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At the outset of an epidemic, available case data typically underestimate the total number

of infections due to insufficient testing, potentially hampering public responses. Here, we

present a method for statistically estimating the true number of cases with confidence

intervals from the reported number of deaths and estimates of the infection fatality ratio;

assuming that the time from infection to death follows a known distribution. While the

method is applicable to any epidemic with a significant mortality rate, we exemplify the

method by applying it to COVID-19. Our findings indicate that the number of unreported

COVID-19 infections in March 2020 was likely to be at least one order of magnitude

higher than the reported cases, with the degree of underestimation among the countries

considered being particularly high in the United Kingdom.
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INTRODUCTION

In the spring of 2020, the world experienced the outbreak of the novel corona virus SARS-CoV-2
which rapidly spread across the globe and was declared a pandemic by the World Health
Organization on March 11 (1). While China initially appeared successful in containing the
outbreak, the virus had by January 20 caused an outbreak on a cruise ship outside the coast of
Japan (2), and by January 31 it had also spread to northern Italy (3) and further on to practically all
countries in Europe, as well as other countries across the globe. In the United States of America, the
outbreak seemed at first under control, yet, it soon become clear that the transmission had grown
out of control in several regions, in particular in New York. At the time of writing (July 26, 2021),
the virus has likely spread to all countries globally, with more than 400.000 reported deaths due
to COVID-19.

With limited testing capacity and few statistical sampling studies early in the pandemic, the
true number of infected individuals initially remained unknown. This is a general problem with
any novel pathogen, as it takes time to establish testing procedures for virus and antibodies and
carry out epidemiological samples and statistical analyses. At an early phase, statistical testing is
especially difficult due to the need for large samples to reduce uncertainty in estimates. Having
access to reliable estimates for the true number of infections will be important for risk assessments
and determining effective strategies, and is also of public interest. With the lack of timely access to
representative samples, there is accordingly a need for effective methods to estimate the number
of infections during an epidemic, especially for translating internationally emerging knowledge to
local contexts where such data is missing.
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Here, we address this problem by showing how to estimate
the true number of infections in an epidemic from the reported
number of deaths. The estimation procedure requires knowledge
of the distribution of times from infection to death and the
infection fatality ratio (i.e., the proportion of infected individuals
that dies from the infection). We exemplify our method by
estimating the true number of infections in the early spread
of COVID-19 for selected countries and find that the true
number of infections significantly exceeded the reported number
of infections at that time. The difference can be up to several
orders of magnitude depending on the location.

STATISTICAL METHOD

We consider an epidemic with an infection fatality ratio that
is sufficiently high for the outbreak to be detected and deaths
reported, say in excess of 0.1 %. For simplicity, we first describe
our method under the specific assumption that infections grow
exponentially, i.e., with a fixed doubling time. This will typically
be the case early in an epidemic, until either mitigating measures
have been put in place or the number of susceptible individuals
has been significantly depleted (4). We then present a more
general case in which an arbitrary growth model, such as the
generalized Richards model, is fitted to reported fatality data.
We assume knowledge of the distribution of time from infection
to death and of the infection fatality ratio. In all estimates of
the number of infected, we include both dead and recovered
individuals, i.e., we estimate the cumulative number of infections.

Heurestic Estimate for Exponential Growth
Initially, before formalizing the method, we consider a simpler
case when individuals die exactly S days after being infected with
a probability equal to the infection fatality ratio. For this simpler
case, we can estimate the number of infected individuals S days
ago by dividing the reported number of deaths with the infection
fatality ratio. Assuming exponential growth with a doubling time
of T days, the number of infected individuals at the present day
can then be estimated as

N =
d

p
exp

(

S
ln 2

T

)

, (1)

where d is the number of deaths, p is the infection fatality ratio,
and T is the exponential doubling time. For example, if the
doubling time is S/2 we would estimate four times as many
infected individuals today, as the number of infected individuals
doubled twice before having an impact on the number of reported
deaths. We will extend this reasoning by assuming a cumulative
probability function Θ(t) of the time from infection to death,
such the probability that an individual who was infected t days
ago is dead on the present day is pΘ(t), where p is the infection
fatality ratio. It may be tempting to heuristically estimate the
number of infections using Equation 1 with Su as the average
time from infection to death, but as we show in Figure 1, this
leads to a large estimation error when there is large variability
in the time from infection to death, even when the assumption of
exponential growth in the number of infections is correct. Hence,
a more rigorous approach is called for.

Rigorous Estimate for Exponential Growth
WewriteN for the number of infected individuals on the present
day, i.e., the quantity which we wish to estimate. Under our
assumption of exponential growth in the number of infections
with doubling time T, the number of infected individuals t days
ago is N exp(− t ln 2

T ). The inflow of new infectives t days ago1

can then be found by differentiating, giving ln(2)NT exp(− t ln 2
T ).

The number of deaths on the present day, d, can then
be written as

d =

∫ ∞

0

(

ln 2
) N

T
exp

(

−
t ln 2

T

)

p2(t) dt.

Let

k (T) =

∫ ∞

0

(

ln 2
) 1

T
exp

(

−
t ln 2

T

)

2(t) dt.

The equation can then be written

d = Npk (T) .

We can thus estimate the number of infectives as

N =
d

pk(T)
. (2)

In the special case in which individuals die exactly after S days,
i.e., 2(t) = H (t − S) where H is the Heaviside or unit step

function, we find that k (T) = exp
(

−S ln 2T

)

and hence

N =
d

p
exp

(

S
ln 2

T

)

,

which is identical to Equation 1. Figure 1 shows how the
rigorous estimate, Equation 2, differs from the heuristic
estimate, Equation 1. The heuristic estimate consistently
overestimates the number of infectives. In the example
shown, the error becomes twofold assuming an average of 21
days from death to infection with a standard deviation of
8 days.

Sensitivity Analysis for Exponential Growth
Figure 2 shows how the estimated number of infectives varies
with key parameters: doubling time, infection fatality ratio, and
average time from infection to death. The estimate depends non-
linearly on all three parameters considered. The estimate scales
linearly with the number of deaths (not shown). We conclude
that the estimate will be robust for small variations in these
key parameters.

Rigorous Estimate for Other Growth Modes
In the presentation thus far, we have assumed that the cumulative
number of infections grow exponentially. This is a reasonable
assumption early in an epidemic and has the dual advantages that

1Note that this quantity is necessarily positive. A direct differentiating gives a
negative value as t represents days into the past.
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FIGURE 1 | Not accounting for the standard deviation in time from infection to death can lead to large estimation error. The blue curve shows the estimated number

of infectives assuming that the time from infection to death is lognormally distributed with mean 21 days and standard deviation given by the horizontal axis. The

heuristic estimate using Equation 1, shown as the red curve, underestimates the actual number up to four times. Other parameters: exponential doubling time T = 4,

number of deaths d = 100, and infection fatality ratio p = 0.01 (i.e., 1%).

A B C

FIGURE 2 | Estimated number of infections assuming exponential growth is robust to small variations in key parameters. How the estimated number of infections

depends on (A) doubling time, (B) infection fatality ratio, and (C) average time from infection to death. Parameters not varied are doubling time T = 4, number of

deaths d = 100, and infection fatality ratio p = 0.01 (i.e., 1%). Time from infection to death is assumed lognormally distributed with mean 21 days and standard

deviation 8 days, except for the right panel where the mean time is given by the horizontal axis.

the only required parameter—the doubling time—can directly be
estimated from fatality data and that we obtain a closed formula,
Equation 2, for the estimated number of infected. Our method

can, however, be used also with other assumptions, including the
generalized epidemic growth model, the Richards model, and the
generalized logistic model [see, e.g., (5–9)]. Here, we present our
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method in the case of a general function describing the growth
in the cumulative number of infections. In this case, the growth
function cannot be directly fitted to the fatality data and there is
typically no closed formula for the number of infected. Instead,
we estimate the parameters of this function and the cumulative
number of infections from a time series of reported deaths.

Assume that the number of infected that can be written on the
form f (t,N, θ) where N is the number of infected on the present
day, t time in days relative to the present day, and θ parameters
describing the growth rate. With the same notation as before, we
can now determine the cumulative number of deaths t days ago as

dt = −

∫ ∞

t

∂f

∂t
(−s,N, θ) p2(s− t) ds.

The parameters θ are inferred by fitting to the reported
cumulative number of deaths. Writing d̃t for these empirical
values, estimates of N and θ can be found by standard least-
square minimization using reported cumulative deaths from the
last n+ 1 days.

(N, θ) = argmin
n

∑

t=0

(

dt − d̃t

)2
.

For the special case when f (t,N, θ) = Ng(t, θ), the parameters

θ are known, and n = 1, we only have the term
(

d0 − d̃0

)2
in the

sum. This is minimized when d0 = d̃0. Solving this equation gives

N =
d̃0

−p
∫ ∞

0
∂g
∂t (−s, θ) 2 (s) ds

.

Writing θ = T and letting g (t,T) = exp
(

t ln 2
T

)

, we obtain

N =
d̃0

pk(T)
,

with k(T) defined as before. Thus, the estimate we derived
in section Rigorous Estimate for Exponential Growth
is a special case of least-squares estimation when the
doubling time is already known. Note that the least squares
estimation can also be done using daily deaths rather
than cumulative deaths, and that this is likely preferable in
practical applications.

Confidence Intervals
We use model-based bootstrapping to determine indicative
confidence intervals (10, 11). Given the estimate N of the
number of infected and θ for the parameters of the growth
model, we simulate a large number of fatality time series.
From each of these, we estimate the number of infected and
determine the confidence intervals as the quantiles of these
estimates. Specifically, we assume that the number of new cases
t days ago was nt = f (−t,N, θ) − f (−t − 1,N, θ) rounded
off to the nearest integer. We classify each of these cases
as a fatality with probability p equal to the infection fatality

ratio and draw the time at which the fatality occurs from
the probability distribution 2. This allows us to determine
a time series of simulated fatalities, d̂t , of individuals who,
in the simulation, died on or before day t. For each such
time series, we determine an associated estimate N̂ and by
ordering a large number of such estimates from the smallest to
the largest, we determine confidence bounds N0.025 and N0.975

such that 95% of all simulated estimates N̂ lie between these
two values.

For the specific case of exponential growth with known
doubling time, described in Section Rigorous Estimate for
Exponential Growth, the process above can be greatly simplified.
As we assume statistical independence between individuals, the
number of dead individuals at the present day in any given
simulation is approximately normally distributed with mean
and variance,

µ =

∞
∑

t=1

ntp2(t) ,

σ 2
=

∞
∑

t=1

ntp2(t)
(

1− p2(t)
)

,

where p2(t) is the probability that an individual infected t
days ago is now dead. We then determine the 2.5% and 97.5%
quantiles, d0.025 and d0.975 and estimate a 95% confidence
interval for the number of infected individuals as N0.025 =

d0.025/(pk (T)) to N0.975 = d0.975/(pk (T)). Note that, as the
doubling time is assumed known, the confidence intervals
determined through this simplified approach will not encompass
uncertainty in the underlying increase in infections; it accounts
only for the uncertainty in number of deaths resulting from
these infections.

APPLICATION TO COVID-19

To illustrate the method, we apply it to estimate the number
of infected individuals depending on the number of deaths
for the early phase of COVID-19 spread. We assumed that
the time from infection to onset of symptoms illness onset
and the time from illness onset to death are lognormally
distributed with an average time of 5.6 and 15.0 days, respectively,
and a standard deviation of 3.9 and 6.9 days, respectively
[(12); Table 2]. Assuming that these times are statistically
independent, we determined the average time from infection
to death as 20.6 days with a standard deviation of 7.9 days.
Before suppressive measures was fully in place, the number
of deaths in Europe increased exponentially with a typically
doubling time around 3 days (13). In China, the doubling
time was estimated to 7.6 days (14). We assumed a doubling
time of 4 days. Finally, we assumed an infectious fatality ratio
of 0.8%.

Figure 3 shows our estimate for the number of individuals
infected by COVID-19 on March 25 in five selected countries.
In all cases, the estimated number of infectives greatly exceeds
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FIGURE 3 | Predicted number of COVID-19 cases based on the reported number of deaths. The predicted cumulative number of COVID-19 cases (solid line)

depending on the number of reported deaths, with 95% indicative confidence intervals (dashed line), here based on a doubling time of 4 days and an infectious fatality

ratio of 0.8%. Two letter country codes indicate the country’s reported deaths and cases based on European Center for Disease Prevention and Control data from

March 25.

the reported number of cases at the time, but there is a
large variability between countries. In Germany, the estimated
number is 11 times larger than the reported number. By
contrast, for Great Britain the estimated number is 123 times
larger than the reported number. For Sweden, we estimate
the number of infected individuals on March 25 was 85,094
(95% CI 51, 498–104, 640). Note that some of individuals
would have recovered by this date, but if infections increased
exponentially to this date, this should be a rather small fraction
as most individuals would recently have been infected. Slightly
different values would be attained if calibrating the infection
fatality ratio and the doubling time specifically to respective
countries.

Finally, using the method presented in Section Rigorous
Estimate for Other Growth Modes, we fit a generalized growth
model [see, e.g., (6)] to cumulative COVID-19 fatality data from
the Swedish National Board of Health and Welfare for the 12
days up until and including March 29, 2020. The generalized
growth model assumes that the number of infected N changes
according to the differential equation N

′

= rNq, in which the
exponent q determine if the growth is sub-exponential (0 <

q < 1), exponential (q = 1), or super-exponential (q > 1).
Using the Levenberg–Marquardt algorithm (15), implemented as
part of lsqnonlin in MATLAB R2021a, we estimate parameters
r = 14.8, q = 0.58, and 218 600 infected by March 29 which
appears consistent with our estimate for Sweden on March 25 in
Figure 3.

DISCUSSION

Information about the number of infected individuals is
important during epidemics to inform policy and of great public
interest. Yet, this number is difficult to estimate, especially early
in an epidemic when widespread testing may not be available
and random sampling has not been carried out. We have shown
how the cumulative number of infected individuals may be
estimated with confidence intervals for any infectious disease
for which the infection fatality rate is significant. Our method
is primarily developed and presented under the assumption of
a fixed doubling time, which is likely to hold in the early phase of
an epidemic, but in section Rigorous Estimate for Other Growth
Modes we also show how general growth models can be fitted to
time-series data. This increases the applicability of our method
to later stages of an epidemic when mitigation measures and/or
widespread immunity slows the spread of infections.

In applying our findings to the early spread of COVID-
19, we found that the number of reported cases were one
or two orders of magnitude less than our estimates. As
suggested by one of the reviewers to this manuscript, it
would be interesting to apply the methodology to country-
specific case fatality ratios rather than a single estimated
infection fatality ratio and look for patterns in the fraction of
excess cases one would obtain for each country. Having this
methodology available in an early stage of the pandemic can
provide invaluable help to public health professionals and policy
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makers to early assessment, and mitigation and suppression of
health impacts.

An important finding of our work is that a heuristic
estimation of the number of infected individuals based only
on the average time from infection to death may, in the early
exponential growth phase of an epidemic, greatly overestimate
the true number of infected individuals (Figure 1). A similar
heuristic estimation is, for example, used in (16) to study
disease dynamics in Stockholm. Our intuitive understanding
of why this discrepancy occurs is that most infections during
exponential growth will have occurred recently, with half having
occurred within the exponential doubling time. If the exponential
doubling time is shorter than the average time from infection
to death and the standard deviation is large, most individuals
who have died will have done so recently. Hence, the heuristic
method will overestimate the true number of infections as
typically most deaths will have occurred much more recently
in time.

A limitation of our approach is that we require knowledge
of the infection fatality ratio, the distribution of time from
infection to death, and the initial growth curve for the number
of infections. Despite this, the approach can potentially be very
useful for early risk assessment, as globally emerging knowledge
can be applied in local settings to estimate infection rates
and guide early action to curb an epidemic outbreak. For
COVID-19, the distribution of time from infection to death
can be estimated using data in Wuhan, China (12), while
reasonable but uncertain values for the infection fatality ratio
was available from studies of regional and local outbreaks,
such as South Korea (17) and the cruise ship the Diamond
Princess (2). The assumption of exponential growth with a
fixed doubling time was supported by epidemiological theory
and by the reported number of deaths early in the epidemic.

Country-specific calibration of these parameter values would
naturally improve per-country estimate accuracy, as, for instance,
the infection fatality ratio normally is dependent on the age-
distribution of a population. Another alternative would be to
include the statistical dispersion of these parameter in the
derivation of indicative confidence intervals. These would then
likely show slightly wider interval compared to the ones currently
applied in Figure 3 and based only on stochasticity in deaths.
Notably, at later stages of an epidemic, the cumulative number of
infections cannot be assumed to grow exponentially with a fixed
doubling time.

While our methodology has limitations and the resulting
estimates have uncertainties, we believe that it can offer valuable
guidance during an epidemic. Further studies of COVID-19 and
other epidemics, including random sampling of populations, will
help to elucidate the reliability of our approach. For the time
being, we believe this is one of the most efficient and accurate
way of obtaining indicative estimates of the number of infections
in the early stages of emerging epidemics.
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