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Reactive oxygen species (ROS) are small molecules with high oxidative activity, and are usually produced
as byproducts of metabolic processes in organisms. ROS play an important role during the interaction
between plant hosts and pathogenic fungi. Phytopathogenic fungi have evolved sophisticated ROS pro-
ducing and scavenging systems to achieve redox homeostasis. Emerging evidences suggest that ROS
derived from fungi are involved in various important aspects of the development and pathogenesis,
including formation of conidia, sclerotia, conidial anastomosis tubes (CATs) and infectious structures.
In this mini-review, we summarize the research progress on the redox homeostasis systems, the versatile
functions of ROS in the development and pathogenesis of phytopathogenic fungi, and the regulation
effects of exogenous factors on intercellular ROS and virulence of the fungal pathogens.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3344
2. The producing and scavenging mechanisms of ROS in phytopathogenic fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3345
3. The intracellular distribution and transport of ROS in phytopathogenic fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3346
4. ROS regulating development and virulence of phytopathogenic fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3346
5. Exogenous factors affecting ROS production of fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3347
6. Conclusions and future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3348

Author contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3348
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3348
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3348
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3348
1. Introduction

It is estimated that global agricultural production need to
increase by 60–110% by 2050 to meet the increasing demands
caused by population growth and the increased consumption of
meat and dairy [1,2]. More seriously, phytopathogenic fungi cause
significant losses in global crop production every year, which poses
a major threat to the world’s food security [3,4]. Therefore, it is
very important to control crop diseases to reduce yield loss. The
in-depth understanding of the pathogenesis mechanism of patho-
genic fungi will help to formulate more effective control strategies
for plant disease.
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During the past decades, great efforts have been made to unra-
vel the pathogenesis of phytopathogenic fungi. Previous studies
have shown that the pathogenicity of phytopathogenic fungi can
be regulated at multiple levels, such as environmental conditions
[5,6], protein secretion [7], signal transduction [8], gene transcrip-
tion [9,10], etc. It is well known that, at the initial stage of patho-
gen infection, plant cell can rapidly accumulate abundant of
reactive oxygen species (ROS) around the infection site, called as
‘‘oxidative burst”, which is considered as the primary disease resis-
tance response [11,12]. In addition, ROS, together with Ca2+ and
electrical signals, can also be used as secondary messengers to reg-
ulate systematic acquired resistance (SAR) of plant [13,14]. The
hypersensitive response of host can limit the spread of biotrophic
pathogens. By construct, the ROS-induced cell death is beneficial
to necrotrophic pathogens, which feed on the degradation products
of plant cells [15]. ROS produced by fungal pathogens includes sin-
glet oxygen (1O2

�) superoxide anion (�O2
�), hydroxyl radical (�OH)

and hydrogen peroxide (H2O2), and accumulate at the hyphal tips
during the infectious process [15]. Moreover, ROS are usually pro-
duced as byproducts of some metabolic processes in organisms
and are converted from oxygen molecules through electron trans-
fer reactions, which usually take place in mitochondria, peroxi-
somes and NADPH oxidase complex [16], and can react with
many macromolecules, such as protein, DNA and lipid, leading to
cell apoptosis or death [17,18]. As in animals and plants, fungi have
also evolved a set of complicated producing and scavenging sys-
tems of ROS to balance the cellular redox state. A growing body
of evidence suggests that ROS derived from pathogenic fungi play
critical roles in the regulation of development and pathogenicity.
In particular, recent studies demonstrate that many components
of ROS producing systems (such as NADPH oxidase complex) have
sophisticated regulatory mechanisms in various aspects of the bio-
logical processes in many phytopathogenic fungi, including some
important fungal pathogens of crops, Magnaporthe oryzae and
Botrytis cinerea [19–22].

Here, we will briefly summarize the research progress of ROS in
phytopathogenic fungi in the following aspect: 1) the cellular
Fig. 1. The producing and scavenging s
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redox homeostasis systems; 2) the transport and distribution of
ROS; 3) the functions of ROS in development and pathogenicity;
4) regulation effects of exogenous factors on intercellular ROS.
2. The producing and scavenging mechanisms of ROS in
phytopathogenic fungi

In order to maintain the balance of redox state, phy-
topathogenic fungi have evolved a set of ROS producing and scav-
enging mechanisms (Fig. 1). Among the fungal ROS producing
systems, NADPH oxidase (Nox) is most widely characterized. Nox
complex is composed of several subunits and usually localize at
plasma membrane or endoplasmic reticulum membrane, and
transport electrons through membranes reducing oxygen molecule
to superoxide anion (�O2

�) using NADPH as electron donor [23].
Then, superoxide dismutase (SOD) catalyze �O2

� into H2O2. In fila-
mentous fungi, there are two distinct subfamilies of Nox, NoxA
and NoxB, which are the homologs of gp91phox in mammals [24].
In some fungi, such as M. oryzae, Podospora anserina and Aspergillus
terreus, a third Nox (NoxC) was characterized, which contains puta-
tive calcium binding EF-hand motifs (Ca2+ binding) at the N-
terminus, a feather of human Nox5 or plant RBOHs [24]. In addition
to the catalytic subunits, Nox complex also contains intracellular
regulatory subunits and the subunits for stabilizing structure.
Adapter protein is required for the function of Nox complex, and
NoxD, which is the homolog of the adaptor protein p22phox in
mammals, has been identified in some plant paghogenic fungi,
such as Botrytis cinerea, Podospora anserina and M. oryzae [22,25–
27].

In B. cinerea, BcNoxD can directly interact with catalytic subunit
NoxA, and another transmembrane protein BcPls1 performs a sim-
ilar function to BcNoxD in the NoxB complex [21]. Apart from the
membrane-standing subunits, other components are also neces-
sary to maintain the activity of Nox complex, including the regula-
tory subunit NoxR, small GTPase Rac and Rho [20,21,28,29]. The
interaction between regulatory subunit and catalytic subunit take
ystems of ROS in pathogenic fungi.
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place at the cytoplasmic side of membrane [30,31]. In most cases,
both NoxA and NoxB can be regulated by NoxR and Rac. The
mutant of NoxR mutant always shows an additive phenotype of
the mutant of NoxA and NoxB, suggesting that NoxR is the regula-
tory subunit of both NoxA and NoxB [20,32]. In some fungi, the
small GTPase cdc42 and scaffold protein Bem1 were also identified
as the subunits of the Nox complex [33,34]. The deletion of Nox
genes in some fungi does not reduce the ROS level, and even
increases the accumulation of intercellular ROS [19,35,36]. This
suggests that there are other alterative ROS producing systems in
phytopathogenic fungi besides Nox complex. The mitochondria
also produce continuous levels of �O2

� at complex I and III of elec-
tron transport chain, and have been considered to produce more
ROS in quantitative terms than Nox in most cell types [37,38]. In
addition, other enzymatic systems of phytopathogenic fungi are
contributed to the ROS production in form of the byproduct of
redox reaction, including laccases, galactose oxidases, quinone
reductases and glucose oxidase [36,39,40,41].

Fungi possess several ROS scavenging systems to neutralize
excessive ROS originating from normal physiological processes or
environmental stresses. The antioxidant systems are mainly
divided into non-enzymatic type and enzymatic type [15]. The
major non-enzymatic antioxidant is glutathione, a tripeptide c-L-
glutamyl-L–cysteinyl–glycine. The free thiol group of this small
soluble tripeptide can transfer the electrons of oxygen radicals,
and then two reduced glutathione molecules (GSH) form an oxi-
dized molecule (GSSH) through a disulfide bond [42]. The addition
of exogenous GSH can significantly enhance oxidative tolerance
and biocontrol efficiency of antagonistic yeast against Penicillium
expansum [43]. In addition to GSH, some other organic compounds
in fungi also have antioxidant properties, such as ascorbic acid, car-
otenoids, flavonoids and alkaloids [44]. Thioredoxin proteins and
their respective reductases are the most common enzymatic ROS
scavenging system. The thioredoxins served as the reducing agents
of ROS by forming disulfide bonds between two inherent cysteines.
In B. cinerea, there are two thioredoxins (BcTrx1 and BcTrx2) and
one thioredoxin reductase (BcTrr1), and the deletion of BcTrx1
and BcTrr1 led to highly sensitive to oxidative stress [45]. Besides
the thioredoxin system, catalases, superoxide dismutases and per-
oxidases are also involved in the scavenging of ROS in pathogenic
fungi [8,30]. SOD can convert �O2

� to H2O2, and CAT and POD
sequentially degrade H2O2 to H2O and O2.
3. The intracellular distribution and transport of ROS in
phytopathogenic fungi

The levels and distribution of ROS in cells is a dynamic process
depending on different developmental stages. ROS are usually gen-
erated at different sites of cell, such as cytosol, vacuoles, peroxi-
somes and mitochondria. In the growing hyphae, mitochondria
are the main source of intercellular ROS, and the distribution of
ROS shows obviously polarity at the apical tip of hyphae [46]. Sim-
ilarly, in the appressorium formation stage of infectious process,
�O2

� also accumulates inside the hyphal tip [47].
The small GTPase Rho3 is closely related to the polar distribu-

tion of intercellular ROS in B. cinerea. The deletion of rho3 can
impair the polarity of ROS distribution at the hyphal tip and
decrease the virulence of B. cinerea to apple and tomato fruits
[28]. BcnoxR, as the regulatory subunit of Nox complex, signifi-
cantly affects ROS distribution in cell and virulence of fungal
pathogens. The DbcnoxR mutant shows reduced grow and sporula-
tion, and impaired virulence of B. cinerea to apple, strawberry and
tomato fruits [32]. It means that the distribution of ROS at the
hyphal tip is important for the polar growth of hyphae and viru-
lence of pathogenic fungi.
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Aquaporins (AQPs) are integral membrane proteins and play
important role in regulating water or glycerol homeostasis in uni-
cellular and multicellular organisms by mediating rapid water
transport across biological membranes. The aquaporins of fungi
can be subdivided to five classes, including two groups of classical
aquaporins and three groups of aquaglyceroporins [48]. There are
eight AQPs in B. cinerea, among which only AQP8 has been proved
to be involved in ROS distribution and transmembrane transport
[49]. Heterologous expression of AQP8 in yeast increased the
uptake of exogenous H2O2, indicating that AQP8 mediates trans-
membrane transport of ROS in cell (Fig. 2). Moreover, the expres-
sion of BcnoxR was significantly affected by AQP8, suggesting
that the transmembrane transport of ROS mediated by AQP8 is clo-
sely related to Nox in regulating the cellular redox homoeostasis
[49].
4. ROS regulating development and virulence of
phytopathogenic fungi

Function analysis have unraveled that the components of ROS
producing and scavenging systems are involved in the develop-
mental processes and virulence of fungal pathogens (Fig. 2). In
phytopathogenic fungi, conidia are the main source of transmis-
sion and infection, and sclerotia are important stress-resistant tis-
sue. Both of them are regulated by intercellular ROS. Oxidative
stress can induce the formation of sclerotia of Sclerotium rolfsii
[50]. In B. cinerea, the subunits of Nox complex, including NoxA,
NoxB, NoxR, NoxD and Pls1, were all responsible for sclerotia for-
mation; meanwhile, NoxD, Rac, Rho3 and Bem1 are related to
the conidial production [8,46]. In Alternaria alternata, the inactiva-
tion of NoxA, NoxB or NoxR genes will reduces conidiation by 95%
[51]. Furthermore, some knockout mutants of Nox subunits in
plant pathogenic fungi showed slower growth rate [28,52], imply-
ing that ROS is a critical regulator of vegetative and reproductive
developmental processes of the fungi. Recent studies in some
model fungi have indicated that ROS are actively involved in the
formation of conidial anastomosis tubes (CATs). CATs are short
germ tube that can fuse with each other, which is a self-fusion
mechanism in fungi. ROS produced by Nox complex are considered
to be involved in this cell fusion process. In Neurospora, ROS might
directly regulate the cell–cell recognition at the hyphal tip [53].
The catalytic subunits NoxA and regulatory sununit NoxR of B.
cinerea have proved to be responsible for the fusion process of CATs
[20,54]. Subsequently, Siegmund et al., (2015) found that NoxA
must be exported from the endoplasmic reticulum for CAT forma-
tion, and NoxD can directly interact with NoxA to affect the CAT
formation in B. cinerea [26]. In addition, ROS can modulate the cir-
cadian rhythm by influencing the redox homeostasis of pathogenic
fungi [55].

ROS play a critical role during the interaction between fungal
pathogens and plant hosts [16]. Once the plant tissue is attacked
by pathogenic fungi, it will quickly accumulate a large amount of
ROS around the infection site as the initial resistant response
[31]. The oxidative burst can effectively inhibit the colonization
of biotrophic pathogens; while the necrotrophic pathogens, such
as B. cinerea and Leptosphaeria maculans, can benefit from the host
cell death caused by ROS accumulation to facilitate its infection,
because they can only survive in dead cells [15]. Apart from the
ROS produced by plant cell, ROS produced within fungal cells are
also rapidly accumulated in the hyphal tips or around the pene-
trated cell wall during the infectious process [15]. This suggests
that the ROS derived from phytopathogenic fungi are actively
involved in the infection process. In B. cinerea, both catalytic sub-
units NoxA and NoxB have great impact on pathogenicity, but
there is a distinct difference between their function. NoxB as well



Fig. 2. The functions of ROS in regulating the development and pathogenicity of pathogenic fungi.
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as its adaptor protein Pls1 are necessary for the development of
appressoria and involved in the formation of primary lesions.
Instead, NoxA and its adaptor protein NoxD are responsible for
the formation of infection cushion and regulate the colonization
process following primary infection [15]. The regulatory subunit
NoxR showed an additive effect of NoxA and NoxB in regulating
the pathogenicity of B. cinerea [20]. InM. oryzae, the rapid accumu-
lation of ROS during infection is closely related to the differentia-
tion of appressorium and penetration peg, thereby influencing
the virulence [19]. Nox2 was involved in the septin-mediated repo-
larization of appressorium, but Nox1 was required for the mainte-
nance of the polarized growth. Double deletion of Nox1 and Nox2
in M. oryzae led to non-pathogenicity [19]. Interestingly, both in B.
cinerea and M. oryzae, deletion of Nox did not affect the ROS level
[19,20], implying that alterative ROS producing system may be
contributed to the infectious process of phytopathogenic fungi.
Giesbert et al., (2008) demonstrated that Nox could not affect the
penetration, but Cpnox1 was required for the following coloniza-
tion process in the biotrophic pathogen Claviceps purpurea, which
do not form specialized infection structures [56]. Similarly, NoxA,
NoxB and NoxR show important effect on the regulation of viru-
lence of A. alternata in citrus [51]. However, in A. alternata Japanese
pear pathotype, only NoxB was essential for the pathogenicity,
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while the deletion of NoxA had no obvious effect on pathogenicity
[57]. In recent, Zhao et al., (2016) reported that the VdNoxB and
VdPls1 in Verticillium dahiae, a pathogenic fungus causes wild dis-
ease in many crops, could regulate penetration peg formation dur-
ing the initial colonization of cotton roots [58]. These results
indicate that the subunits of Nox complex affect virulence of phy-
topathogenic fungi via mediating the differentiation and develop-
ment of specialized infection structures of the fungi. Meanwhile,
the contributions of Nox genes to pathogenicity differ in different
fungal species, even in different pathotypes.
5. Exogenous factors affecting ROS production of fungi

In view of the critical roles of ROS in regulating the develop-
ment and virulence of phytopathogenic fungi, exogenous factors
are widely used to control the plant diseases, because they have
a target to ROS in the fungal cells. Borates are essential micronutri-
ents of plant, and have been proved to be effective in controlling
diseases caused by Penicillium expansum in apple [59] and by Col-
letotrichum gloeosporioides in mango fruit [60]. P. expansum treated
with 1% borate showed a rapid accumulation of intercellular ROS
and protein carbonylation, leading to the decrease of virulence of
the pathogen [59]. Up on the exposure to borate, abundance of
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two critical antioxidant enzymes, catalase and glutathione S-
transferase, were significantly decreased in P. expansum, which
led to the impaired ROS scavenging capacity [59]. Similarly, borate
treatment reduces the anthracnose in mango fruit by inducing the
ROS generation and mitochondrial degradation in the spores of C.
gloeosporioides [60]. Recent research has shown that some bio-
source antimicrobial agents (such as cinnamic acid, methyl thujate,
epsilon-polylysine, honokiol etc.) can inhibit the virulence of phy-
topathogenic fungi by inducing the excessive accumulation of
intercellular ROS and disturb the redox homoeostasis [61–64].
Methyl thujate treatment could significantly induce the expression
of the Nox genes in B. cinerea, including BcNoxB, BcNoxD, BcNoxR,
BcCdc24, BcPls1, BcRac1 and BcBem1, which accelerated the produc-
tion of ROS [62]. Apart from the chemical substances, heat treat-
ment (40 �C for 5 min) has been reported to have inhibiting
effect on spore germination and germ tube elongation of Monilinia
fructicola, because of induction of ROS in cells of the fungal patho-
gen [65]. Honokiol and heat treatment will led to significant
decline of mitochondrial membrane potential in pathogenic fungi,
suggesting mitochondrial dysfunction and probable release of
cytochrome C from mitochondria [64,65]. Biological control of
plant diseases by antagonistic yeasts is a promising alternative to
chemical fungicides. However, biocontrol efficacy of the yeasts is
closely related to their antioxidant ability. Some exogenous antiox-
idants or antioxidant inducers (such as glutathione and glycine
betaine) have been found to significantly improve the biocontrol
efficacy of antagonistic yeasts against fungal pathogens, because
these substances can enhance the tolerance of the yeasts to oxida-
tive stress [43,66].
6. Conclusions and future prospects

ROS are ubiquitous in living cells and play an important role in
all fungus-plant interactions, mostly as signaling components. Phy-
topathogenic fungi have developed efficient ROS scavenging sys-
tems that are under complex regulatory control, but less known
so far about ROS sensing systems. In phytopathogenic fungi, the
ROS producing systems mainly include NADPH oxidase (Nox) com-
plexes and mitochondria; while the ROS scavenging systems have
the non-enzymatic GSH-GSSH and enzymatic thioredoxin. Nox
complexes are the most common enzymatic producer of ROS,
and their subunits are involved in various aspects of development
and virulence in phytopathogenic fungi. ROS regulate the virulence
of phytopathogenic fungi via affecting the development of conidia,
sclerotia, CATs and infectious structures of the fungi. Considering
the important of ROS involved in the development and virulence
of phytopathogenic fungi, the redox homeostasis system can be
used as an important target of many exogenous factors to control
the virulence of the fungi. Some exogenous substances have been
proved to inhibit virulence of phytopathogenic fungi by mediating
polar distribution of ROS at the hyphal tip. The integral membrane
protein aquaporin (AQP8) may mediate the transmembrane trans-
port of ROS in B. cinerea.

In a word, ROS have aroused extensive research interest in phy-
topathogenic fungi, and the great progress in understanding the
intracellular production of ROS, and the function in the regulation
of development and virulence of the fungal pathogens has been
made in recent years. However, there are still many unknown
functions and mechanisms of ROS in phytopathogenic fungi to dee-
ply study, including 1) what are the specific mechanisms of action
of ROS in different phytopathogenic fungi? since there is difference
in the action mechanisms of ROS in necrotroph and biotroph; 2)
what are their targets of ROS in the regulation of developmental
processes and virulence of phytopathogenic fungi? 3) why are
ROS scavenging systems not related to virulence of phy-
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topathogenic fungi in most cases? 4) what are Intracellular trans-
port pathways and special transporters of ROS? Since transport
mechanism of ROS in phytopathogenic fungi is very limited. With
the development of research techniques and methods, these issues
will be revealed in the future.
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