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Delirium is an acute state marked by disturbances in cognition, attention, memory,
perception, and sleep-wake cycle which is common in elderly. Others have shown an
association between delirium and increased mortality, length of hospitalization, cost,
and discharge to extended stay facilities. Until recently it was not known that after
an episode of delirium in elderly, there is a 63% probability of developing dementia
at 48 months compared to 8% in patients without delirium. Currently there are no
preventive therapies for delirium, thus elucidation of cellular and molecular underpinnings
of this condition may lead to the development of early interventions and thus prevent
permanent cognitive damage. In this article we make the case for the role of glia in the
pathophysiology of delirium and describe an astrocyte-dependent central and peripheral
cholinergic anti-inflammatory shield which may be disabled by astrocytic pathology,
leading to neuroinflammation and delirium. We also touch on the role of glia in information
processing and neuroimaging.
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Is Delirium an Astropathy?

The search for cellular and molecular underpinnings of delirium became important as it was
demonstrated that after an episode of delirium in elderly, there is a 63% probability of developing
dementia at 48 months compared to 8% in patients without delirium1 (Pandharipande et al.,
2013). Furthermore, an association was shown between delirium and increased mortality, length of
hospitalization, cost, and discharge to extended stay facilities (Witlox et al., 2010).

Examined exclusively from the neuronal standpoint, delirium is often described as a
neurobehavioral syndrome. In this article we take a gliocentric approach and look at the role
of astrocytes in the pathophysiology of delirium. Observed from this angle, delirium is as much
a neuro as a gliobehavioral disorder marked by a global cholinergic deficit and a malignant
inflammation. We believe that both hypo-cholinergia and inflammation are symptoms of
astrocytic failure. Furthermore, aside from reconciling neuroinflammation and cholinergic deficit
in the pathogenesis of delirium, adopting a glial perspective explains the astrocytic origin of most
delirium markers.

Acethylcholine (ACh) signaling was suggested to engender a potent cholinergic anti-
inflammatory shield (CAIS), protecting against peripheral and central inflammation (Tracey, 2009).

1American Delirium Society. https://www.americandeliriumsociety.org/about-delirium/healthcare-professionals,
available on line.
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CAIS operates in the extracellular space (ECS) both peripherally
and centrally by blocking the release of pro-inflammatory
mediators (Shaked et al., 2009; Han et al., 2014). CAIS consists
of extracellular ACh biosynthesis, its diffusion through the
interstitium and action on alpha-7 nicotinic ACH receptors
(nAChR) expressed on the peripheral and central immune cells
(macrophages, natural killer cells, lymphocytes, astrocytes and
microglia), as well as on neuronal and endothelial cells in the
CNS (Perry and Teeling, 2013; Figure 1).

The brain is not protected from peripheral pro-inflammatory
mediators, as it was believed in the past. In fact, recent
studies demonstrate that peripheral cytokines cross routinely the
intact blood brain barrier and interact with brain cells. Despite
their entry into the CNS, the peripheral pro-inflammatory
cytokines are inactivated by CAIS, thus preventing the seeding
of inflammation into the brain.

We propose that CAIS is engendered by the astrocytes
by secretion of choline acetyltransferase (ChAT), the ACh
synthesizing enzyme, into the ECS and by regulation of the
interstitial fluid (ISF) volume.

Astrocytes maintain brain water homeostasis by regulating
the ISF volume. They accomplish this as their membranes
are more permeable to water than those of other brain
cells (8). This unique property of astrocytes is based on
aquaporine-4 (AQP-4) water channels expressed in large
numbers on their end feet processes. In fact, astrocytes
express the largest number of AQP-4 receptors in the entire
CNS (Nagelhus and Ottersen, 2013). This unique property
of their membranes confers astrocytes a sponge-like ability
to absorb and release water as needed, thus regulating ISF
volume (Gundersen, 2013). With the same token, this property
renders astrocytes vulnerable to cytotoxic edema with resultant

FIGURE 1 | CAIS is operational in the CNS, and involves ACh action of alpha 7 nAChRs expressed on astrocytes, neurons, microglia and brain
macrophages (Tyagi et al., 2010).
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ISF hypovolemia. As a result of swelling, astrocytes become
insufficient, thus unable to secrete ChAT into the ECS which
disables CAIS, unleashing neuroinflammation. Moreover, ISF
hypovolemia disables beta-amyloid clearance, cluttering the
ECS, and disabling CAIS further. Indeed, astrocyte swelling
and accumulation of molecular waste in the interstitium was
described in several neuro-psychiatric conditions including:
sepsis-induced delirium (SID), stroke, traumatic brain injury,
brain tumors and metastases, meningitis, brain abscesses,
water intoxication, altitude sickness, malignant hypertension,
hypoglycemia, and metabolic encephalopathies (Thrane et al.,
2014).

We hypothesize that delirium is the clinical manifestation
of astrocytic failure caused by astrocytic edema. Edema
is the result of AQP-4 water channels’ overexpression on
astrocytic membranes. We hypothesize further that failed
astrocytes are unable to secrete ChAT into the ECS, disabling
CAIS, while the resultant ISF hypovolemia disables beta-
amyloid clearance, further impairing CAIS. In the absence
CAIS protection, uncontrolled neuroinflammation flares up
possibly resulting in delirium. To illustrate this hypothesis, we
envision astrocytes as the firefighters of the brain. They keep
the fire (neuroinflammation) under control, by maintaining
enough water reserves into the interstitial space. In the
absence of this water, fire flares up, resulting in uncontrolled
neuroinflammation and delirium.

The Brain-Immune Interface

The fact that the brain is an immunologically privileged
organ is a myth. Recent studies demonstrate a continuous
two-way communication between the CNS and the peripheral
immune system (Perry and Teeling, 2013). For example, it
was demonstrated that a cardiac arrest can induce alterations
in the central cholinergic signaling, including reduction of
ChAT and vesicular ACh transporter mRNA (Norman et al.,
2011; Zhao et al., 2013). Conversely, global cerebral ischemia
often induces peripheral inflammation (Zhan et al., 2010). This
inflammatory response can be pharmacologically reversed by
the administration of selective alpha 7 nAChR agonists such
as GTS-21, suggesting a role for selective nicotinic agonists in
delirium (de Jonge and Ulloa, 2007; Kox et al., 2011).

Alpha 7 nAChRs agonistic ligands are currently being
investigated in the treatment of sepsis, inflammation, dementia
and schizophrenia (Han et al., 2014). In addition, CAIS was
shown to prevent obesity-induced inflammation and insulin-
resistance (Lakhan and Kirchgessne, 2011). It is well known
that muscarinic M3 receptors in the pancreas are involved in
the metabolic syndrome (Duttaroy et al., 2004). This beneficial
effect of ACh can be reversed by the administration of
alpha 7 nAChR antagonists (Kox et al., 2011). Furthermore,
the action of ACh on selective muscarinic receptors was
demonstrated to modulate cellular proliferation and is therefore
of interest in various cancers (Spindel, 2012; Ferretti et al., 2013).
Interestingly, an aberrant neuronal cell cycle entry was suggested
in the pathogenesis of Alzheimer’s disease (AD; Stieler et al.,
2001).

Biological Markers: Not too Specific
for Delirium, but Specific for Astrocytes

Most biological markers of interest in delirium can be traced
to astrocytes. It is well established that Matrix Metaloprotease-
9 (MMP-9; Yin et al., 2006), S 100B protein (Tateishi et al., 2006)
and glial fibrillary acidic protein (GFAP; Brownell et al., 1991)
are secreted by astrocytes. Procalcitonin (McGrane et al., 2011), a
newly identified marker of delirium caused by sepsis is expressed
on neurons, astrocytes, microglia and oligodendrocytes (Ojeda
et al., 2006).

A recent CSF proteomic analysis identified four categories
of markers in delirium. Interestingly, they can be traced to the
astrocytes as well (Poljak et al., 2014). They include: acute phase
proteins, granins, serine protease inhibitors, and apolipoproteins
(references in parenthesis demonstrate glial origin).

Acute phase proteins: lipocalins (Jang et al., 2013) (includes
alpha-1-acidic glycoprotein), alpha-2 microglobulin (Bauer et al.,
1988), fibrinogen (Pichler et al., 1999; Hsiao et al., 2013), alpha-
1 antitrypsin (Gollin et al., 1992), alpha-1 antichymotrypsin
(Gollin et al., 1992), transferrin (Qian et al., 1999), complement
component 3 (Maranto et al., 2008), and haptoglobin (Lee et al.,
2002).

Interestingly, alpha 1-acidic glycoprotein was shown to
decrease brain cellular edema after experimental stroke, possibly
by down-regulating AQP-4 receptors (Pichler et al., 1999).

Granins: secretogranin 3 (Paco et al., 2010).
Serine protease inhibitors: occur both in neurons and glial

cells (Buisson et al., 1998).
Apolipoproteins: Apo A1 (Ito et al., 2002), ApoJ (DeMattos

et al., 2001), ApoE (DeMattos et al., 2001).
These markers point to glial pathology in delirium and are in

line with our hypothesis on astrocytic failure.

Astrocytes and ChAT Secretion

At the cellular level, ACh biosynthesis occurs in two distinct
brain compartments: the neuronal bodies of brain cholinergic
tracts and the ECS of CNS (Vijayaraghavan et al., 2013).
Regardless of their origin, ACh manufacture depends on
the availability of its synthesizing enzyme ChAT. Secreted
by astrocytes into the ECS, this enzyme ensures a constant
presence of ACh in the interstitium (Vijayaraghavan et al.,
2013). Figure 1. This ambient ACh is crucial for proper CAIS
functioning. Previously it was assumed that ACh could not
participate in long distance intercellular signaling because of
the presence of its hydrolyzing enzymes, acetylcholinesterase
(AChE) and butyrylcholinesterase (BuChE) in the ECS. Recent
studies reveal that ACh can ‘‘survive’’ in the ECS and
participate in long distance signaling despite physiological
levels of AChE and BuChE because it can be synthesized
ad hoc with astrocyte-secreted ChAT (Vijayaraghavan et al.,
2013).

Diminished ACh signaling in the ECS disables CAIS and this
event is marked by an immediate compensatory up-regulation
of alpha 7 nAChRs, the first sign of inflammation. We believe
that alpha 7 nAChRs up-regulation is the first measurable marker
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FIGURE 2 | ABOVE: Astrocytic physiology—intra-parenchymal CSF
exchange with the interstitial fluid (ISF) via AQP-4 channels and ChAT
secretion. BELOW: Pathology—astrocytic edema: up-regulation of AQP-4 in
astrocytic end-feet with impairment of ChAT secretion and beta amyloid
clearance.

of astrocytic failure. Indeed, a recent study demonstrates that
increased astrocytic expression of alpha 7 nAChRs is positively
correlated with the extent of neuropathological alterations in AD
(Yu et al., 2012). Measuring ECS level of ChAT may provide a
biological marker of pending inflammation as it expresses alpha
7 nAChRs up-regulation.

Astrocytes contribute to beta-amyloid clearance either
directly, by phagocytosis, or indirectly by the glymphatic
system (Nagele et al., 2003; Lasagna-Reeves and Kayed, 2011;
Sokolowski and Mandell, 2011; Iliff et al., 2012). We believe
that swollen, failed astrocytes may be inefficient in disposing
of beta amyloid and other molecular waste, leading to their
accumulation and neuroinflammation. Indeed, studies in AD
reveal that excess beta-amyloid in the ECS alters cholinergic
signaling by activating BuChE, decreasing secretion of astrocytic
ChAT and up-regulating alpha 7 nACh receptors on astrocytic
membranes (Vijayaraghavan et al., 2013; Malmsten et al.,
2014).

Beta amyloid clearance via the glymphatic system is highly
dependent on the intra-parenchymal water exchange between
the cerebrospinal fluid (CSF) and the ISF, occurring via AQP-4
channels in astrocytic end-feet (Yang et al., 2013) Figure 2.

Accumulation of beta-amyloid and low ACh were
documented in delirium (Hshieh et al., 2008) and led to
the emission of the cholinergic hypothesis in the pathogenesis of
this condition. However, since cholinesterase inhibitors showed
only mild or no efficacy in delirium, this hypothesis seemed
to have been invalidated (van Eijk et al., 2010; Brinker et al.,
2014).

Astrocytic failure hypothesis offers an alternative explanation
that does not necessarily invalidate the cholinergic hypothesis.
On the contrary, since they do not restore astrocytic secretion
of ChAT, cholinesterase inhibitors are not expected to beneficial
in delirium. In the absence of ACh biosynthesis in the ECS,

inhibiting its hydrolyzing enzymes would not resurrect CAIS
function. On the other hand, co-administration of cholinesterase
inhibitors with drugs capable of restoring the extracellular water
volume (such as agonists of alpha 7 nAChRs, direct AQP-4
blockers or indirect ones, such as erytropoietin) may be salutary.

Is there a Water Connectome?

Being more permeable to water, astrocytes serve as brain fluid
reservoirs where water can be stored and also retrieved as
needed (Gundersen, 2013). The high AQP-4 expression on
their membranes enables astrocytes to move water in and
out of the neuropile. Studies done three decades ago show
that water homeostasis is dependent on the neuropile activity
(Dudek and Rogawski, 2005). For example, during the day
(when information processing is usually more intense), water is
shifted into the astrocytic compartment, while during the night
(when there is less information processing), water is shifted back
into the interstitium (Xie et al., 2013). This water movement
was hypothesized to help beta amyloid clearance during sleep
(Brinker et al., 2014).

Water can cross cellular membranes slowly by diffusion or
co-transport with other substances, but the quickest modality of
water transport occurs via AQP-4 receptors which abound on
astrocytic membranes (Gundersen, 2013). The high permeability
of astrocytic membranes and the sponge-like properties of these
cells render neuroimaging possible. Diffusion tensor imaging
(DTI) visualizes water diffusion across membranes which can be
either unrestricted (isotropy) or restricted by the myelin sheath
(anisotropy). Since water does not diffuse through the myelin,
but follows it, this technique is used for tracing white matter
tracts (Lazar et al., 2003; Lazar, 2010).

We suggest that DTI could be utilized for assessing glial
integrity by adapting its algorithm to the areas of highest
isotropy. Since astrocytes are the most water permeable cells in
the brain, the highest CNS isotropy must coincide anatomically
with astrocytes.

Recent data point to the fact that DTI signal changes,
attributed earlier to white matter tracts and axonal myelination,
may in fact mirror astrocytic expression of AQP-4 receptors
(Meng et al., 2004; Tourdias et al., 2009), astrocytic edema
(Harsan et al., 2007; Fukuda and Badaut, 2012), ISF volume
(Fukuda and Badaut, 2012), or glial scars (Budde et al.,
2011).

In its journey through the brain fluid compartments, water
carries along signaling molecules that comprise an extra-cellular
communication platform described as volume transmission (VT;
Agnati et al., 1995). Does this signaling platform fathom a
liquid connectome? Furthermore, since it mirrors the water
flow along white matter tracts, is the connectome in general a
liquid connectome? It was proposed that point-to-point synaptic
transmission engenders a quick and precise mode of information
processing, such as the one necessary for playing tennis or piano,
while the diffuse and widespread communication platform by
water signaling may engender more pervasive functions such
as awareness, attention, mood, circadian rhythm or cognition
(Gualtieri, 2002; Taber and Hurley, 2014; Vizi et al., 2010). As
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these functions are known to ‘‘wax and wane’’ in delirium, can
they be part of an astrocyte-centered information processing?
Recent studies imply that astrocytic networks are crucial for
information integration and cholinergic plasticity (Pereira and
Furlan, 2010; Takata et al., 2011). A recent study demonstrated
that ACh signaling is highly correlated with gamma oscillations
on the EEG, which are believed to facilitate the somatosensory
cortex plasticity (Rodriguez et al., 2004). This may suggest an
astrocytic-based cognition, possibly complementary to the rapid,
point-to-point information processing established by neurons.

Conclusions

Memory characterizes both, cellular immunity and human
cognition. Both systems are adapted to interact with the
surrounding world and to protect from it. Both are capable
of distinguishing ‘‘self’’ from the environment (‘‘non-self;
Lampron et al., 2013). Since nature rarely wastes ideas,
immunologic memory may be a distant phylogenetic ancestor
of human cognition. Controlled inflammation and cellular
proliferation may benefit hippocampal neuroplasticity and long
term potentiation. Out of control, inflammation, on the other

hand, may lead to sepsis, while aberrant cellular proliferation to
cancer. With the same token, activation of cellular proliferation
in non-dividing cells, like neurons, may lead to aberrant cell
cycle entry, resulting in apoptosis. This may be the case in
AD.

Both astrocytes and microglia are part of the innate immune
system which responds to the early stages of infection by
triggering non-specific, high collateral damage, inflammatory
responses, which are later expected to die down, as the
high precision, specific, adaptive immune system is activated.
Failure of the innate system to shut down may result in
‘‘cytokine storms’’ encountered in sepsis and sepsis-induced
delirium (SID). On the other hand, intact astrocytes with
proper CAIS calm down the innate immune system, containing
inflammatory responses. Failed astrocytes unleash exaggerated
inflammation which may lead to delirium. Engel and Romano
(1959) described delirium as ‘‘brain failure’’; we think of it as a
primary astrocytic failure with secondary neuronal involvement.
Since astrocytic suffering occurs prior to neuronal damage,
identifying it early may offer a window of opportunity for
preventive interventions that could salvage the cognitive domain
before the occurrence of neuronal apoptosis.
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