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Abstract: RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways
underpinning biological processes are affected by the events governing the RNA life cycle, ranging
from transcription to degradation. The deregulation of these processes contributes to the onset and
progression of human diseases. In recent decades, considerable efforts have been devoted to the
characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the
nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression,
ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms
underlying neural functions, and are crucially implicated in the development of neuronal pathologies,
among which are neurodegenerative diseases. This review aims to explore the link between ncRNA
dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder
in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology,
which is often regarded as an RNA disease. We also discuss the potential role that these transcripts
may play as diagnostic biomarkers and therapeutic targets.

Keywords: ALS; motoneurons; neurodegeneration; RNA metabolism; noncoding RNAs; microRNAs;
long noncoding RNAs; circular RNAs

1. Introduction

Amyotrophic lateral sclerosis (ALS) is an aging-related and lethal neurodegenera-
tive disorder characterized by the progressive degeneration of motoneurons (MNs) in
the spinal cord (SC), brainstem (BS), and motor cortex (MCx). The consequent motor
axonal retraction causes muscle weakness and progressive paralysis as major symptoms.
Death usually occurs due to respiratory failure, generally within three to five years of
onset. However, population-based studies revealed that ALS involves the central nervous
system (CNS) more extensively than previously imagined. In particular, up to 50% of ALS
patients develop cognitive and behavioral alterations and about 13% have concomitant
frontotemporal dementia (FTD), which led to considering ALS and FTD as the two ends of
one clinicopathological spectrum [1,2].

ALS has been classified into familial ALS (fALS), representing about 10% of cases,
and sporadic ALS (sALS). They are indistinguishable from a clinical point of view, except
for the onset which is earlier in fALS [3]. The latter can be inherited in an autosomal
dominant manner and, more rarely, in an autosomal recessive or X-linked manner [4,5].
Cases of fALS have been attributed to mutations, mostly missense substitutions, in more
than 20 genes. Among these, four genes, namely SOD1 (Cu-Zn superoxide dismutase
1), C9ORF72 (hexanucleotide expansion repeat in chromosome 9 open reading frame 72),
TARDBP (transactive response DNA-binding protein 43 kDa), and FUS (fused in sarcoma),
account for up to 70% of all cases of fALS [5–7]. Individuals who do not have affected
relatives are classified as sALS patients.
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DNA sequencing analyses carried out in patients with sALS revealed that 1–3% of
cases are caused by SOD1 mutations [8] and 5% by intronic expansion in C9ORF72 [9].
Mutations in the other ALS-associated genes, such as TARDBP, coding for TDP-43 protein,
FUS, HNRNPA1, SQSTM1, VCP, OPTN, and PFN1, are rare in sALS, whose onset could be
contributed to by environmental factors [10].

ALS was initially interpreted as a proteostasis failure [10]. This view was supported
by the finding that some mutated RNA-binding proteins (RBPs), such as the components
of the ribonucleoprotein (RNP) granules TDP-43 and FUS, are delocalized in the cytoplasm
where they form pathological aggregates [11]. This phenomenon is exacerbated by the al-
terations of the two main pathways of protein clearance, namely the ubiquitin–proteasome
system [12] and autophagy [13]. However, the same ALS-associated proteins are regulators
of RNA metabolism, leading to a further interpretation of the pathology as an RNA disor-
der. Interacting with thousands of RNA targets, they affect splicing, transport, stability,
and even translation, which means that a disturbance in the function of these proteins may
affect RNA metabolism on a broad scale [14]. As an example, cross-linking immunoprecip-
itation (CLIP)-Seq analysis unveiled more than 39,000 TDP-43-binding sites in the mouse
transcriptome [15]. Furthermore, the splicing patterns of 965 messenger RNAs (mRNAs),
whose products were mainly involved in synaptic activity, were altered upon reduction
of the protein from adult mouse brain, Indicating that TDP-43 is key to normal splicing
patterns of several brain-enriched mRNAs [15,16]. Similarly, alternative splicing of mRNAs
was altered in FUS-related ALS, with consequent deregulation of neuronal gene expression
and production of thousands of aberrantly processed mRNAs [17]. The fact that these
ALS-associated proteins intervene not only in the metabolism of mRNAs, with dramatic
consequences on protein products, but also in noncoding RNAs (ncRNAs) with an impact
on the biological processes they control, is of growing interest. A clear example is the role
played by TDP-43 and FUS in the biosynthesis of microRNAs (miRNAs), small ncRNAs
that orchestrate differentiation and developmental programs by pleiotropically regulating
gene expression [18,19].

Based on these considerations, ALS has also been proposed as an RNA-mediated
neuropathology, which better reflects the heterogeneity of the disease [10].

Here, we describe the current state of the art about the relevant contribution given by
specific classes of ncRNAs to the pathology.

2. A Brief History of ALS

ALS is also called Lou Gehrig’s disease in the United States and MN disease in the
United Kingdom [10]. The name of the pathology reflects both the degeneration of the
upper MNs, whose axons project from the cortex to the BS and lateral SC (lateral sclerosis),
and the death of lower MNs, which project from the BS or SC to the muscle, causing its
wasting (amyotrophy). It was first described as a specific entity in 1869 by the neurologist
Jean-Martin Charchot [20]. In the mid-1900s, Kurland and Mulder, carrying out a study
on a case series of 58 patients, reported 10% familial cases [21,22]. More recently, the
combination of population-based epidemiological studies with advanced genetics and the
development of new bioinformatics tools and neuroimaging techniques led to considering
ALS as a syndrome encompassing a wide clinical and pathological spectrum. These
findings prompted further stratification of ALS into subtypes, which will be very helpful
for the prediction of prognosis and for the design of specific treatments based on different
disease mechanisms.

Different criteria have been used for classifying ALS. The traditional definition of
ALS subtypes, based on the involvement of upper or lower MNs, was overtaken by
other classifications relying on different parameters. A statistical method was developed
that predicts prognosis with more accuracy than do clinical phenotypes. It consisted of
applying latent class cluster analysis to a large database including 1467 records of ALS
patients. This method provided five phenotypic classes of ALS that strongly predicted
survival [23]. Another classification of ALS is based on the site of onset and the involvement
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of different sets of MNs. Accordingly, four forms can be diagnosed: (i) progressive muscular
atrophy, which mainly affects spinal neurons or lower MNs and causes limb weakness
and atrophy; (ii) primary lateral sclerosis, which primarily affects corticospinal MNs
and causes spasticity with increased limb tone; (iii) bulbar ALS, a devastating variant,
that mainly affects BS MNs innervating tongue muscles, causing difficulties in speech,
chewing, and swallowing; (iv) pseudobulbar palsy, that affects cortical frontobulbar MNs
and causes emotion accentuation, absence of facial expression, spastic dysarthria, and
dysphagia [10,24]. To date, none of the used classifications include the cognitive and
behavioral symptoms. A range of subtypes should also be highlighted to overcome the
heterogeneity of ALS and define subcohorts of patients to address personalized treatments.

3. Face with ALS: Onset, Clinical Manifestation, and Diagnosis

As an aging-related neurodegenerative disease, the occurrence of ALS is growing
with the increasing aging of the population [14]. It is the most common adult-onset MN
disease diagnosed in 1–2 cases per 100,000 individuals every year in most countries and
it is, therefore, considered an orphan disease. However, its inevitably lethal outcome
gives incommensurate importance to its occurrence. In the United Kingdom and the
United States, ALS determines more than 1 in every 500 deaths in adults, which has led
to the prediction that more than 15 million people presently alive across the world will
die of the disease [14]. In more detail, population-based studies highlighted that ALS is
more common in men than in women [25,26] and that its incidence differs depending
on ancestral origin. It is particularly low in the population of mixed ancestral origin in
North America (0.63 cases per 100,000 individuals) [27], whereas it is higher in regions
with relatively homogeneous populations, such as in European populations (2.6 cases per
100,000 individuals) [28,29].

The age of onset is highly variable but almost always occurs in the fifth or sixth decade
of life, at a mean age of 55 years. Presumably, it might begin early in the first two decades
of life without clear symptoms and emerge only later during life. Median survival is 2 to
4 years from the onset with only 5–10% of patients surviving longer [30,31]. In particular,
many of the long-term survivors show either upper MN or lower MN involvement [32,33].

Disease onset begins focally and eventually spreads to other body districts. Patients
initially experience muscle weakness, fasciculations, muscle atrophy, spasticity, and hyper-
reflexia that ultimately lead to paralysis [10]. Astrogliosis and microgliosis, accompanied
by mitochondrial dysfunction and defects in axonal transport, are hallmarks of the disor-
der [10].

The diagnosis of ALS is made difficult by the heterogeneous clinical presentation
and the absence of a specific test. It relies on a detailed description of the symptoms,
physical examination, electrodiagnostic testing, neuroimaging, and familiar history. The El
Escorial or Awaji diagnostic criteria are exploited when there is a history of progressive
weakness in one or more body regions and evidence of involvement of upper and lower
MNs [34]. Thus far, ALS standard treatment consists of multidisciplinary care, including
respiratory support and symptom management, whereas the only U.S. Food and Drug
Administration-approved drugs are riluzole and edaverone that have only limited effects
on patient survival [35].

The absence of effective treatments for the disease is due to the lack of deeper knowl-
edge of the pathogenic mechanisms responsible for MN death, and to the delayed diagnosis
usually made in an advanced pathological state. This could be overcome with the iden-
tification of reliable biomarkers for early diagnosis, patient stratification, and for the
effectiveness of pharmacological therapies.

Many studies are going in this direction. They mainly focus on neurofilaments (Nfs),
neuron-specific cytoskeletal proteins that are involved in the stabilization and polarization
of neural cells and, therefore, in effective axonal conduction. Notably, their concentration
increases in biological fluids proportionally to the degree of axonal damage [36].
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Although not yet adopted into clinical practice, the levels of phosphorylated neuro-
filament heavy chain (pNfH) in cerebrospinal fluid (CSF) have been proposed as specific
biomarkers for MN disease. pNfH is endowed with the best performance to discriminate
between patients with ALS and healthy and neurological controls with a sensitivity of
about 90% [37]. Another study explored blood as an alternative source for measuring pNfH
levels. ALS patients displayed elevated concentrations of serum pNfH, that correlated
with the disease progression rate [38]. However, given the proximity to the degenerating
MNs in the brain and SC, CSF pNfH outperformed serum pNfH (10-fold higher than
blood) in discriminating ALS patients [36,39]. Recently, single-molecule assays allowed
the evaluation of ultralow concentrations of blood Nf, which may be very advantageous
since blood samples are easily accessible and attainable in a less invasive way compared to
CSF [36].

4. RNA Biology of ALS

The protein-coding genes associated with ALS pathogenesis have been grouped
into three main classes: the genes altering proteostasis and protein quality control, those
involved in cytoskeletal dynamics, and genes affecting RNA metabolism [10]. Recently,
great emphasis has been given to the latter gene class and deregulation of RNA has emerged
as a major contributor to ALS.

Accordingly, the major ALS-causative genes, namely SOD1, C9ORF72, TARDBP, and
FUS, are involved in the control of RNA metabolism to different degrees. In particular,
SOD1 negatively affects the stability and function of some mRNA species by interacting
with their 3′-untranslated region (3′-UTR) [40–42]. The interaction of mutant SOD1 with
vascular endothelial growth factor (VEGF) mRNA, besides causing the recruitment of other
proteins such as TIAR and HuR into insoluble aggregates, also determines a decrease in
VEGF mRNA levels. Similarly, as observed in human spinal MN from SOD1-ALS cases,
the binding of mutant SOD1 to neurofilament light chain (NFL) mRNA destabilizes the
transcript [40]. The reduction of NFL mRNA levels results in an aberrant stoichiometry
of NF subunits, NF aggregation, and neurite degeneration in the iPSC-derived model
of ALS [42]. Additionally, mutant SOD1 has been shown to induce alternative splicing
deregulation [43].

The C9ORF72 gene could cause ALS through an RNA toxicity mechanism. It car-
ries repeat expansion mutations and accounts for about 50% of fALS and 10% of sALS
cases [44]. Both strands of C9ORF72 repeat expansion are transcribed, producing RNA
foci that accumulate in patient tissues [45]. The aberrant RNA foci may, in turn, act as a
platform that sequesters several RBPs, such as hnRNP-A3, FUS, and TDP-43, producing
alterations in RNA metabolism at a global level [46–48]. Accordingly, the use of antisense
oligonucleotides (ASOs) targeting C9ORF72 repeat expansion avoids RNA foci formation
and restore the alteration of gene expression in ALS MNs [46,49].

Mutations in the TARDBP gene are found in most cases of ALS [50]. Importantly,
independent studies carried out in zebrafish [51], Drosophila [52,53], cultured mammalian
neuronal cells [54–56], and mice [57] pointed to the relevance of TDP-43 activity as an RNA
processing regulator of neuronal differentiation, synaptic transmission, and neuronal plas-
ticity. Several studies underscored its involvement in every step of RNA metabolism [58]
as well as its relevant role in miRNA biosynthesis [55,59–62].

Mutations in TDP-43 mainly occur in the C terminus, containing the nuclear localiza-
tion signal, and are responsible for mislocalization of the nuclear protein in the cytoplasm
of MNs, where it forms insoluble aggregates. This may cause, at the same time, a loss of
function of TDP-43 in the nucleus and a gain of cytoplasmic toxic function, both being
detrimental to neuronal function and survival.

As for TDP-43, FUS is a ubiquitously expressed RBP regulating several aspects of
RNA metabolism and processing. It is a predominantly nuclear protein crucially involved
in transcription, pre-mRNA splicing, and miRNA biogenesis [63]. However, it shuttles to
the cytoplasm [64], particularly in neurons, indicating that it may participate in regulating
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mRNA transport into neurites and local protein translation at synapses [65,66]. Mutant
FUS displays an abnormal cytoplasmic localization in the neurons of ALS patients where it
accumulates in cytoplasmic inclusions, the stress granules (SGs) [67,68].

Interestingly, it was demonstrated that the RNA-binding domain of both TDP-43 and
FUS is essential for the neurodegenerative phenotype [69]. In particular, it was shown
that RNA-binding-incompetent FUS, also carrying ALS-causing mutations, predominantly
localizes in the nucleus in both Drosophila MNs and in a neuronal cell line [69]. This finding
reveals that the aberrant cytoplasmic localization of FUS is mediated by its RNA-binding
ability, conferring to RNA molecules a relevant role in FUS-ALS pathogenesis [69].

Although much emphasis has been placed on the influence that these ALS causative
genes exert on the metabolism of protein-coding RNAs, it is time to complete the biological
context of the disease by highlighting the contribution of different classes of ncRNAs with
regulatory activities.

Notably, a recent transcriptome profiling of both coding and long noncoding RNAs
(lncRNAs) in peripheral blood mononuclear cells of unmutated sALS patients [70] versus
healthy controls highlighted that the majority of differentially expressed genes belong to
the nonprotein-coding class. In particular, among the 380 differentially expressed genes,
293 were lncRNAs (183 upregulated and 110 downregulated genes) whereas 87 were
mRNAs (30 downregulated and 57 upregulated) [71]. It is noteworthy that the high levels
of altered noncoding transcripts were not observed in other neurodegenerations such
as Alzheimer’s and Parkinson’s disease [71], which supports the hypothesis of a major
involvement of the transcriptional machinery in ALS.

5. Noncoding RNA Landscape

Upon the completion of the Human Genome Project, it was realized that of the three
billion bases of the human genome, only approximately 2% encode proteins, whereas the
most conspicuous portion produces a huge number of so-called ncRNAs [72–74]. Notably,
their denomination refers to what they are not. In fact, with only some exceptions, they
are not endowed with a codogenic potential, having only short open reading frames often
interrupted by stop codons. NcRNAs are very diversified, they can be of various sizes,
short (less than 200 nt) or long (greater than 200 nt), and have different conformations,
both linear and circular (Figure 1). The unifying theme for all these RNAs is their function
as fine regulators of gene expression, which eventually orchestrate differentiation and
developmental programs through the interaction with other biological macromolecules.
Moreover, their high enrichment in the nervous system (NS) led to a tremendous interest
in decrypting their role in NS development and function.

5.1. MicroRNAs

MiRNAs are tiny molecules of about 21–23 nt, with an established role as major post-
transcriptional regulators of gene expression. Remarkably, the diversity of the miRNA
repertoire increases with the organismal complexity, suggesting a role in progressively
sophisticated regulation of gene expression underpinning biological complexity. Exploiting
a very simple strategy, the Watson–Crick base pairing with their target mRNAs, they can
inhibit protein synthesis by inducing mRNA destabilization or repressing mRNA transla-
tion (Figure 1F) [75]. Notably, a single miRNA may act pleiotropically by simultaneously
regulating multiple transcripts. This property is particularly effective in canalizing the
regulatory programs underlying biological processes such as apoptosis, proliferation, dif-
ferentiation, and maintenance of cell identity. On the other hand, their ability to act in
a combinatorial manner on the same gene makes their nature as fine regulators of gene
expression much more robust, which produces only a subtle reduction in protein levels
(less than 2-fold) [76].

Remarkably, more than half of protein-coding genes are thought to be regulated by
miRNAs [77]; however, depending on the cellular context, different gene repertoires may be
controlled by the same miRNA. It has been found that about 50% of the expressed miRNAs
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are cell-type enriched, 25% are broadly expressed, and the remaining 25% display low levels
of expression regardless of cell type [78,79]. The NS is the richest source of miRNAs and
their expression is highly specific for brain regions, cell types, and developmental stages.
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It is well established that miRNAs are essential for neural differentiation as well as
for the maintenance of neural cell identity. In particular, they contribute to determining
differentiation stage transition, by repressing leaky transcripts specific to the previous
stage, and to maintaining the cell fate decision, by limiting the protein levels in the range
preserving cell identity [76,80]. As an example, neuronal fate determination is heavily
established by two brain-specific miRNAs, miR-9 and miR-124. They exert a wide control of
the gene expression landscape by regulating chromatin remodeling complexes, repressing
global inhibitors of neuronal transcription programs, and intervening in the switch to
neuron-specific alternative splicing programs [81].

5.1.1. MiRNA Biosynthesis Is Affected in ALS

A complex interplay intervenes between miRNAs and miRNA biogenetic factors
involved in ALS. Data indicate that the biosynthesis of miRNAs is affected in fALS and
sALS cases, leading to an overall decrease in miRNA steady-state levels [82–84]. Other
studies suggest, instead, that only specific subgroups of miRNAs are downregulated
in ALS, for example, during ALS MN progenitor differentiation [85], or are affected by
ALS-linked factors such as FUS and TDP-43 [86].

Along this line, a solid paradigm in the field postulates that the ALS-associated pro-
teins FUS and TDP-43 contribute to miRNA physiological biogenesis as components of
Drosha and Dicer/miRNA processing machineries [18,19]. TDP-43 promotes the matura-
tion of a subset of miRNAs by interacting in the nucleus both with Drosha and specific
miRNA primary transcripts, and in the cytoplasm with precursor miRNA terminal loops,
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favoring their processing by Dicer complex [58–60,62]. It was also demonstrated that, by
regulating the abundance of the miRNA processing machinery (Microprocessor complex),
TDP-43 controls the entire miRNA repertoire in in vitro differentiating neurons [55].

TDP-43 also affects the activity of miRNAs. The wild-type version of the protein or
an ALS-like mutant lacking the nuclear localization signal have been demonstrated to
differentially bind mature miRNAs and alter their levels in nonneuronal cell lines [87].
Making a further step towards the pathology, it was also shown that the ALS mutant
TDP-43 (such as the M337V variant) is able to sequester dozens of miRNAs in cytoplasmic
inclusions of mouse neuroblastoma cells [88].

Analogous crosstalk occurs between miRNAs and FUS. This protein normally en-
hances the production of miRNA subsets by promoting Drosha co-transcriptional re-
cruitment on chromatin sites and by binding the corresponding miRNA primary tran-
scripts [89]. Additionally, FUS can regulate miRNA gene silencing activity through interac-
tions with miRNA-induced silencing complex (miRISC) components, miRNAs, and mRNA
targets [90].

On the other hand, some specific miRNAs have been shown to regulate TARDBP and
FUS. TDP-43 is recruited in a regulatory negative feedback network with miR-181c-5p and
miR-27b-3p, which is dependent on its nuclear localization. Cellular stress, which induces
a redistribution of TDP-43 in the cytoplasm, correlates with the reduced production of
the two miRNAs in cultured cell lines [91]. Furthermore, miR-194 and miR-b2122, which
are downregulated in sALS patients, posttranscriptionally regulate both TDP-43 and FUS
expression. This regulatory process is disturbed in ALS, where miR-b2122 downregulation
leads to an increase in FUS protein levels. Conversely, ALS-associated mutation in the FUS
3′UTR ablates the miR-b2122 regulatory ability [92]. These observations match previous
conclusions reached by Dini Modigliani et al. [93] who showed that FUS 3′UTR mutations
found in ALS patients caused increased protein levels and mapped to miR-141 and miR-
200a binding sites. They demonstrated a feed-forward regulatory loop in which FUS
induces the expression of miR-141/200a, which in turn affects protein synthesis (Figure 2D).

Overall, these and other data [94] indicate the mechanistic connection between RBPs,
mutated and delocalized to SGs in ALS, and the pathological impairment of miRNA func-
tion, providing evidence for altered miRNA biogenesis/activity and regulatory circuitries
as possible pathological processes in ALS.

5.1.2. Integrative miRNA-Omics Studies in ALS

Bioinformatics analyses and computational studies highlighted the importance of
unraveling altered gene pathways in ALS [95–99]. Concordantly, several efforts were
made to match and functionally link miRNAs and their target genes through integrative
approaches in ALS-associated model systems.

In this context, the first studies had a spatial connotation. Rotem et al. released the
first combined inclusive profile of mRNA and miRNA expression between somatic and
axonal compartments in cultured SC neurons from two in vitro ALS models, SOD1G93A

and TDP43A315T [100]. A focus on motor axonal defects in vivo also came from Helferich
et al. [101] who observed downregulation of miRNA-1825 in CNS and non-CNS organs of
sALS and fALS patients (Figure 2B). Combined proteomic analyses revealed that reduction
in miRNA-1825 caused the translational upregulation of tubulin folding cofactor B (TBCB)
and the degradation of the ALS gene tubulin alpha 4a (TUBA4A). Again, a whole tran-
scriptome profiling, combined with subcellular fractionation analysis of NSC-34 human
SOD1 cells, revealed that miR-18b-5p heads a complex gene pathway made up of Hif1α,
Mef2c, miR-206, Mctp1, and Rarb, with a downstream effect on cell apoptosis [102]. A
very original contribution recently came from Freischmidt and colleagues [103] who identi-
fied, by proteomic and biochemical studies, the members of the fragile X protein family
as interactors of a short sequence motif, enriched in a signature of previously identified
ALS-related miRNAs [104,105].
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A very original contribution recently came from Freischmidt and colleagues [103] who 
identified, by proteomic and biochemical studies, the members of the fragile X protein 

Figure 2. Schematic representation of noncoding RNA dysregulation examples in ALS. Green, red and T arrows indicate
upregulation, downregulation and inhibition activities, respectively. (A) miR-218 released from degenerating MNs promotes
astrocytosis in ALS; (B) miR-1825 dysregulation causes TUBA4A depolymerization and motor axon defects in ALS; (C) miR-
105 and miR-9 dysregulation affects neurofilament aggregation in ALS; (D) left: wt FUS protein is involved in a feed-forward
regulatory loop along with miR-141/200a (the red spark points to the 3′UTR FUS gene mutation G48A); right: mutant FUS
(P525L) strongly affects circRNA biogenesis; (E) Mutant FUS and upregulated miR-409-3p and miR-495-3p downregulate
GRIA2, causing excitotoxicity; (F) lncRNAs ATXN2-AS and C9ORF72-AS accumulate in ALS-associated neuronal RNA foci;
(G) lncRNAs MALAT1 and NEAT1_2 are bound by TDP-43 and FUS proteins in nuclear paraspeckles, which are hyper-
assembled in ALS; (H) myomiR-206 is upregulated in ALS muscle contributing to NMJ reinnervation and regeneration;
(I) miR-23a contributes to mitochondrial dysfunction in ALS skeletal muscle; (J) miR-125b induces over-activation of
microglia and neuroinflammation, through the STAT3 pathway.

Two deep mechanistic studies based on extensive RNA sequencing were performed
by De Santis et al. and by Capauto et al. In human MNs derived from mutant FUS-induced
pluripotent stem cells (iPSCs), De Santis and collaborators showed the decreased levels
of the MN protective miRNA-375, leading to the upregulation of ELAVL4 [106], an RBP
implicated in neural function and degeneration [107], and of proapoptotic targets such as
p53. In concordance with this result, in the sALS wobbler mouse—a model displaying
almost all clinical hallmarks of human ALS patients [108]—miRNA-375-3p downregulation
resulted in inefficient p53 inhibition, increased production of reactive oxygen species, and
induced apoptosis [109].

Instead, in the FUS mutant MNs differentiated from mouse embryonic stem cells
(ESCs), Capauto and colleagues demonstrated the upregulation of miR-409-3p and miR-495-
3p and concomitant downregulation of Gria2, a subunit of the AMPA receptor triggering a
cascade of MN-damaging excitotoxic events (Figure 2E and [110]).

With the same rationale, whole transcriptomics was performed in SC ventral horns of
post mortem sALS human donors, revealing the downregulation of neuronal genes and the
upregulation of glial ones [111]. Even if no miRNA/mRNA anticorrelation was highlighted
in this study, it revealed strong deregulation of the SNAP25 and STX1B tSNARE proteins,
involved in vesicle trafficking and Ca2+ dynamics. These findings once more focus on Ca2+

elevation and glutamate excitotoxicity as an ALS causative mechanism.
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5.1.3. MiR-9 and miR-124 in ALS MNs

A relevant number of studies aimed to clarify the role of specific miRNAs in ALS. In
this section, we will provide an overview of the miRNAs involved in MN degenerative
mechanisms, from the endoplasmic reticulum (ER) and oxidative stress to axonal transport
disruption and cytoskeleton and mitochondrial defects. A significant amount of data has
come from SOD1G93A transgenic mice—one of the golden standards of ALS mouse models
reproducing the pathological phenotype consisting in rapid degeneration of MNs [112]—or
from SOD1-linked cellular models.

The deranged activity of the neural miR-9 and miR-124 has been clearly linked to
neurodegeneration in ALS. In 2013, the reduced expression of miR-9 was identified as a cell-
specific phenotype downstream of TDP-43 mutation in neurons derived from iPSCs [61]. A
similar phenotype was confirmed in Drosophila [113]. Contrarily, miR-9 was found to be
upregulated in the ventral horn of grey matter from SCs of SOD1G93A mice [114]. In the
same year, Campos-Melo and colleagues [82] found 256 dysregulated miRNAs in sALS SCs.
They compiled a panel of miRNAs—among which they validated miR-146a, miR-524-5p,
and miR-582-3p—targeting the low molecular weight neurofilament gene NEFL, which
participates in the formation of pathological cytoplasmic inclusions and was known to be
decreased in sALS [115]. More miRNAs were implicated in this mechanism [116]. Recently,
the same group demonstrated that the homeostasis of neurofilaments is also guaranteed by
miR-9 and miR-105 (Figure 2C) by regulating genes as NEFL, PRPH, and INA. They encode
for cytoskeleton components whose proper stoichiometry ensures neuronal cell structure
and health [117]. Finally, the heavy neurofilament gene NEFH was also regulated by miR-9
in the context of MN diseases [118].

Besides the balance of structural proteins, miR-9 deregulation was also associated with
other neuronal pathophysiological pathways in ALS. For instance, miR-9-5p was shown to
be responsible for the significant decrease in expression of the P21-activated kinase PAK4
in cell and mouse ALS models. Silencing of PAK4 enhanced MN apoptosis through the
inhibition of cyclic AMP-responsive element-binding protein 1 (CREB)-mediated neuropro-
tection signaling. PAK4 overexpression in the spinal neurons of SOD1G93A mice promoted
the CREB pathway, thus suppressing MN degeneration and prolonging their survival [119].

Another miRNA, miR-124, was found to be upregulated in the SC and BS of symp-
tomatic SOD1 mice and downregulated in neural stem cells, suggesting its defective differ-
entiative function in ALS [120]. In the same report, a role in astrocyte differentiation of ALS
mice was ascribed to miR-124, which regulates the levels of SOX2 and SOX9 transcription
factors (TFs). This finding points to the relevance of noncell-autonomous phenomena
in MN degeneration. Still, in the field of cell differentiation, miR-124, miR-9, and other
neural miRNAs were found to be differentially expressed in SOD1 mutant ependymal
stem progenitor cells, usually quiescent in the SC but reactivated by neurodegeneration
through a neurogenetic restorative mechanism [121].

Instead, in mature primary MNs, miR-124 was found to regulate the intermediate
filament vimentin (Vim), known to physically interact with mitochondria, controlling their
morphology, position, and activity [111,122]. In MNs, the miR-124/Vim axis was shown
to regulate the axonal transport of mitochondria, their localization, and function [123].
Very recently, the deregulation of miR-124 has also been shown in an MN-like cell line
overexpressing wt or mutant human SOD1. Its ectopic normalization prevented the
dysregulation of several cellular phenotypes, such as neurite network, mitochondria
dynamics, axonal transport, and synaptic signaling [124].

5.1.4. Other miRNAs in ALS MNs

The expression of other miRNAs was found to be altered in SOD1G93A mice [125] and
it was associated with programmed cell death, mainly via cellular stress. MiR-29 takes part
in the ER stress driven by the accumulation of misfolded proteins. In ALS mouse SCs, miR-
29a is upregulated by the ER stress-induced TF ATF4 [126], causing the downregulation of
the antiapoptotic factor Mcl-1 [127]. In the wobbler mouse, it was reported that miR-29b-3p
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overexpression downregulated the proapoptotic factors BAK, BAX, and BMF, leading to
apoptosis and, thus, to neurodegeneration [128]. Li et al. [129] demonstrated, instead, that
the downregulation of miR-193b-3p—reported in sALS patients as well [130]—promoted
cell death in the ALS SOD1G93A mouse. This was achieved by targeting tuberous sclerosis 1
(TSC1), which controls rapamycin complex 1 (mTORC1), a regulator of autophagy [131] and
a neuroprotector [132]. Additionally, the zinc transporter SLC30A3, playing a protective
role against ER [133] and oxidative stress [134], decreased in ALS patient SCs, as a target of
the upregulated miR-5572 [135]. On the contrary, the stress sensor and neuronal protector
miR-183-5p is reduced in ALS patients and mouse models, increasing the levels of the
regulators of necroptosis RIPK3 and apoptosis PDCD4 [136]. Additionally, miR-335-5p was
downregulated in ALS patient sera. Inhibition of miR-335-5p in neuronal cells caused an
abnormal mitochondrial morphology and an increase in: (i) reactive oxygen species, (ii)
superoxide dismutase activity, and (iii) apoptosis and mitophagy, suggesting a role in the
MN loss [137].

Besides contributing to cellular stress, miRNAs are proposed to participate in estab-
lishing the selectivity of MN degeneration. Limb-innervating lateral motor column MNs
are particularly vulnerable to degeneration and are among the first subtypes affected in
ALS [138]. Such preferential susceptibility was associated with reduced expression of the
miR-17∼92 cluster, accompanied by the toxic accumulation of PTEN phosphatase in spinal
MN nuclei of presymptomatic SOD1G93A mice.

Finally, metabolic dysfunction is also a hallmark of age-related neurodegenerative
diseases, including ALS. The aberrant accumulation of glycogen, the energy reserve of CNS,
favors pathological processes and neurodegeneration in SOD1G93A mice. The regional
increase in glycogen in the SC, but not in the MCx of ALS mice, was caused by defective
glycogenolysis triggered by decreased levels of the brain-specific glycogen phosphorylase
(PYGB). This is directly targeted by miR-338-3p, whose expression is elevated in the
SC of SOD1G93A mice [139]. The latter data corroborate the long-standing idea that the
central metabolism impacts MN degeneration onset or progression [140], and indicate
that miRNAs may be related to the metabolic implications of the pathology. These two
issues could be intriguingly linked through nutrition. The largely sporadic nature of
most ALS cases indicates that extrinsic factors, including diet, may play a relevant role
in ALS, representing either a potential risk or a neuroprotective factor [141]. Growing
evidence demonstrates that specific nutritional regimens [142] or dietary components [143]
may influence the state of ALS patients or mouse models, by affecting at several levels
(microbiome, mitochondrial activity, etc.) the pathological condition of high oxidative stress.
In addition, the influence of feeding on miRNA expression is a well-known biological
paradigm [144]. Thus, the combination of these overall remarks suggests that the still
unclear relationship among diet, miRNAs, and ALS deserves deep investigation.

5.1.5. ALS miRNAs in Non-MN Cells: Microglia

Neurons undertake physiological interactions with different cell populations, such
as microglia (MG), astrocytes, and oligodendrocytes. Therefore, it is not surprising that
altered communication between these cytotypes characterizes the progression of neurode-
generative disorders, including ALS.

MG, the resident immune cells in the brain, exist in a homeostatic condition (resting
state) that can rapidly switch to an activated, phagocytic state by sensing stimulating agents
such as pathological molecules. Activated MG exert different functions corresponding to
alternate phenotypes, such as the M1 (inflammatory) and M2 subtypes (proregenerative),
depending on the stimulus and its intensity [145]. Two miRNAs have been studied in
MG-dependent neuroinflammation in ALS, namely miR-125 and miR-155. First, Marcuzzo
et al. [146] found altered levels of miR-125 along with other neural miRNAs, such as
miR-9 and miR-124a, in several brain areas of late-stage diseased mice compared to age-
matched controls. Then, the role of miR-125b was also analyzed in non-neuronal tissues. By
miRNA transcriptional profiling, the upregulation of the immune-enriched miR-22, miR-
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155, miR-125b, and miR-146b was revealed in ALS MG [147]. The authors demonstrated
the establishment of an aberrant regulatory network between miR-125b and the STAT3
pathway, culminating in the abnormal release of the cytokine tumor necrosis factor α
(TNFα) and the overactivation of MG (Figure 2J). Later on, they also showed an additional
interplay between miR-125b and the regulatory ubiquitin-editing enzyme A20, reinforcing
and extending the activation of the inflammatory NF-κB pathway [148]. It is likely that
more complex interactions between proinflammatory and anti-inflammatory factors under
the control of miR-125b may take place in ALS MG [148].

Additionally, miR-155 is implicated in the neuroinflammation process affecting disease
progression in ALS tissues, by triggering proinflammatory signaling and suppressing anti-
inflammatory mediators. MiR-155 accumulates in ALS mouse and patient SCs, where
a concomitant loss of the MG molecular signatures was registered [149]. Furthermore,
MG overexpressing human SOD1G93A release exosomes enriched for miR-155 and miR-
146 [150]. Consistent with these observations, miR-155 genetic ablation or downregulation,
by antisense LNA or ASO administration, extended lifespan and disease duration in the
SOD1 mouse model [151,152]. The overall scenario of neuroinflammation is even more
complex. Besides miR-125 and miR-155, other “inflamma-miRs” were found to be altered
in MG of presymptomatic and symptomatic SOD1G93A murine models [153]. In addition,
the proinflammatory phenotype of primary and activated MG cells can be modulated by
other cell types, such as mesenchymal stem cells, through the release of miRNA-containing
extracellular vesicles [154].

5.1.6. ALS miRNAs in Non-MN Cells: Astrocytes

ALS is also characterized by an increase in reactive astrocytes associated with patholog-
ical features, such as low efficiency of toxic excitatory glutamate clearance and impairment
of neurotrophic factor secretion [155]. Noncell-autonomous, glial-based mechanisms of MN
degeneration can be partially ascribed to miRNAs. MiR-494-3p dysregulation was detected
in secreted extracellular vesicles of C9ORF72 astrocytes and was identified as a regulator
of Semaphorin 3A (SEMA3A) involved in axonal maintenance and MN survival [156].
Furthermore, Hoye et al. demonstrated that miR-218 could be released extracellularly by
dying MNs and taken up by astrocytes. MiR-218 downregulates the expression of the
glutamate reuptake transporter excitatory amino acid transporter 2 (EAAT2), important
for the proper regulation of excitatory glutamatergic neurotransmission (Figure 2A). Con-
sistently, miR-218 downregulation improves astrocytosis in ALS [157]. More recently, the
role of miR-218 was also assessed in MNs. In ALS SC tissues, reduced miR-218 levels
induced the expression of its newly identified target, the potassium channel Kv10.1 that
controls neuronal activity. Furthermore, rare variants in the human miR-218-2 sequence
were identified in ALS patients, which fail to undergo proper processing and are defective
in neuron activity regulation [158].

Additionally, miR-146a downregulation in murine SOD1 astrocytes contributes to in-
flammation by impacting the TLR/NF-κB signaling pathways [159]. Interestingly, recovery
of normal miR-146a levels in SOD1 mouse cortical astrocytes was shown to mitigate their
aberrant phenotype and their deleterious consequences in MNs and MG [160].

Finally, growing evidence suggests that neurovascular contributions to ALS should
be considered. Loss-of-function mutations in the angiogenic factor angiogenin (ANG1)
segregate ALS patients [161]. Deregulation of the miR-126/ANG1 axis and vascular
regression, preceding MN loss, was highlighted in FUS (1–359) transgenic mice which carry
a truncated version of FUS lacking the nuclear localization signal [162].

5.1.7. MyomiRs in ALS

Skeletal muscle atrophy is a primary symptomatic manifestation in ALS patients.
This, combined with the reciprocal and bidirectional interplay between MNs and muscle
fibers at the level of the neuromuscular junction (NMJ), suggests that: (i) altered muscle
structure/function may affect the onset and progression of ALS, and (ii) muscle miRNAs
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must be taken into account as modulators of the pathology progression. Particular attention
was devoted to “myomiRs”, a subset of miRNAs enriched or specifically expressed in
the skeletal muscle. They were identified and characterized as crucially implicated in
the molecular network regulating muscle differentiation and regeneration by targeting
myogenic TFs [163].

Together with miR-1 and miR-133, miR-206 represents the best-characterized myo-
genic miRNA, and one of the most studied in ALS. In their seminal paper, Williams
and co-workers demonstrated that in SOD1G93A mouse muscles, miR-206 is upregulated
along with miR-23a and miR-23b, whereas miR-133a, miR-133b, and miR-1 are down-
regulated [164]. In these myofibers, miR-206 exerts a protective function for tissue and
NMJ regeneration. Indeed, it is induced by the myogenic TFs MyoD and myogenin in
response to skeletal muscle denervation at the onset of neurological symptoms. MiR-206
acts by suppressing the levels of the muscular HDAC4 protein, which in turn promotes
NMJ reinnervation and regeneration by inducing the expression of the fibroblast growth
factor-binding protein-1 (FGFBP1, Figure 2H).

Further studies confirmed the consistency of miR-206 in the ALS contexts [165,166],
extending to patients the previous observations underlying its relevance and characterizing
the pathogenic role of additional myomiRs. Bruneteau and colleagues tried to investigate
the prognostic value of the miR-206/HDAC4 pathway, highlighting an increasing trend
of miR-206 expression in long-term survivor patients [167]. Additional validation of this
regulatory module was provided more recently [168]. Interestingly, an increase in miR-206
was found in the CSF and the plasma of patients subjected to a potential therapeutic
treatment through autologous administration of early hematopoietic cells [169].

Instead, Russell and collaborators revealed the upregulation of other miRNAs in
ALS skeletal muscle, such as miR-23a, miR-29b, miR-31, and miR-455 [170]. MiR-23a
was proposed as a direct regulator of PGC-1α expression (Figure 2I), whose signaling
networks are involved in mitochondrial biogenesis and function [171]. Other factors,
related to mitochondrial fusion and electron transport chain activity, were demonstrated to
be downregulated in transgenic mice overexpressing miR-23a, suggesting an explanation
for the mitochondrial dysfunction observed in the skeletal muscle of ALS patients.

By analyzing a time-course of skeletal muscle biopsies from ALS patients, Jensen and
co-workers [172] demonstrated that miR-1, miR-26a, miR-133a, and miR-455 were reduced
in ALS patients, suggesting an alteration of both cell proliferation and differentiation.
However, this specific role of myomiRs in ALS has been poorly investigated [173].

Finally, several studies pointed to the expression of myomiRs for patient stratifica-
tion in terms of disease progression or duration and age of the onset [174–176]. Overall,
these reports indicate the centrality of myomiRs in ALS and, more generally, in muscular
atrophy-causing disorders [177]. Additionally, we must consider that the implication of
the muscular component in ALS is even more complex than described, also considering
that miRNAs not strictly referred to as myogenic can participate in muscle-mediated,
pathogenic mechanisms. An example comes from miR-126-5p, whose reduced levels were
reported in presymptomatic ALS mouse models, along with an increase in its targets, the
axon-destabilizing SEMA3, and its co-receptor neuropilin [178].

The involvement of muscular miRNAs in ALS, besides representing a biological facet
of the disease, may also have a practical connotation in the management of the pathology.
It is well assessed that miRNA expression responds to exercise [179]. On the other hand,
therapeutic training appears to be beneficial to ALS patients’ health [180]. On these bases,
emphasis is placed on establishing whether these two issues are linked. Pioneering studies
correlating clinical scales with circulating miRNA expression have detected lower levels of
myomiRs in serum of ALS patients after aerobic exercise [181]. This finding suggests that
myomiRs could represent suitable ALS biomarkers (Section 5.4) to evaluate both the disease
progression and the response to physical rehabilitation and skeletal muscle recovery.
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5.2. Long Noncoding RNAs

Similarly to protein-coding genes, it was estimated that about 2% of the human
genome is transcribed into lncRNAs [182]. They are longer than 200 nt and share several
features with mRNAs, being mainly transcribed by RNA polymerase II, capped, spliced,
and polyadenylated. Otherwise, the majority of lncRNAs are not evolutionarily conserved
at the sequence level [183,184], are expressed at lower levels, and exhibit higher tissue-
specific expression patterns compared to mRNAs [185]. The main property underlying
lncRNA functional versatility is their ability to fold into diverse secondary structures—
such as stems, loops, and hairpins—and into complex three-dimensional structures that
are key to determining their interaction and, therefore, their biological activity [186].
Through the ability to establish specific interactions with nucleic acids—mRNA, miRNA,
DNA—and with proteins ([187] and Figure 1), lncRNAs act as crucial regulators of gene
expression in several biological processes. In particular, they may act at the epigenetic
(Figure 1A), transcriptional (Figure 1B,C), or posttranscriptional levels (Figure 1D,E) and
exert their function in cis or in trans by recruiting, assembling, modifying, or scaffolding
other macromolecules ([188] and Figure 1G–I). Moreover, their function is also determined
by their subcellular localization that can be nuclear, cytoplasmic, or both (Figure 1).

With regard to the NS, a striking 40% (corresponding to 4000–20,000 lncRNA genes)
of lncRNAs are expressed specifically in the brain, where their expression is exceptionally
cell-, region-, and tissue-specific [189–191]. This expression pattern provides them with
the ability to mark subpopulations of neural and neuronal cell types better than protein-
coding genes during cortical development [192]. Compared to lncRNAs expressed in other
tissues, the brain-specific lncRNAs display the highest evolutionary conservation, both in
terms of sequence and structure, and display a preferential location in close proximity to
protein-coding genes that are active in NS development and transcriptional regulation [193].
The findings that their expression is highly regulated during brain development and in
response to neuronal activity argue for their involvement in NS structure and function.
Indeed, they participate in all the stages along the differentiation process from pluripotent
to postmitotic cells. Examples are the lncRNAs RMST and HOTAIRM1. The first one,
during in vitro neural differentiation, drives the recruitment of the TF SOX2 that in turn
activates neurogenesis-promoting genes, such as DLX1, ASCL1, HEY2, and SPS [194].
The lncRNA HOTAIRM1 represses the expression of the master gene Neurogenin 2 in
the transition from neuronal precursors to neuronal cells, ensuring the correct timing of
neuronal differentiation [195]. NS lncRNAs are also crucially involved in synaptogenesis, a
process allowing the establishment of neuronal connections that are essential for normal
brain function. Among these lncRNAs are BC1/BC200, that regulates spatially restricted
synaptic turnover in vivo, and MALAT1, that regulates synaptic density in in vitro cultured
hippocampal neurons. Another important process regulated by lncRNAs is neuronal
plasticity that underpins learning, memory, and cognition [196]. A handful of lncRNAs
have been proposed as possibly involved in ALS pathogenesis and are reported below.
In most of the cases, a clear mechanistic implication in MN degeneration has not been
demonstrated, even though some relevance could be attributed to antisense transcription
and nucleotide expansions.

5.2.1. C9ORF72-AS

From an epidemiological standpoint, C9ORF72 is the first ALS gene. It functions in
neuronal proteostasis [197] and normally carries up to 20 repeats of the hexanucleotide se-
quence GGGGCC in the first intron of its locus [198]. C9ORF72 variants carrying repetition
expansions ranging from hundreds to thousands represent the most common genetic cause
of fALS (up to 40% of cases) and FTD (25% of patients) [44,199,200]. Both loss of normal
C9ORF72 function and gain of repeat expansion-associated toxic activity have been linked
to ALS and FTD [201].

Interestingly, the C9ORF72 genomic region was shown to be transcribed bidirection-
ally. In pathological conditions, the sense transcript is translated—through a non-canonical
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repeat-associated non-AUG (RAN) initiation event—in a six dipeptide repeat-containing
protein (DRP, [48,202,203]), which accumulates in neuronal cytoplasmic aggregates along
with the transcript. Similarly, the antisense RNA C9ORF72-AS, which contains the ex-
panded reverse-repeated hexanucleotide (GGCCCC)n, also localizes into disease-associated
nuclear RNA foci (Figure 2F and [45,203,204]) whose abundance positively correlates with
the severity of ALS and FTD symptoms [199,205].

The role of C9ORF72-AS in MN degeneration is still debated and contradictory in
comparison to the sense transcript [206,207]. However, at least two pieces of evidence
point to its relevance: (1) selective C9ORF72-AS knockdown by ASOs attenuates, but does
not fully rescue, molecular hallmarks and cellular defects in MNs carrying the expan-
sions [46,49,208,209]; (2) antisense (but not sense) RNA foci are specifically associated with
mislocalized TDP-43 in C9ORF72 patient MNs [205,210]. An additional issue is to discrimi-
nate the contribution of the aberrant RNA or of the derived DRP to motoneuropathy [211].
This question was addressed by raising dedicated animal systems (reviewed in [212]).
While “RNA-only” Drosophila models seem to tolerate sense and antisense RNAs [213–215]
well, zebrafish embryos injected with RNAs consisting of dozens of sense and antisense
repeats showed, in the absence of DRP, reduced axonal outgrowth and aberrant branch-
ing [216]. This is like what was observed upon SOD1 and TARDBP mutations, supporting
the possibility that RNA may mediate the toxicity of C9ORF72. Additionally, data from
mouse models carrying the full-length human C9ORF72 locus with repeat expansions are
ambiguous [209,217–219]. Only some of them show motor or cognitive defects, probably
indicating any influence of the experimental conditions or genetic backgrounds.

In conclusion, the current view proposes that C9ORF72-AS may mainly contribute
to ALS and FTD not only by hijacking RBPs in RNA foci, but also by participating in
gene expression deregulation through the formation of peculiar conformational struc-
tures [220,221].

5.2.2. ATXN2-AS

The ubiquitous protein ATXN2, localized at the Golgi apparatus and the ER, regu-
lates several cellular pathways, from mRNA processing and translation to endocytosis
and energy metabolism [222]. Its mutation is widely associated with neurodegeneration.
Expansions of ATXN2 polyQ repeats (from the physiological 22 copies to more than 33)
cause spinocerebellar ataxia type 2 (SCA-2; [223,224]), an autosomal-dominant disorder
mainly impairing cerebellar neuron circuits. Differently, a number of polyQ repeats of
about 30 copies correlate with a higher risk to develop ALS [225]. Interestingly, in this
condition, ATXN2 interacts with FUS and TDP-43 [225,226].

Similar to C9ORF72, the ATXN2 locus is also transcribed in both directions, producing
the natural antisense transcript ATXN2-AS [227]. In ALS lymphoblastoid lines, ATXN2-AS
is expressed both as a normal and expanded transcript, that was shown to trigger toxicity
in neuronal-like neuroblastoma cells and primary mouse cortical neurons, independently
from protein translation. It has been proposed that the expansion may disrupt the function
of ATXN2-AS, which does not seem to deal with the expression of the sense RNA. However,
similarly to other expansion repeat diseases, in neurodegenerations associated with ATXN2
transcripts, mutant RNAs may also interact with RBPs normally required for ribosomal
RNA (rRNA) processing and mRNA splicing, sequestering them to aberrant RNA foci
(Figure 2F and [228]).

5.2.3. The Interplay between lncRNAs and ALS Genes

At least two lines of evidence demonstrate the crucial interplay occurring between
lncRNAs and the pleiotropic RBPs FUS and TDP-43. On one side, a direct interaction
between the proteins and RNA moieties was demonstrated by several studies. They ex-
ploited CLIP approaches (declined according to several methodological variants) followed
by transcriptome profiling, or specific candidate-oriented analyses, such as biochemical
purification (RNA pull down) or imaging techniques.
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On the other side, lncRNA expression was shown to be altered in proteinopathy
samples or in experimental conditions where a depletion, functional inhibition, or mutation
of TDP-43 and FUS intervened. All these issues have been reviewed elsewhere [229]. Below,
we report some recent and specific examples of the association between lncRNAs and FUS
or TDP-43 in conditions mimicking ALS.

5.2.4. NEAT1

Nuclear-enriched abundant transcript 1 (expressed as NEAT1_1 and NEAT1_2 iso-
forms) is an lncRNA known to function as a chromatin regulator and, through its scaf-
folding activity, as an architectural organizer of subnuclear structures called paraspeck-
les [230]. Several IP approaches revealed the direct binding between NEAT1 and TDP-43 or
FUS [231–234].

By individual nucleotide resolution UV CLIP (iCLIP) in sporadic FTD cortical brain
tissues containing TDP inclusions, Tollervey and colleagues revealed that TDP-43 binds
NEAT1 whose expression significantly increases in this pathology, justifying its enriched
association with TDP-43. The same behavior was described for metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) that recruits splicing factors to nuclear speckles
and affects serine and arginine-rich (SR) protein phosphorylation (Figure 2G and [231]).
Conversely, the maternally expressed lncRNA Meg3, relevant to MN cell fate determina-
tion [235], showed a significant downregulation in FTD-TDP and a reduction in TDP-43
binding.

The role of NEAT1 and paraspeckles in ALS has been addressed and it is still debated.
The occurrence of paraspeckles decreased significantly upon TDP-43 or FUS knockdown in
cultured cells [236], but paraspeckle hyper-assembly was observed downstream of TDP-43
loss of function in ALS [237]. By electron microscopy analysis combined with in situ hy-
bridization, Nishimoto and colleagues demonstrated NEAT1_2 upregulation and increased
paraspeckle formation frequency during the early phases of ALS pathogenesis. This, in
combination with the antiapoptotic activity of paraspeckles, suggests a compensatory
mechanism to promote MN survival at the disease onset [238].

In addition, nearly all NEAT1_2 foci overlapped endogenous TDP-43 and FUS aggre-
gates in the nucleus of ALS MNs. The interplay between ALS-associated RBPs and NEAT1
also affects its biogenesis, since depletion of FUS, TDP-43, or Matrin 3 leads to enhanced
NEAT1_2 expression [236,239]. Consistently, FUS mutations impair NEAT1 transcription
and paraspeckle assembly, counteracting the supposed paraspeckle-mediated mechanisms
of (moto)neuron protection. In conclusion, the protective role of NEAT1 remains unclear,
since its induction in MN-like cell lines was shown to promote neurotoxicity, causing neu-
ronal cell damage and death [240]. Conversely, the upregulation of NEAT1_1 ameliorates
TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy [241].

5.2.5. Other lncRNAs in ALS

LncRNA expression was profiled at the transcriptome level in ALS in vitro model
systems or, alternatively, specific noncoding transcripts were analyzed in human or animal
MNs and then verified in ALS conditions. Biscarini et al. [242] identified lncRNAs differ-
entially expressed upon MN differentiation from mouse ESCs. Out of twelve candidates
probably carrying out a function in the SC being upregulated in MNs, three transcripts
(Lhx1os, lncMN-1, and lncMN-2) were selected for their enrichment versus the non-MN
cell population and for their conservation in humans. Importantly, a deregulation of these
species in mouse MNs expressing the equivalent of the severe ALS FUS mutation P525L
was shown. A functional and mechanistic association with ALS is still not known for these
lncRNAs. However, it is noteworthy that the protein-coding genes divergently transcribed
from Lhx1os and lncMN-1 loci, which are associated with MN differentiation and cell adhe-
sion respectively, showed the same trend of deregulation as their noncoding counterparts
upon FUS mutation. This suggests a co-regulated response to FUS for these bidirectional
transcription units.
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The Drosophila lncRNA heat-shock RNA ω (hsrω) is also linked to ALS-associated RBPs.
On one side, TDP-43 binds the hsrω locus and activates its transcription [243]. Furthermore,
its human orthologue satellite III repeat RNA (Sat III) shows an increased expression in FTD
patient tissues and in a cellular disease model overexpressing TDP-43 [244]. On the other
hand, dFUS interacts with hsrω whose depletion causes FUS cytoplasmic delocalization
and loss of nuclear function. Finally, MN-specific knockdown of hsrω impairs locomotion
in larval and adult flies and induces MN presynaptic defects [245]. This exemplifies how
FUS and TDP-43 may potently converge on the (de)regulation of specific transcripts and
exacerbate MN dysfunctions in ALS.

Lately, the expression of a panel of eight lncRNAs (linc-Enc1, linc–Brn1a, linc–Brn1b,
linc-p21, Hottip, Tug1, Eldrr, and Fendr), previously characterized in mouse development
and tumorigenesis, was found to be deregulated in brain and SC areas of the SOD1G93A

mouse, with linc-p21 being altered in all the tissues analyzed. Deranged levels of these
lncRNAs were also detected in ALS cell model systems [246].

5.3. Circular RNAs

This subclass of lncRNAs, considered as by-products of splicing errors for many
years, more recently has become the object of intense studies. The majority of circular
RNAs (circRNAs) derive from protein-coding genes through a non-canonical splicing
event, called back-splicing, during which the downstream 5′ splice site is covalently
bonded to an upstream 3′ splice site in a reversed orientation. This process, which requires
spliceosomal machinery and occurs co-transcriptionally, results in a closed-loop structure
that is responsible for the high stability and the accumulation of circRNAs in the cell [247].
These RNAs may consist of one or more exons or be exclusively intronic and their length
can vary from 100 bp to 4 kb [248]. To add a layer of diversity, circRNA isoforms with the
same junction, but different internal exons, may be released from the same gene locus [247].
They have been detected in many species, from plants to animals, are evolutionarily
conserved [249], and display a tissue and developmental stage-specific expression [250]. In
particular, circRNAs are significantly enriched in the brain, where 20% of protein-coding
genes produce these molecules [247]. Notably, Gene Ontology analysis revealed that
most of them derive from genes coding for synaptic proteins. This suggests their possible
involvement in synaptic function, for instance, as scaffolds for the delivery of RNAs and
proteins to the synapses [250]. Accordingly, upregulation of circRNA expression was
observed during hippocampal development from stage E18 to P30, reaching the highest
levels at the onset of synaptogenesis [247]. Furthermore, their expression profile was also
investigated upon induction of synaptic plasticity in cultured hippocampal neurons. It
showed that, unlike their linear host transcripts, the expression of a set of circRNAs was
regulated by neural plasticity, with 37 being upregulated and five downregulated [247].

Their function and mechanisms of action are still poorly understood. Most evidence
points to a regulatory role of gene expression carried out by their ability to act as a molecular
decoy for miRNAs or RBPs, which are sequestered from their natural targets. Alternatively,
circRNAs may control the transcription of their host genes [251]. Moreover, for a few of
them, a role as a template for protein translation, relying on a CAP-independent mechanism,
has been determined [252,253]. Importantly, modulation of their expression has been
associated with neurological diseases.

Circular RNAs in ALS

To date, the link between circRNAs and ALS has been fragmentarily explored. The
first study in the field was performed by Errichelli et al. in mouse ESC-derived MNs [254].
They highlighted a function for FUS in the processing of circRNAs, through its binding to
the intronic sequences adjacent to the circularizing exons. Upon FUS depletion, circRNA
expression was unbalanced compared to the linear counterparts, which accumulate nor-
mally. The authors also determined that FUS can directly impact the biogenesis of specific
circRNAs, either positively or negatively. Finally, they suggest that circRNA biosynthesis
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may be affected by pathogenic FUS mutations through a mechanism possibly affecting
splicing regulation (Figure 2D).

The impact of ALS-associated RBPs on the steady-state expression of circRNAs was
also confirmed through the generation of a conditional mouse with a TDP-43 depletion
in the forebrain, that exhibited a spectrum of FTD-like aberrant behaviors. RNA-seq data
revealed that hundreds of circRNAs in the neocortex were significantly and differentially
expressed between the TDP-43 KO and control mice [255].

From the mechanistic side, very recently, a study revealed that a C9ORF72-derived,
intron-containing G-repeat can form nuclear RNA granules in vitro. It is also stabilized as
a circRNA in the cytoplasm where it can function as a template for the translation of DRP,
explaining how C9ORF72 intronic expansions may contribute to ALS [256].

5.4. Noncoding RNAs as ALS Biomarkers

A bulk of studies focused on miRNAs to investigate their potential role as biomarkers
for accurate ALS diagnosis, prognosis prediction, or disease progression. They were based
on miRNA differential and reproducible detection in human ALS samples.

MiRNA signatures were identified by high- or low-throughput approaches (next-
generation sequencing, microarray profiling, PCR arrays) from easy-to-reach ALS patient
biological specimens, such as circulating body fluids, cellular fractions, or muscle biopsies.
In 2012, a pioneering study by De Felice and colleagues revealed eight miRNAs, namely
miR-451, miR-1275, miR-328, miR-638, miR-149, miR-665, miR-583, and miR-338-3p, that
were significantly deregulated in sALS patient leukocytes. MiR-338-3p was previously
found to be altered in ALS brains [257].

Later, multiple observations deepened the relationship between ALS and deregulated
miRNA levels, identifying miRNA subsets that could distinguish patients from healthy
subjects. To this purpose, different kinds of biological sources were employed, from blood
components [258–265] up to formalin-fixed paraffin-embedded samples [266]. Due to
their enriched miRNA content, their fundamental role in intercellular communication, and
cargo diffusion in the surrounding environment [267], particular attention was devoted
to extracellular vesicles (microvesicles and exosomes). A growing number of studies
aim to identify the miRNAs transported by these carriers in normal vs. pathological
cells [150,156,268], in control vs. ALS mice [154,269], or, more importantly, in ALS patients
vs. healthy donors [270–275]. Finally, to match more closely the pathophysiological status of
CNS, attention was also paid to the CSF as a source of data [149,276–280]. A comprehensive
list of ALS circulating miRNAs is reported in Table 1.

Table 1. Differentially expressed microRNAs detected in ALS biofluids.

Sample Disease Upregulated Downregulated Reference

Cortico-spinal tract
tissue (EV) C9orf72 ALS miRNA-494-3p [156]

Cerebro-spinal fluid sALS, fALS
miRNA-27b, miRNA-99b,
miRNA-146a, miRNA-150,
miRNA-328, miRNA-532-3p

[149]

Cerebro-spinal fluid sALS miRNA-143-5p, miRNA-574-5p miRNA-132-3p, miRNA-132-5p,
miRNA-143-3p [276]

Cerebro-spinal fluid sALS miRNA-181a-5p
let7a-5p, let7b-5p, let7f-5p,
miRNA-15b-5p, miRNA-21-5p,
miRNA-148-3p, miRNA-195-5p

[278]

Cerebro-spinal fluid sALS

miRNA-9-5p, miRNA-23b-3p,
miRNA-27b-3p, miRNA-99b-5p,
miRNA-124-3p, miRNA-126-5p,
miRNA-127-3p

let-7f-5p, miRNA-i50-5p,
miRNA-142-5p, miRNA-378a-3p [281]
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Table 1. Cont.

Sample Disease Upregulated Downregulated Reference

Cerebro-spinal fluid sALS
miRNA-9-5p, miRNA-27b-3p,
miRNA-124-3p, miRNA-125b-2-3p,
miRNA-127-3p, miRNA-143-3p

let7f-5p, miRNA-16-5p, miRNA-28-3p,
miRNA-92a-5p, miRNA-142-5p,
miRNA-146a-3p, miRNA-150-5p,
miRNA-378a-3p, miRNA-486-5p

[279]

Peripheral blood
mononuclear cells ALS miRNA-183, miRNA-193b,

miRNA-451, miRNA-3935 [130]

Plasma sALS miRNA-4649-5p miRNA-4299 [261]

Plasma sALS miRNA-206, miRNA-424 [262]

Plasma ALS
miRNA-9, miRNA-129-3p,
miRNA-206, miRNA-335-5p,
miRNA-338-3p

[282]

Plasma sALS

let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p,
let-7i-5p, miRNA-15a-5p,
miRNA-15b-5p, miRNA-16-5p,
miRNA-22-3p, miRNA-23a-3p,
miRNA-26a-5p, miRNA-26b-5p,
miRNA-27b-3p, miRNA-28-3p,
miRNA-30b-5p, miRNA-30c-5p,
miRNA-93-5p, miRNA-103a-3p,
miRNA-106b-3p, miRNA-128-3p,
miRNA-130a-3p, miRNA-130b-3p,
miRNA-144-5p, miRNA-148a-3p,
miRNA-148b-3p, miRNA-151a-5p,
miRNA-151b, miRNA-182-5p,
miRNA-183-5p, miRNA-186-5p,
miRNA-221-3p, miRNA-223-3p,
miRNA-342-3p, miRNA-425-5p,
miRNA-451a, miRNA-532-5p,
miRNA-550a-3p, miRNA-584-5p

[260]

Plasma ALS
miRNA-532.3p, miRNA-144-3p,
miRNA-15a-5p, miRNA-363-3p,
miRNA-183-5p

let-7c-5p, miRNA-4454,
miRNA-9-1-5p, miRNA-9-3-5p,
miRNA-338-3p, miRNA-9-2-5p,
miRNA-100-5p, miRNA-7977,
miRNA-1246, miRNA-664a-5p,
miRNA-7641-1, miRNA-1290,
miRNA-4286, miRNA-181b-1-5p,
miRNA-1260b, miRNA-181b-2-5p,
miRNA-127-3p, miRNA-181a-2-5p,
miRNA-181a-1-5p, miRNA-199b-3p,
miRNA-199a-1-3p

[271]

Plasma C9orf72 ALS miRNA-34a-5p, miRNA-345-5p miRNA-200c-3p, miRNA-10a-3p [264]

Plasma sALS, fALS
let7f-5p, miRNA-106, miRNA-142,
miRNA-143, miRNA-206,
miRNA-4516

let7f-5p [265]

Plasma (EV) ALS

miRNA-24-3p, miRNA-149-3p,
miRNA-371a-5p, miRNA-939-5p,
miRNA-1207-5p, miRNA-3619-3p,
miRNA-4298, miRNA-4484,
miRNA-4505, miRNA-4688,
miRNA-4700-5p, miRNA-4736,
miRNA-4739

miRNA-150-3p, miRNA-634,
miRNA-1268a, miRNA-1913,
miRNA-2861, miRNA-3176,
miRNA-3177-3p, miRNA-3605-5p,
miRNA-3911, miRNA-3940-3p,
miRNA-4507, miRNA-4508,
miRNA-4646-5p, miRNA-4674,
miRNA-4687-5p, miRNA-4745-5p,
miRNA-4788

[272]
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Table 1. Cont.

Sample Disease Upregulated Downregulated Reference

Plasma (EV) ALS
miRNA-146a-5p, miRNA-151a-3p,
miRNA-151a-5p, miRNA-199a-3p,
miRNA-199a-5p

miRNA-10b-5p, miRNA-29b-3p,
miRNA-4454 [273]

Plasma (EV) sALS

miRNA-8089, miRNA-196a-5p,
miRNA-3152-3p, miRNA-607,
miRNA-3607-3p, miRNA-6825-3p,
miRNA-7106-5p, miRNA-3976,
miRNA-4492, miRNA-200a-3p,
miRNA-205-5p, miRNA-6858-3p,
miRNA-1273c, miRNA-6888.3p,
miRNA-4302, miRNA-4634,
miRNA-182-3p, miRNA-3160-3p,
miRNA-1-3p, miRNA-200a-5p,
miRNA-7704, miRNA-210-3p,
miRNA-31-5p, miRNA-133a-3p,
miRNA-34c-5p, miRNA-455-5p,
miRNA-6842-5p, miRNA-3619-3p,
miRNA-4279, miRNA-4508,
miRNA-1469, miRNA-141-3p,
miRNA-542-3p, miRNA-615-3p,
miRNA-200c-3p, miRNA-4451,
miRNA-18a-5p, miRNA-200b-3p,
miRNA-184, miRNA-9-5p,
miRNA-7c-5p, miRNA-6746-5p,
miRNA-3195, miRNA-206,
miRNA-6068

miRNA-493-3p, 409-3p,
miRNA-323b-3p, miRNA-6073,
miRNA-432-5p, miRNA-134-5p,
miRNA-330-3p, miRNA-625-3p,
miRNA-4446-3p, miRNA-148b-3p,
miRNA-370-3p, miRNA-584-5p,
miRNA-224-5p, miRNA-381-3p,
miRNA-199a-5p, miRNA-654-3p,
miRNA-335-3p, miRNA-543,
miRNA-4433b-5p, miRNA-130b-5p,
miRNA-4286, miRNA-382-5p

[275]

Serum sALS
let-7b-5p, miRNA-132-3p,
miRNA-132-5p, miRNA-143-3p,
miRNA-143-5p

[276]

Serum sALS miR-338-3p [277]

Serum fALS
miRNA-1825, miRNA-1915-3p,
miRNA-3665, miRNA-4530,
miRNA-4745-5p

[104]

Serum ALS miRNA-106b, miRNA-206 [165]

Serum sALS miRNA-1234-3p, miRNA-1825 [105]

Serum sALS miRNA-143-3p, miRNA-206 miRNA-374b-5p [281]

Serum sALS miRNA-142-3p miRNA-1249-3p [283]

Serum ALS

miRNA-1, miRNA-19a-3p,
miRNA-133a-3p, miRNA-133b,
miRNA-192-3p, miRNA-192-5p,
miRNA-142-3p, miRNA-144-5p

let-7d-3p, miRNA-139-5p,
miRNA-320a, miRNA-320b,
miRNA-320c, miRNA-425-5p

[258]

Serum sALS, fALS miRNA-133a, miRNA-206 miRNA-151a-5p, miRNA-199a-5p,
miRNA-423-3p [284]

Serum (EXO) ALS miRNA-27a-3p [270]

EV = extracellular vesicle; EXO = exosome.

Differently, several reports have profiled miRNAs from in vivo ALS models—mainly
from SOD1 transgenic mice—at the symptomatic [283] or at the preclinical stage [285],
followed by validations of single species in humans. In some cases, a correlation between al-
tered miRNA expression levels and ALS functional rating scale or muscle strength emerged.

As for prognosis and progression, a recent quantitative longitudinal analysis deserves
attention. It was performed by Dobrowolny et al. [284] on selected miRNAs from patient
sera during disease development. They showed that the early stage of ALS displays
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low levels of miR-199a-5p, miR-133a, and miR-423-3p and, conversely, high levels of
miR-151a-5p and miR-206, which also predict a slower functionality decline.

In conclusion, among all the potential ALS miRNA biomarkers which are progres-
sively emerging, those already associated with the development or physiology of neu-
ral, (moto)neuronal, and muscle cells are of major interest. Between the species overex-
pressed in ALS, miR-9 [281,282,286], miR-124 [279], miR-206 [165,281,282,286], miR-338-
3p [257,287], and miR-133b [258] should be mentioned. Complementarily, miRNAs such
as miR-132 [276], miR-128 [260], and miR-183 [130,260] were described as downregulated.
Despite these major efforts, current data on miRNAs as sensors in ALS are sometimes
contradictory and still not clear enough for a rapid translation into clinical routine.

By contrast, only very few studies focused on lncRNAs (either linear or circular)
differentially expressed in biological samples of ALS patients. In 2018, Gagliardi and
co-authors detected 293 lncRNAs that were dysregulated in peripheral blood mononu-
clear cells from uncharacterized sALS patients. Furthermore, 21 species were found to be
altered in patients carrying a FUS mutation, 11 in TARDBP-associated cases and two in
SOD1 mutant patients [70]. Most of these candidates were unknown and, at least in some
cases, antisense to specific RNAs, suggesting plausible sequence complementarity-based
mechanisms of action. As for circRNAs, 425 species were identified by microarray profiling
as differentially expressed in leukocytes of sALS patients, and seven out of 10 selected
species were validated in a larger cohort of patients [288]. Some of them revealed high
statistical significance and biological relevance, based on the identity of the host gene or
the presence of putative binding sites for miRNAs deregulated in ALS. Finally, Hosaka
and colleagues [289] showed that extracellular RNAs, including circRNAs, are differen-
tially edited in mice lacking ADAR2, the deaminase responsible for adenosine to inosine
posttranscriptional modification of transcripts, which is downregulated in sALS [290]. If
confirmed in ALS samples, this may suggest circRNA editing as a disease biomarker.

6. Conclusions

The multi-genetic traits of ALS make it difficult to univocally define this disease.
Among the several descriptions, ALS was also labeled as an RNA disorder, which mainly
derives from the alterations that its causative genes provoke in RNA metabolism. Further-
more, the involvement of ncRNAs in ALS etiopathogenesis, which has been progressively
emerging over the years, represents an additional and intriguing justification to this defi-
nition. The study of ncRNAs in ALS provides at least two scientific advancements in the
comprehension of the pathology. The first one is a conceptual contribution to extend and
clarify the gene pathways underlying the pathology. This aspect is particularly relevant
for the future development of targeted therapies. Nevertheless, the understanding of
ALS is still a long way off, due to the high heterogeneity and interlacement of pathogenic
mechanisms converging onto the MN degeneration. However, even if we are facing a still
fragmented picture of the pathology, the participation of ncRNAs in several pathogenic
processes, ranging from astrogliosis to muscle atrophy, oxidative stress, and inflammation,
highlights their wide involvement in ALS.

The second advancement concerns the possible applications of ncRNAs as novel
biomarkers for disease occurrence or stage of progression. In this regard, miRNAs represent
the most appealing class of noncoding molecules to date. Oncological studies highlighted
miRNAs as powerful clinical indicators for their high tissue specificity in health and disease
and their easy detectability in body fluids as stable molecules. Even if several issues, such
as heterogeneous ALS etiology and data collection or analysis, counteract miRNAs’ rapid
translation into clinical routine, it is widely assumed that they may function as ALS
biomarkers. They may help to diagnose the occurrence of the disease or to characterize its
development through association with patients’ functional rates.

Currently, no effective treatment for ALS is available to halt or reverse the progression
of the disease. Prospectively, ncRNAs are suitable for introduction in the (pre)clinical
circuits as therapeutic agents. This may apply especially to miRNAs, whose gene targets
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are easy to predict and validate and whose sequence/structure allows easier manipulations.
These features, combined with the consolidation of intervention strategies, such as miRNA
functional inhibition via ASOs or miRNA functional recovery through miRNA mimics or
AAV-based gene therapy, have already generated promising results. The manipulation
of specific miRNAs, such as miR-155 [151,152], miR-129-5p [291], and miR-17∼92 [138],
has proved to be effective for suppressing adverse phenotypes, favoring the integrity
and the amount of MNs, slowing down ALS progression, and promoting the survival
of affected animals. MiRNA-based treatments targeting the SOD1 pathway seem to be
particularly promising. Several approaches have already been proposed, based on the use
of either native or artificial miRNAs combined with potent viral vector delivery systems in
transgenic SOD1G93A mice and primates [292–296]. Furthermore, transcripts of other ALS
genes, such as C9ORF72, have also been targeted through miRNAs [297]. These pieces of
evidence bring the prospective application of miRNA therapies to treat ALS in humans
closer ([298] and https://www.neals.org/als-trials/1331).
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Abbreviations

ALS amyotrophic lateral sclerosis
ASO antisense oligonucleotide
BS brainstem
circRNA circular RNA
CLIP cross-linking immunoprecipitation
CNS central nervous system
CSF cerebrospinal fluid
DRP dipeptide-repeat-containing protein
ER endoplasmic reticulum
ESC embryonic stem cell
fALS familial ALS
FTD frontotemporal dementia
iPSC induced pluripotent stem cell
lncRNA long noncoding RNA
MCx motor cortex
MG microglia
miRNA microRNA
MN motoneuron
mRNA messenger RNA
ncRNA noncoding RNA
Nf neurofilament
NMJ neuromuscular junction
NS nervous system
pNfH phosphorylated neurofilament heavy chain
RBP RNA binding protein
RNP ribonucleoprotein
sALS sporadic ALS
SC spinal cord
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SG stress granule
TF transcription factor
UTR untranslated region

References
1. Robberecht, W.; Philips, T. The Changing Scene of Amyotrophic Lateral Sclerosis. Nat. Rev. Neurosci. 2013, 14, 248–264. [CrossRef]
2. Swinnen, B.; Robberecht, W. The Phenotypic Variability of Amyotrophic Lateral Sclerosis. Nat. Rev. Neurol. 2014, 10, 661–670.

[CrossRef]
3. Li, T.M.; Alberman, E.; Swash, M. Comparison of Sporadic and Familial Disease amongst 580 Cases of Motor Neuron Disease.

J. Neurol. Neurosurg. Psychiatry 1988, 51, 778–784. [CrossRef] [PubMed]
4. Pasinelli, P.; Brown, R.H. Molecular Biology of Amyotrophic Lateral Sclerosis: Insights from Genetics. Nat. Rev. Neurosci. 2006, 7,

710–723. [CrossRef] [PubMed]
5. Andersen, P.M.; Al-Chalabi, A. Clinical Genetics of Amyotrophic Lateral Sclerosis: What Do We Really Know? Nat. Rev. Neurol.

2011, 7, 603–615. [CrossRef] [PubMed]
6. Chia, R.; Chiò, A.; Traynor, B.J. Novel Genes Associated with Amyotrophic Lateral Sclerosis: Diagnostic and Clinical Implications.

Lancet Neurol. 2018, 17, 94–102. [CrossRef]
7. Chiò, A.; Battistini, S.; Calvo, A.; Caponnetto, C.; Conforti, F.L.; Corbo, M.; Giannini, F.; Mandrioli, J.; Mora, G.; Sabatelli, M.;

et al. Genetic Counselling in ALS: Facts, Uncertainties and Clinical Suggestions. J. Neurol. Neurosurg. Psychiatry 2014, 85, 478–485.
[CrossRef]

8. Gamez, J.; Corbera-Bellalta, M.; Nogales, G.; Raguer, N.; García-Arumí, E.; Badia-Canto, M.; Lladó-Carbó, E.; Álvarez-Sabín, J.
Mutational Analysis of the Cu/Zn Superoxide Dismutase Gene in a Catalan ALS Population: Should All Sporadic ALS Cases
Also Be Screened for SOD1? J. Neurol. Sci. 2006, 247, 21–28. [CrossRef]

9. Cooper-Knock, J.; Hewitt, C.; Highley, J.R.; Brockington, A.; Milano, A.; Man, S.; Martindale, J.; Hartley, J.; Walsh, T.; Gelsthorpe,
C.; et al. Clinico-Pathological Features in Amyotrophic Lateral Sclerosis with Expansions in C9ORF72. Brain 2012, 135, 751–764.
[CrossRef]

10. Taylor, J.P.; Brown, R.H.; Cleveland, D.W. Decoding ALS: From Genes to Mechanism. Nature 2016, 539, 197–206. [CrossRef]
[PubMed]

11. Portz, B.; Lee, B.L.; Shorter, J. FUS and TDP-43 Phases in Health and Disease. Trends Biochem. Sci. 2021, 46, 550–563. [CrossRef]
[PubMed]

12. Deng, H.-X.; Chen, W.; Hong, S.-T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; et al. Mutations
in UBQLN2 Cause Dominant X-Linked Juvenile and Adult-Onset ALS and ALS/Dementia. Nature 2011, 477, 211–215. [CrossRef]
[PubMed]

13. Fecto, F.; Yan, J.; Vemula, S.P.; Liu, E.; Yang, Y.; Chen, W.; Zheng, J.G.; Shi, Y.; Siddique, N.; Arrat, H.; et al. SQSTM1 Mutations in
Familial and Sporadic Amyotrophic Lateral Sclerosis. Arch. Neurol. 2011, 68, 1440–1446. [CrossRef]

14. Wyss-Coray, T. Ageing, Neurodegeneration and Brain Rejuvenation. Nature 2016, 539, 180–186. [CrossRef] [PubMed]
15. Polymenidou, M.; Lagier-Tourenne, C.; Hutt, K.R.; Huelga, S.C.; Moran, J.; Liang, T.Y.; Ling, S.-C.; Sun, E.; Wancewicz, E.; Mazur,

C.; et al. Long Pre-MRNA Depletion and RNA Missplicing Contribute to Neuronal Vulnerability from Loss of TDP-43. Nat.
Neurosci. 2011, 14, 459–468. [CrossRef]

16. Arnold, E.S.; Ling, S.-C.; Huelga, S.C.; Lagier-Tourenne, C.; Polymenidou, M.; Ditsworth, D.; Kordasiewicz, H.B.; McAlonis-
Downes, M.; Platoshyn, O.; Parone, P.A.; et al. ALS-Linked TDP-43 Mutations Produce Aberrant RNA Splicing and Adult-Onset
Motor Neuron Disease without Aggregation or Loss of Nuclear TDP-43. Proc. Natl. Acad. Sci. USA 2013, 110, E736–E745.
[CrossRef]

17. Butti, Z.; Patten, S.A. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front. Genet. 2019, 10, 712. [CrossRef]
18. Gregory, R.I.; Yan, K.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor Complex

Mediates the Genesis of MicroRNAs. Nature 2004, 432, 235–240. [CrossRef]
19. Ling, S.-C.; Albuquerque, C.P.; Han, J.S.; Lagier-Tourenne, C.; Tokunaga, S.; Zhou, H.; Cleveland, D.W. ALS-Associated Mutations

in TDP-43 Increase Its Stability and Promote TDP-43 Complexes with FUS/TLS. Proc. Natl. Acad. Sci. USA 2010, 107, 13318–13323.
[CrossRef]

20. Charcot, J.-M.; Joffroy, A. Deux Cas d’atrophie Musculaire Progressive Avec Lésions de La Substance Grise et Des Faisceaux
Antérolatéraux de La Moelle Épinière. Arch. Physiol. Norm. Pathol. 1869, 2, 744–760.

21. Kurland, L.K.; Mulder, D.W. Epidemiologic Investigations of Amyotrophic Lateral Sclerosis: 1. Preliminary Report on Geographic
Distribution, with Special Reference to the Mariana Islands, Including Clinical and Pathologic Observations. Neurology 1954, 4,
355–378. [CrossRef]

22. Mulder, D.W. Epidemiologic Investigations of Amyotrophic Lateral Sclerosis: 2. Familial Aggregations Indicative of Dominant
Inheritance Part II. Neurology 1955, 5, 249–268. [CrossRef]

23. Ganesalingam, J.; Stahl, D.; Wijesekera, L.; Galtrey, C.; Shaw, C.E.; Leigh, P.N.; Al-Chalabi, A. Latent Cluster Analysis of ALS
Phenotypes Identifies Prognostically Differing Groups. PLoS ONE 2009, 4, e7107. [CrossRef]

24. Finegan, E.; Chipika, R.H.; Li Hi Shing, S.; Hardiman, O.; Bede, P. Pathological Crying and Laughing in Motor Neuron Disease:
Pathobiology, Screening, Intervention. Front. Neurol. 2019, 10, 260. [CrossRef]

http://doi.org/10.1038/nrn3430
http://doi.org/10.1038/nrneurol.2014.184
http://doi.org/10.1136/jnnp.51.6.778
http://www.ncbi.nlm.nih.gov/pubmed/3404186
http://doi.org/10.1038/nrn1971
http://www.ncbi.nlm.nih.gov/pubmed/16924260
http://doi.org/10.1038/nrneurol.2011.150
http://www.ncbi.nlm.nih.gov/pubmed/21989245
http://doi.org/10.1016/S1474-4422(17)30401-5
http://doi.org/10.1136/jnnp-2013-305546
http://doi.org/10.1016/j.jns.2006.03.006
http://doi.org/10.1093/brain/awr365
http://doi.org/10.1038/nature20413
http://www.ncbi.nlm.nih.gov/pubmed/27830784
http://doi.org/10.1016/j.tibs.2020.12.005
http://www.ncbi.nlm.nih.gov/pubmed/33446423
http://doi.org/10.1038/nature10353
http://www.ncbi.nlm.nih.gov/pubmed/21857683
http://doi.org/10.1001/archneurol.2011.250
http://doi.org/10.1038/nature20411
http://www.ncbi.nlm.nih.gov/pubmed/27830812
http://doi.org/10.1038/nn.2779
http://doi.org/10.1073/pnas.1222809110
http://doi.org/10.3389/fgene.2018.00712
http://doi.org/10.1038/nature03120
http://doi.org/10.1073/pnas.1008227107
http://doi.org/10.1212/WNL.4.5.355
http://doi.org/10.1212/wnl.5.4.249
http://doi.org/10.1371/journal.pone.0007107
http://doi.org/10.3389/fneur.2019.00260


Int. J. Mol. Sci. 2021, 22, 10285 23 of 34

25. Pape, J.A.; Grose, J.H. The Effects of Diet and Sex in Amyotrophic Lateral Sclerosis. Rev. Neurol. (Paris) 2020, 176, 301–315.
[CrossRef] [PubMed]

26. Trojsi, F.; D’Alvano, G.; Bonavita, S.; Tedeschi, G. Genetics and Sex in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS): Is
There a Link? Int. J. Mol. Sci. 2020, 21, 3647. [CrossRef] [PubMed]

27. Gordon, P.H.; Mehal, J.M.; Holman, R.C.; Rowland, L.P.; Rowland, A.S.; Cheek, J.E. Incidence of Amyotrophic Lateral Sclerosis
Among American Indians and Alaska Natives. JAMA Neurol. 2013, 70, 476–480. [CrossRef] [PubMed]

28. Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E.; EURALS.
Incidence of Amyotrophic Lateral Sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [CrossRef] [PubMed]

29. Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global Epidemiology of Amyotrophic
Lateral Sclerosis: A Systematic Review of the Published Literature. Neuroepidemiology 2013, 41, 118–130. [CrossRef]

30. Chiò, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G.; Eurals Consortium. Prognostic Factors
in ALS: A Critical Review. Amyotroph. Lateral Scler. 2009, 10, 310–323. [CrossRef] [PubMed]

31. del Aguila, M.A.; Longstreth, W.T.; McGuire, V.; Koepsell, T.D.; van Belle, G. Prognosis in Amyotrophic Lateral Sclerosis.
Neurology 2003, 60, 813–819. [CrossRef]

32. Turner, M.R.; Parton, M.J.; Shaw, C.E.; Leigh, P.N.; Al-Chalabi, A. Prolonged Survival in Motor Neuron Disease: A Descriptive
Study of the King’s Database 1990–2002. J. Neurol. Neurosurg. Psychiatry 2003, 74, 995–997. [CrossRef]

33. Chiò, A.; Calvo, A.; Moglia, C.; Mazzini, L.; Mora, G.; PARALS Study Group. Phenotypic Heterogeneity of Amyotrophic Lateral
Sclerosis: A Population Based Study. J. Neurol. Neurosurg. Psychiatry 2011, 82, 740–746. [CrossRef]

34. Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic
Lateral Sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2009, 1, 293–299. [CrossRef]

35. Bensimon, G.; Lacomblez, L.; Meininger, V.; ALS/Riulzole Study Group. A Controlled Trial of Riluzole in Amyotrophic Lateral
Sclerosis. N. Engl. J. Med. 2010, 330, 585–591. [CrossRef]

36. Gagliardi, D.; Meneri, M.; Saccomanno, D.; Bresolin, N.; Comi, G.P.; Corti, S. Diagnostic and Prognostic Role of Blood and
Cerebrospinal Fluid and Blood Neurofilaments in Amyotrophic Lateral Sclerosis: A Review of the Literature. Int. J. Mol. Sci.
2019, 20, 4152. [CrossRef] [PubMed]

37. Poesen, K.; De Schaepdryver, M.; Stubendorff, B.; Gille, B.; Muckova, P.; Wendler, S.; Prell, T.; Ringer, T.M.; Rhode, H.; Stevens, O.;
et al. Neurofilament Markers for ALS Correlate with Extent of Upper and Lower Motor Neuron Disease. Neurology 2017, 88,
2302–2309. [CrossRef] [PubMed]

38. Falzone, Y.M.; Domi, T.; Agosta, F.; Pozzi, L.; Schito, P.; Fazio, R.; Del Carro, U.; Barbieri, A.; Comola, M.; Leocani, L.; et al. Serum
Phosphorylated Neurofilament Heavy-Chain Levels Reflect Phenotypic Heterogeneity and Are an Independent Predictor of
Survival in Motor Neuron Disease. J. Neurol. 2020, 267, 1. [CrossRef] [PubMed]

39. De Schaepdryver, M.; Jeromin, A.; Gille, B.; Claeys, K.G.; Herbst, V.; Brix, B.; Van Damme, P.; Poesen, K. Comparison of Elevated
Phosphorylated Neurofilament Heavy Chains in Serum and Cerebrospinal Fluid of Patients with Amyotrophic Lateral Sclerosis.
J. Neurol. Neurosurg. Psychiatry 2018, 89, 367–373. [CrossRef]

40. Menzies, F.M.; Grierson, A.J.; Cookson, M.R.; Heath, P.R.; Tomkins, J.; Figlewicz, D.A.; Ince, P.G.; Shaw, P.J. Selective Loss of
Neurofilament Expression in Cu/Zn Superoxide Dismutase (SOD1) Linked Amyotrophic Lateral Sclerosis. J. Neurochem. 2002, 82,
1118–1128. [CrossRef] [PubMed]

41. Lu, L.; Zheng, L.; Viera, L.; Suswam, E.; Li, Y.; Li, X.; Estévez, A.G.; King, P.H. Mutant Cu/Zn-Superoxide Dismutase Associated
with Amyotrophic Lateral Sclerosis Destabilizes Vascular Endothelial Growth Factor MRNA and Downregulates Its Expression.
J. Neurosci. 2007, 27, 7929–7938. [CrossRef] [PubMed]

42. Chen, H.; Qian, K.; Du, Z.; Cao, J.; Petersen, A.; Liu, H.; Blackbourn, L.W.; Huang, C.L.; Errigo, A.; Yin, Y.; et al. Modeling ALS
with IPSCs Reveals That Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell 2014, 14, 796–809.
[CrossRef]

43. Strong, M.J. The Evidence for Altered RNA Metabolism in Amyotrophic Lateral Sclerosis (ALS). J. Neurol. Sci. 2010, 288, 1–12.
[CrossRef] [PubMed]

44. Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.P.; Waite, A.; Rollinson, S.; Chiò, A.; Restagno, G.; Nicolaou, N.; Simon-
Sanchez, J.; et al. Frequency of the C9orf72 Hexanucleotide Repeat Expansion in Patients with Amyotrophic Lateral Sclerosis and
Frontotemporal Dementia: A Cross-Sectional Study. Lancet Neurol. 2012, 11, 323–330. [CrossRef]

45. Gendron, T.F.; Bieniek, K.F.; Zhang, Y.J.; Jansen-West, K.; Ash, P.E.A.; Caulfield, T.; Daughrity, L.; Dunmore, J.H.; Castanedes-
Casey, M.; Chew, J.; et al. Antisense Transcripts of the Expanded C9ORF72 Hexanucleotide Repeat Form Nuclear RNA Foci and
Undergo Repeat-Associated Non-ATG Translation in C9FTD/ALS. Acta Neuropathol. 2013, 126, 829–844. [CrossRef]

46. Donnelly, C.J.; Zhang, P.W.; Pham, J.T.; Heusler, A.R.; Mistry, N.A.; Vidensky, S.; Daley, E.L.; Poth, E.M.; Hoover, B.; Fines, D.M.;
et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 2013, 80, 415–428.
[CrossRef]

47. Lee, Y.B.; Chen, H.J.; Peres, J.N.; Gomez-Deza, J.; Attig, J.; Štalekar, M.; Troakes, C.; Nishimura, A.L.; Scotter, E.L.; Vance, C.; et al.
Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic.
Cell Rep. 2013, 5, 1178–1186. [CrossRef]

http://doi.org/10.1016/j.neurol.2019.09.008
http://www.ncbi.nlm.nih.gov/pubmed/32147204
http://doi.org/10.3390/ijms21103647
http://www.ncbi.nlm.nih.gov/pubmed/32455692
http://doi.org/10.1001/jamaneurol.2013.929
http://www.ncbi.nlm.nih.gov/pubmed/23440294
http://doi.org/10.1136/jnnp.2009.183525
http://www.ncbi.nlm.nih.gov/pubmed/19710046
http://doi.org/10.1159/000351153
http://doi.org/10.3109/17482960802566824
http://www.ncbi.nlm.nih.gov/pubmed/19922118
http://doi.org/10.1212/01.WNL.0000049472.47709.3B
http://doi.org/10.1136/jnnp.74.7.995
http://doi.org/10.1136/jnnp.2010.235952
http://doi.org/10.1080/146608200300079536
http://doi.org/10.1056/NEJM199403033300901
http://doi.org/10.3390/ijms20174152
http://www.ncbi.nlm.nih.gov/pubmed/31450699
http://doi.org/10.1212/WNL.0000000000004029
http://www.ncbi.nlm.nih.gov/pubmed/28500227
http://doi.org/10.1007/s00415-020-09838-9
http://www.ncbi.nlm.nih.gov/pubmed/32306171
http://doi.org/10.1136/jnnp-2017-316605
http://doi.org/10.1046/j.1471-4159.2002.01045.x
http://www.ncbi.nlm.nih.gov/pubmed/12358759
http://doi.org/10.1523/JNEUROSCI.1877-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17652584
http://doi.org/10.1016/j.stem.2014.02.004
http://doi.org/10.1016/j.jns.2009.09.029
http://www.ncbi.nlm.nih.gov/pubmed/19840884
http://doi.org/10.1016/S1474-4422(12)70043-1
http://doi.org/10.1007/s00401-013-1192-8
http://doi.org/10.1016/j.neuron.2013.10.015
http://doi.org/10.1016/j.celrep.2013.10.049


Int. J. Mol. Sci. 2021, 22, 10285 24 of 34

48. Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H.A.; Cruts, M.; Van
Broeckhoven, C.; et al. The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS.
Science 2013, 339, 1335–1338. [CrossRef]

49. Lagier-Tourenne, C.; Baughn, M.; Rigo, F.; Sun, S.; Liu, P.; Li, H.-R.; Jiang, J.; Watt, A.T.; Chun, S.; Katz, M.; et al. Targeted
Degradation of Sense and Antisense C9orf72 RNA Foci as Therapy for ALS and Frontotemporal Degeneration. Proc. Natl. Acad.
Sci. USA 2013, 110, E4530–E4539. [CrossRef] [PubMed]

50. Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark,
C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314,
130–133. [CrossRef]

51. Armstrong, G.A.B.; Drapeau, P. Calcium Channel Agonists Protect against Neuromuscular Dysfunction in a Genetic Model of
TDP-43 Mutation in ALS. J. Neurosci. 2013, 33, 1741–1752. [CrossRef]

52. Lu, L.; Wang, S.; Zheng, L.; Li, X.; Suswam, E.A.; Zhang, X.; Wheeler, C.G.; Nabors, L.B.; Filippova, N.; King, P.H. Amyotrophic
Lateral Sclerosis-Linked Mutant SOD1 Sequesters Hu Antigen R (HuR) and TIA-1-Related Protein (TIAR). J. Biol. Chem. 2009, 284,
33989–33998. [CrossRef] [PubMed]

53. Feiguin, F.; Godena, V.K.; Romano, G.; D’Ambrogio, A.; Klima, R.; Baralle, F.E. Depletion of TDP-43 Affects Drosophila
Motoneurons Terminal Synapsis and Locomotive Behavior. FEBS Lett. 2009, 583, 1586–1592. [CrossRef] [PubMed]

54. Sephton, C.F.; Cenik, C.; Kucukural, A.; Dammer, E.B.; Cenik, B.; Han, Y.H.; Dewey, C.M.; Roth, F.P.; Herz, J.; Peng, J.; et al.
Identification of Neuronal RNA Targets of TDP-43-Containing Ribonucleoprotein Complexes. J. Biol. Chem. 2011, 286, 1204–1215.
[CrossRef] [PubMed]

55. Di Carlo, V.; Grossi, E.; Laneve, P.; Morlando, M.; Dini Modigliani, S.; Ballarino, M.; Bozzoni, I.; Caffarelli, E. TDP-43 Regulates
the Microprocessor Complex Activity during in Vitro Neuronal Differentiation. Mol. Neurobiol. 2013, 48, 952–963. [CrossRef]

56. Herzog, J.J.; Deshpande, M.; Shapiro, L.; Rodal, A.A.; Paradis, S. TDP-43 Misexpression Causes Defects in Dendritic Growth. Sci.
Rep. 2017, 7, 15656. [CrossRef]

57. Handley, E.E.; Pitman, K.A.; Dawkins, E.; Young, K.M.; Clark, R.M.; Jiang, T.C.; Turner, B.J.; Dickson, T.C.; Blizzard, C.A. Synapse
Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies. Cereb.
Cortex 2017, 27, 3630–3647. [CrossRef] [PubMed]

58. Ratti, A.; Buratti, E. Physiological Functions and Pathobiology of TDP-43 and FUS/TLS Proteins. J. Neurochem. 2016, 138, 95–111.
[CrossRef]

59. Buratti, E.; De Conti, L.; Stuani, C.; Romano, M.; Baralle, M.; Baralle, F. Nuclear Factor TDP-43 Can Affect Selected MicroRNA
Levels. FEBS J. 2010, 277, 2268–2281. [CrossRef]

60. Kawahara, Y.; Mieda-Sato, A. TDP-43 Promotes MicroRNA Biogenesis as a Component of the Drosha and Dicer Complexes. Proc.
Natl. Acad. Sci. USA 2012, 109, 3347–3352. [CrossRef]

61. Zhang, Z.; Almeida, S.; Lu, Y.; Nishimura, A.L.; Peng, L.; Sun, D.; Wu, B.; Karydas, A.M.; Tartaglia, M.C.; Fong, J.C.; et al.
Downregulation of MicroRNA-9 in IPSC-Derived Neurons of FTD/ALS Patients with TDP-43 Mutations. PLoS ONE 2013, 8,
e76055. [CrossRef] [PubMed]

62. King, I.N.; Yartseva, V.; Salas, D.; Kumar, A.; Heidersbach, A.; Ando, D.M.; Stallings, N.R.; Elliott, J.L.; Srivastava, D.; Ivey, K.N.
The RNA-Binding Protein TDP-43 Selectively Disrupts MicroRNA-1/206 Incorporation into the RNA-Induced Silencing Complex.
J. Biol. Chem. 2014, 289, 14263–14271. [CrossRef] [PubMed]

63. Colombrita, C.; Onesto, E.; Megiorni, F.; Pizzuti, A.; Baralle, F.E.; Buratti, E.; Silani, V.; Ratti, A. TDP-43 and FUS RNA-
Binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-Transcriptional Fate in
Motoneuron-like Cells. J. Biol. Chem. 2012, 287, 15635. [CrossRef]

64. Zinszner, H.; Sok, J.; Immanuel, D.; Yin, Y.; Ron, D. TLS (FUS) Binds RNA in Vivo and Engages in Nucleo-Cytoplasmic Shuttling.
J. Cell Sci. 1997, 110, 1741–1750. [CrossRef] [PubMed]

65. Fujii, R.; Okabe, S.; Urushido, T.; Inoue, K.; Yoshimura, A.; Tachibana, T.; Nishikawa, T.; Hicks, G.G.; Takumi, T. The RNA Binding
Protein TLS Is Translocated to Dendritic Spines by MGluR5 Activation and Regulates Spine Morphology. Curr. Biol. 2005, 15,
587–593. [CrossRef] [PubMed]

66. Fujii, R.; Takumi, T. TLS Facilitates Transport of MRNA Encoding an Actin-Stabilizing Protein to Dendritic Spines. J. Cell Sci.
2005, 118, 5755–5765. [CrossRef]

67. Kwiatkowski, T.J.; Bosco, D.A.; LeClerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.;
Munsat, T.; et al. Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science 2009,
323, 1205–1208. [CrossRef]

68. Dormann, D.; Haass, C. Fused in Sarcoma (FUS): An Oncogene Goes Awry in Neurodegeneration. Mol. Cell. Neurosci. 2013, 56,
475–486. [CrossRef]

69. Daigle, G.G.; Lanson, N.A.; Smith, R.B.; Casci, I.; Maltare, A.; Monaghan, J.; Nichols, C.D.; Kryndushkin, D.; Shewmaker, F.;
Pandey, U.B. Rna-Binding Ability of FUS Regulates Neurodegeneration, Cytoplasmic Mislocalization and Incorporation into
Stress Granules Associated with FUS Carrying ALS-Linked Mutations. Hum. Mol. Genet. 2013, 22, 1193–1205. [CrossRef]

70. Gagliardi, S.; Zucca, S.; Pandini, C.; Diamanti, L.; Bordoni, M.; Sproviero, D.; Arigoni, M.; Olivero, M.; Pansarasa, O.; Ceroni,
M.; et al. Long Non-Coding and Coding RNAs Characterization in Peripheral Blood Mononuclear Cells and Spinal Cord from
Amyotrophic Lateral Sclerosis Patients. Sci. Rep. 2018, 8, 2378. [CrossRef]

http://doi.org/10.1126/science.1232927
http://doi.org/10.1073/pnas.1318835110
http://www.ncbi.nlm.nih.gov/pubmed/24170860
http://doi.org/10.1126/science.1134108
http://doi.org/10.1523/JNEUROSCI.4003-12.2013
http://doi.org/10.1074/jbc.M109.067918
http://www.ncbi.nlm.nih.gov/pubmed/19805546
http://doi.org/10.1016/j.febslet.2009.04.019
http://www.ncbi.nlm.nih.gov/pubmed/19379745
http://doi.org/10.1074/jbc.M110.190884
http://www.ncbi.nlm.nih.gov/pubmed/21051541
http://doi.org/10.1007/s12035-013-8564-x
http://doi.org/10.1038/s41598-017-15914-4
http://doi.org/10.1093/cercor/bhw185
http://www.ncbi.nlm.nih.gov/pubmed/27496536
http://doi.org/10.1111/jnc.13625
http://doi.org/10.1111/j.1742-4658.2010.07643.x
http://doi.org/10.1073/pnas.1112427109
http://doi.org/10.1371/journal.pone.0076055
http://www.ncbi.nlm.nih.gov/pubmed/24143176
http://doi.org/10.1074/jbc.M114.561902
http://www.ncbi.nlm.nih.gov/pubmed/24719334
http://doi.org/10.1074/jbc.M111.333450
http://doi.org/10.1242/jcs.110.15.1741
http://www.ncbi.nlm.nih.gov/pubmed/9264461
http://doi.org/10.1016/j.cub.2005.01.058
http://www.ncbi.nlm.nih.gov/pubmed/15797031
http://doi.org/10.1242/jcs.02692
http://doi.org/10.1126/science.1166066
http://doi.org/10.1016/j.mcn.2013.03.006
http://doi.org/10.1093/hmg/dds526
http://doi.org/10.1038/s41598-018-20679-5


Int. J. Mol. Sci. 2021, 22, 10285 25 of 34

71. Garofalo, M.; Pandini, C.; Bordoni, M.; Pansarasa, O.; Rey, F.; Costa, A.; Minafra, B.; Diamanti, L.; Zucca, S.; Carelli, S.; et al.
Alzheimer’s, Parkinson’s Disease and Amyotrophic Lateral Sclerosis Gene Expression Patterns Divergence Reveals Different
Grade of RNA Metabolism Involvement. Int. J. Mol. Sci. 2020, 21, 9500. [CrossRef]

72. Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; et al.
The Transcriptional Landscape of the Mammalian Genome. Science 2005, 309, 1559–1563. [CrossRef]

73. Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al.
Landscape of Transcription in Human Cells. Nature 2012, 489, 101–108. [CrossRef] [PubMed]

74. Dunham, I.; Kundaje, A.; Aldred, S.F.; Collins, P.J.; Davis, C.A.; Doyle, F.; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R.; et al. An
Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [CrossRef]

75. Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [CrossRef]
76. Ebert, M.S.; Sharp, P.A. Roles for MicroRNAs in Conferring Robustness to Biological Processes. Cell 2012, 149, 515–524. [CrossRef]
77. Cloutier, F.; Marrero, A.; O’Connell, C.; Morin, P.J. MicroRNAs as Potential Circulating Biomarkers for Amyotrophic Lateral

Sclerosis. J. Mol. Neurosci. 2014, 56, 102–112. [CrossRef] [PubMed]
78. de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An

Integrated Expression Atlas of MiRNAs and Their Promoters in Human and Mouse. Nat. Biotechnol. 2017, 35, 872–878. [CrossRef]
79. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front.

Endocrinol. (Lausanne) 2018, 9, 402. [CrossRef]
80. Zolboot, N.; Du, J.X.; Zampa, F.; Lippi, G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front.

Mol. Neurosci. 2021, 14, 69. [CrossRef] [PubMed]
81. Lu, Y.-L.; Yoo, A.S. Mechanistic Insights into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts. Front.

Neurosci. 2018, 12, 522. [CrossRef]
82. Campos-Melo, D.; Droppelmann, C.A.; He, Z.; Volkening, K.; Strong, M.J. Altered MicroRNA Expression Profile in Amyotrophic

Lateral Sclerosis: A Role in the Regulation of NFL MRNA Levels. Mol. Brain 2013, 6, 26. [CrossRef]
83. Emde, A.; Eitan, C.; Liou, L.-L.; Libby, R.T.; Rivkin, N.; Magen, I.; Reichenstein, I.; Oppenheim, H.; Eilam, R.; Silvestroni, A.;

et al. Dysregulated MiRNA Biogenesis Downstream of Cellular Stress and ALS-Causing Mutations: A New Mechanism for ALS.
EMBO J. 2015, 34, 2633–2651. [CrossRef]

84. Figueroa-Romero, C.; Hur, J.; Lunn, J.S.; Paez-Colasante, X.; Bender, D.E.; Yung, R.; Sakowski, S.A.; Feldman, E.L. Expression of
MicroRNAs in Human Post-Mortem Amyotrophic Lateral Sclerosis Spinal Cords Provides Insight into Disease Mechanisms. Mol.
Cell. Neurosci. 2016, 71, 34–45. [CrossRef]

85. Rizzuti, M.; Filosa, G.; Melzi, V.; Calandriello, L.; Dioni, L.; Bollati, V.; Bresolin, N.; Comi, G.P.; Barabino, S.; Nizzardo, M.; et al.
MicroRNA Expression Analysis Identifies a Subset of Downregulated MiRNAs in ALS Motor Neuron Progenitors. Sci. Rep. 2018,
8, 10105. [CrossRef]

86. Jawaid, A.; Woldemichael, B.T.; Kremer, E.A.; Laferriere, F.; Gaur, N.; Afroz, T.; Polymenidou, M.; Mansuy, I.M. Memory Decline
and Its Reversal in Aging and Neurodegeneration Involve MiR-183/96/182 Biogenesis. Mol. Neurobiol. 2018, 56, 3451–3462.
[CrossRef]

87. Paez-Colasante, X.; Figueroa-Romero, C.; Rumora, A.E.; Hur, J.; Mendelson, F.E.; Hayes, J.M.; Backus, C.; Taubman, G.F.; Heinicke,
L.; Walter, N.G.; et al. Cytoplasmic TDP43 Binds MicroRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis. Front. Cell.
Neurosci. 2020, 14, 117. [CrossRef] [PubMed]

88. Zuo, X.; Zhou, J.; Li, Y.; Wu, K.; Chen, Z.; Luo, Z.; Zhang, X.; Liang, Y.; Esteban, M.A.; Zhou, Y.; et al. TDP-43 Aggregation
Induced by Oxidative Stress Causes Global Mitochondrial Imbalance in ALS. Nat. Struct. Mol. Biol. 2021, 28, 132–142. [CrossRef]

89. Morlando, M.; Modigliani, S.D.; Torrelli, G.; Rosa, A.; Di Carlo, V.; Caffarelli, E.; Bozzoni, I. FUS Stimulates MicroRNA Biogenesis
by Facilitating Co-Transcriptional Drosha Recruitment. EMBO J. 2012, 31, 4502–4510. [CrossRef] [PubMed]

90. Zhang, T.; Wu, Y.-C.; Mullane, P.; Ji, Y.J.; Liu, H.; He, L.; Arora, A.; Hwang, H.-Y.; Alessi, A.F.; Niaki, A.G.; et al. FUS Regulates
Activity of MicroRNA-Mediated Gene Silencing. Mol. Cell 2018, 69, 787–801.e8. [CrossRef] [PubMed]

91. Hawley, Z.C.E.; Campos-Melo, D.; Strong, M.J. Evidence of a Negative Feedback Network between TDP-43 and MiRNAs
Dependent on TDP-43 Nuclear Localization. J. Mol. Biol. 2020, 432, 166695. [CrossRef]

92. Hawley, Z.C.E.; Campos-Melo, D.; Strong, M.J. Novel MiR-B2122 Regulates Several ALS-Related RNA-Binding Proteins. Mol.
Brain 2017, 10, 46. [CrossRef]

93. Dini Modigliani, S.; Morlando, M.; Errichelli, L.; Sabatelli, M.; Bozzoni, I. An ALS-Associated Mutation in the FUS 3′-UTR
Disrupts a MicroRNA–FUS Regulatory Circuitry. Nat. Commun. 2014, 5, 4335. [CrossRef]

94. Eitan, C.; Hornstein, E. Vulnerability of MicroRNA Biogenesis in FTD–ALS. Brain Res. 2016, 1647, 105–111. [CrossRef]
95. Shinde, S.; Arora, N.; Bhadra, U. A Complex Network of MicroRNAs Expressed in Brain and Genes Associated with Amyotrophic

Lateral Sclerosis. Int. J. Genom. 2013, 2013, 383024. [CrossRef]
96. Hamzeiy, H.; Suluyayla, R.; Brinkrolf, C.; Janowski, S.J.; Hofestädt, R.; Allmer, J. Visualization and Analysis of MiRNAs Implicated

in Amyotrophic Lateral Sclerosis Within Gene Regulatory Pathways. Ger. Med. Data Sci. 2018, 253, 183–187. [CrossRef]
97. Recabarren-Leiva, D.; Alarcón, M. New Insights into the Gene Expression Associated to Amyotrophic Lateral Sclerosis. Life Sci.

2018, 193, 110–123. [CrossRef] [PubMed]

http://doi.org/10.3390/ijms21249500
http://doi.org/10.1126/SCIENCE.1112014
http://doi.org/10.1038/nature11233
http://www.ncbi.nlm.nih.gov/pubmed/22955620
http://doi.org/10.1038/nature11247
http://doi.org/10.1016/j.cell.2018.03.006
http://doi.org/10.1016/j.cell.2012.04.005
http://doi.org/10.1007/s12031-014-0471-8
http://www.ncbi.nlm.nih.gov/pubmed/25433762
http://doi.org/10.1038/nbt.3947
http://doi.org/10.3389/fendo.2018.00402
http://doi.org/10.3389/fnmol.2021.646072
http://www.ncbi.nlm.nih.gov/pubmed/33994943
http://doi.org/10.3389/fnins.2018.00522
http://doi.org/10.1186/1756-6606-6-26
http://doi.org/10.15252/embj.201490493
http://doi.org/10.1016/j.mcn.2015.12.008
http://doi.org/10.1038/s41598-018-28366-1
http://doi.org/10.1007/s12035-018-1314-3
http://doi.org/10.3389/fncel.2020.00117
http://www.ncbi.nlm.nih.gov/pubmed/32477070
http://doi.org/10.1038/s41594-020-00537-7
http://doi.org/10.1038/emboj.2012.319
http://www.ncbi.nlm.nih.gov/pubmed/23232809
http://doi.org/10.1016/j.molcel.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29499134
http://doi.org/10.1016/j.jmb.2020.10.029
http://doi.org/10.1186/s13041-017-0326-7
http://doi.org/10.1038/ncomms5335
http://doi.org/10.1016/j.brainres.2015.12.063
http://doi.org/10.1155/2013/383024
http://doi.org/10.3233/978-1-61499-896-9-183
http://doi.org/10.1016/j.lfs.2017.12.016
http://www.ncbi.nlm.nih.gov/pubmed/29241710


Int. J. Mol. Sci. 2021, 22, 10285 26 of 34

98. Liu, D.; Zuo, X.; Zhang, P.; Zhao, R.; Lai, D.; Chen, K.; Han, Y.; Wan, G.; Zheng, Y.; Lu, C.; et al. The Novel Regulatory Role of
LncRNA-MiRNA-MRNA Axis in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis. Comput. Math. Methods
Med. 2021, 2021, 5526179. [CrossRef] [PubMed]

99. Mitropoulos, K.; Katsila, T.; Patrinos, G.P.; Pampalakis, G. Multi-Omics for Biomarker Discovery and Target Validation in Biofluids
for Amyotrophic Lateral Sclerosis Diagnosis. Omics A J. Integr. Biol. 2018, 22, 52–64. [CrossRef] [PubMed]

100. Rotem, N.; Magen, I.; Ionescu, A.; Gershoni-Emek, N.; Altman, T.; Costa, C.J.; Gradus, T.; Pasmanik-Chor, M.; Willis, D.E.;
Ben-Dov, I.Z.; et al. ALS Along the Axons–Expression of Coding and Noncoding RNA Differs in Axons of ALS Models. Sci. Rep.
2017, 7, 44500. [CrossRef]

101. Helferich, A.M.; Brockmann, S.J.; Reinders, J.; Deshpande, D.; Holzmann, K.; Brenner, D.; Andersen, P.M.; Petri, S.; Thal, D.R.;
Michaelis, J.; et al. Dysregulation of a Novel MiR-1825/TBCB/TUBA4A Pathway in Sporadic and Familial ALS. Cell. Mol. Life Sci.
2018, 75, 4301–4319. [CrossRef] [PubMed]

102. Kim, K.Y.; Kim, Y.R.; Choi, K.W.; Lee, M.; Lee, S.; Im, W.; Shin, J.Y.; Kim, J.Y.; Hong, Y.H.; Kim, M.; et al. Downregulated
MiR-18b-5p Triggers Apoptosis by Inhibition of Calcium Signaling and Neuronal Cell Differentiation in Transgenic SOD1 (G93A)
Mice and SOD1 (G17S and G86S) ALS Patients. Transl. Neurodegener. 2020, 9, 23. [CrossRef]

103. Freischmidt, A.; Goswami, A.; Limm, K.; Zimyanin, V.L.; Demestre, M.; Glaß, H.; Holzmann, K.; Helferich, A.M.; Brockmann, S.J.;
Tripathi, P.; et al. A Serum MicroRNA Sequence Reveals Fragile X Protein Pathology in Amyotrophic Lateral Sclerosis. Brain 2021,
144, 1214–1229. [CrossRef]

104. Freischmidt, A.; Müller, K.; Zondler, L.; Weydt, P.; Volk, A.E.; Božič, A.L.; Walter, M.; Bonin, M.; Mayer, B.; von Arnim, C.A.F.;
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