

the ubiquitination signaling pathway can regulate the ubiquitination

and degradation of insulin receptor and insulin receptor substrate,

thereby affecting insulin signal transduction.28,29 Additionally, the

ubiquitination signaling pathway can modulate the ubiquitination and

degradation of glycogen synthase and glycogen phosphorylase, thus

influencing hepatic glucose metabolism.30,31 Furthermore, the ubi-

quitination signaling pathway can regulate autophagy and apoptosis

of pancreatic β cells, thereby impacting insulin secretion.32 Therefore,

the ubiquitination signaling pathway may affect the pathogenesis and

progression of GDM by modulating insulin signaling, glucose

metabolism, and pancreatic β cell function. However, which ubiqui-

tination related proteins underlying GDM was still poorly understood.

Bioinformatics analysis provides a comprehensive, data‐driven

understanding of the molecular, genetic, and environmental factors

underlying disease development, and to support the development of

more effective diagnostic tools, therapeutic interventions, and public

health strategies.33–35 In this study, we used bioinformatics methods

F IGURE 5 Construction of PPI network and identification of hub genes for DE‐URGs. (A) PPI network of 65 DE‐URGs. Green represents
negatively correlated genes, red represents positively correlated genes. V nodes are hub genes; circles are others. (B) ROC curves judging GDM
diagnostic performance of 8 genes.

TABLE 1 Top ten hub genes obtained by five algorithms of
Cytohubba.

MCC MNC Degree EPC Closeness

MAP1LC3C CFAP52 MAP1LC3C MAP1LC3C MAP1LC3C

USP26 MAP1LC3C USP26 USP26 USP26

USP6 USP26 USP6 USP6 USP6

UBE2U USP6 UBE2U UBE2U UBE2U

TRIM71 UBE2U CDC20B CDC20B CDC20B

USP2 TRIM71 USP2 USP2 USP2

USP43 USP2 USP43 USP43 USP43

UCHL1 USP43 UCHL1 UCHL1 UCHL1

TRIM54 UCHL1 TRIM54 TRIM54 TRIM54

USP44 USP44 USP44 USP44 USP44
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to screen for ubiquitination‐related genes associated with gestational

diabetes mellitus from the GSE154377 data set, and performed

functional enrichment analysis and network analysis on them,

revealing the role of ubiquitination in the pathogenesis of gestational

diabetes mellitus. We were crossed with the genes found 65

ubiquitination‐related genes differentially expressed in gestational

diabetes mellitus and normal pregnancy samples, of which 64 were

upregulated and 1 was downregulated. These genes were mainly

involved in ubiquitination, protein degradation, cell cycle and apo-

ptosis, and other biological processes, as well as ubiquitination sig-

naling pathway, p53 signaling pathway, FoxO signaling pathway, and

other signaling pathways, which had been shown to play an impor-

tant role in the development of diabetes.36,37 Such as ubiquitination

pathway, it was reported to relate to insulin resistance in GDM.29

P53 signaling pathway was reported to involve in the deterioration of

GDM via activating the JAK/STAT signaling pathway.38 These results

suggest that ubiquitination may affect the occurrence and develop-

ment of gestational diabetes mellitus by regulating protein

homeostasis, cell fate and signal transduction.

The overlap of 2337 DEGs with ubiquitination‐related genes to

identify 65 differentially expressed ubiquitination‐related genes (DE‐

URGs) provides strong biological plausibility for the involvement of

ubiquitination pathways in the pathogenesis of GDM. The previous

studies that have only focused on a few ubiquitination‐related genes

in GDM. For example, a transcriptomic profiling study of trophoblasts

from GDM patients reported associations between 8 ubiquitin‐

conjugating enzyme splice variants and maternal fasting plasma glu-

cose.13 Another study found genetic variants of the ubiquitin‐

conjugating enzyme UBE2E2 to be associated with GDM.14 The

identification of 65 DE‐URGs represents a novel and comprehensive

discovery that advances our understanding of the molecular

underpinnings of GDM. These results lay the groundwork for future

studies to elucidate the specific roles of ubiquitination‐related genes

and their regulatory networks in the pathophysiology of GDM.

We further screened out 8 core genes from the ubiquitination‐

related genes, namely MAP1LC3C, USP26, USP6, UBE2U, USP2,

USP43, UCHL1, USP44, and evaluated their diagnostic value for

gestational diabetes mellitus. We found that, except for MAP1LC3C

and UBE2U, the area under the ROC curve (AUC) of the other 6

genes were all greater than 0.6, indicating that they have relatively

high diagnostic accuracy, which is comparable or even superior to

some existing GDM biomarkers.39,40 Combining these markers with

existing screening markers to construct models may improve GDM

diagnosis.

Among them, USP43 had the highest AUC, reaching 0.6894,

indicating that USP43 may be an important cell‐free DNA biomarker

for gestational diabetes mellitus. This suggests that these hub genes

could serve as promising cell‐free DNA biomarkers for GDM

screening and diagnosis. USP43 is a ubiquitin‐specific protease that

can remove ubiquitination modifications on proteins, thereby

affecting their stability and function.41 The role of USP43 in tumor

was well studied, however, the relationship between USP43and

GDM was still unknown.42,43 And studies showed taht hypothalamic

USP2 is likely necessary to maintain blood glucose levels at physio-

logical concentrations.10 Genetic ablation of UCHL1 was reported as

a key molecule underlying type 2 diabetes, which leads to neuronal

insulin resistance and T2D‐related symptoms in Drosophila.44 How-

ever, the potential functions of these hub genes underlying GDM

need further research. There for, our results provide guidance for our

next study in clinical validation and functional research.

The TF‐mRNA‐miRNA interaction network we constructed pro-

vides insights into the potential regulatory mechanisms of these hub

F IGURE 6 TF‐genes‐miRNA interaction network. Blue nodes represent hub genes, red nodes represent transcription factors, and green
nodes represent miRNAs.
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genes in GDM. The high number of regulatory interactions, particu-

larly for USP2 and UCHL1, suggests complex regulation of these

genes. This network analysis lays the groundwork for future experi-

mental studies to validate these regulatory relationships and their

functional consequences in GDM.

In conclusion, our study is the first to systematically analyze the role

of ubiquitination‐related genes in gestational diabetes mellitus, providing

a new perspective for understanding the molecular mechanisms of ges-

tational diabetes mellitus. Our study also provides new candidate targets

for the diagnosis and treatment of gestational diabetes mellitus.

However, our study also has some limitations. First we employed

only one data set to analyze, more GDM related data set should be

coveraged to strengthen the validity of study outcomes. secondly,

the ubiquitination‐related genes were obtained from the iUUCD 2.0

database. It relies primarily on data extracted from peer‐reviewed

literature, which can be subject to publication bias, where studies

with positive or novel findings are more likely to be published. This

may lead to an over‐representation of well‐studied ubiquitin and

ubiquitin‐like conjugation pathways, while under‐representing less

understood or less frequently reported pathways. Thirdly, the func-

tion and regulation mechanism of the ubiquitination‐related genes

have not been verified in experiments, etc. Therefore, the results

need to be further validated and expanded in larger cohorts and more

experiments. Nevertheless, these findings have illuminated the tra-

jectory to a certain degree for our future investigations.
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