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OBJECTIVE: Cell diameter, area, and volume are established quantitative measures of adipocyte size. However, these different
adipocyte sizing parameters have not yet been directly compared regarding their distributions. Therefore, the study aimed to
investigate how these adipocyte size measures differ in their distribution and assessed their correlation with anthropometry and
laboratory chemistry. In addition, we were interested to investigate the relationship between fat cell size and adipocyte
mitochondrial respiratory chain capacity.
METHODS: Subcutaneous and visceral histology-based adipocyte size estimates from 188 individuals were analyzed by applying a
panel of parameters to describe the underlying cell population. Histology-based adipocyte diameter distributions were compared
with adipocyte diameter distributions from collagenase digestion. Associations of mean adipocyte size with body mass index (BMI),
glucose, HbA1C, blood lipids as well as mature adipocyte mitochondrial respiration were investigated.
RESULTS: All adipocyte area estimates derived from adipose tissue histology were not normally distributed, but rather
characterized by positive skewness. The shape of the size distribution depends on the adipocyte sizing parameter and on the
method used to determine adipocyte size. Despite different distribution shapes histology-derived adipocyte area, diameter,
volume, and surface area consistently showed positive correlations with BMI. Furthermore, associations between adipocyte sizing
parameters and glucose, HbA1C, or HDL specifically in the visceral adipose depot were revealed. Increasing subcutaneous adipocyte
diameter was negatively correlated with adipocyte mitochondrial respiration.
CONCLUSIONS: Despite different underlying size distributions, the correlation with obesity-related traits was consistent across
adipocyte sizing parameters. Decreased mitochondrial respiratory capacity with increasing subcutaneous adipocyte diameter could
display a novel link between adipocyte hypertrophy and adipose tissue function.
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INTRODUCTION
Adipose tissue is a unique organ with great plasticity displaying
unmatched expansion and shrinkage capacities during periods of
caloric excess or deprivation which is directly reflected in up to
multiple fold changes in fat cell volume [1–3]. The onset of obesity
in adults is characterized by an increase in adipose tissue mass
mostly due to the enlargement of existing fat cells (hypertrophy)
[4, 5]. Hyperplasia, which describes an increase in fat cell number
is considered to only play a minor role in the expansion of adipose
tissue mass in adults [5].
To measure adipocyte size, three methods have emerged as

standards: histological sections, collagenase digestion, and

osmium tetroxide fixation. Despite systematic size differences, all
methods are largely coherent regarding their size estimate
association with obesity-related traits [6]. However, adipocyte size
distributions from different adipocyte sizing methods vary in
characteristic features of the distribution (i.e., modality and
symmetry) [6]. Furthermore, distributions from one sizing method
may not always be comparable since different variables such as
area or feret diameter can be used as output measurements [7, 8].
In addition, the transformation of the initial size measurement into
another sizing variable assuming a spherical shape might reduce
comparability due to the nonlinear transformation of the data
(diameter= sqrt((4*area)/π); volume= 1/6*diameter3*π) [8–10].
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Adipocyte diameter and volume are usually related to anthro-
pometry, metabolic outcomes, or adipocyte function [5, 10, 11]. Due
to the introduction of fast and automated adipocyte size determina-
tion software, adipocyte area is currently reported more frequently
[12, 13]. Adipocyte volume as a measure of fat cell size has high
physiological relevance and is directly related to lipid storage capacity
and adipose tissue cellularity [5, 6, 14, 15]. Furthermore, associations
of fat cell size with comorbidities of obesity (Type 2 diabetes (T2D),
dyslipidemia, and cardiovascular disease) have been reported and
insulin-resistant individuals were found to exhibit larger visceral
adipocytes compared to insulin-sensitive controls [16–20]. In addition,
studies on size-separated fat cells provide evidence for functional
differences between small and large adipocytes from the same
individual [10, 21, 22]. However, cross-sectional studies assessing the
genetic and metabolic underpinnings of adipocyte hypertrophy
remain scarce [12, 14, 23–25]. Despite their low content in comparison
with other tissues, adipocyte mitochondria are essential organelles for
adipocyte differentiation, lipogenesis, adipokine secretion, and
browning [26–29]. Emerging evidence indicates a fundamental
relationship between obesity and altered adipocyte mitochondrial
metabolism [30–32]. Considering the central role of mitochondria in
adipose tissue metabolism and their association with obesity-related
traits it seems likely that adipose tissue mitochondrial function could
be associated with fat cell size. However, the relationship between
adipocyte size and mitochondrial function has not yet been
investigated cross-sectionally in humans, but solely in size-separated
adipocytes [33, 34].
Therefore, this study aimed to achieve a comprehensive overview

of similarities and differences in fat cell size distribution shape
dependent on the adipocyte sizing method and the extracted sizing
parameter. Furthermore, we sought to relate measurements of
adipocyte size to phenotypic and laboratory variables. We used
mature adipocyte respirometry data to investigate if the mitochon-
drial function is associated with adipocyte size.

MATERIALS AND METHODS
Study participants and phenotype data
Sc and vc adipose tissue samples were obtained from 188 adult individuals
(129 female, 59 male) undergoing elective abdominal surgery. Each
participant gave written informed consent before inclusion and the study
protocol was approved by the ethics committee of the Technical University
of Munich (Study No. 5716/13). Collected data included the presence or
absence of T2D as diagnosed by the treating physician, demographics (age
and sex), anthropometry (weight before surgery, height, and BMI) as well
as laboratory values (glycated HbA1C, fasting plasma glucose, triglycerides,
cholesterol, LDL, and HDL).
Study participants were on average 48 ± 13 years old with a mean BMI of

43.6 ± 13.3 kg/m2. According to BMI categories 23 individuals with normal
weight (12.2%), 18 individuals with overweight (9.6%), 8 individuals with
obesity class I (4.3%), 13 individuals with obesity class II (6.9%), and 122
individuals with obesity class III (64.9%) participated in the study.
T2D was diagnosed in 45 individuals (24.3%), while 140 participants

were free of T2D (3 not known). The study populations’ characteristics are
summarized in Table 1 and Table S1.

Adipose tissue sampling and adipocyte isolation
Sc (n= 161) and vc (n= 188) adipose tissue biosamples were obtained from
the upper abdominal area at the site of incision and in the proximity of the
angle of his, respectively. Paired sc and vc adipose tissue were available from
146 individuals. After excision, samples were immediately fixed in 4%
formaldehyde for later use in histology. Tissue samples for mature adipocyte
isolation were transported to the laboratory in DMEM-F12 (Thermo Fisher
Scientific, Waltham, Massachusetts)+ 1% penicillin–streptomycin (Merck,
Darmstadt, Germany) where collagenase-based mature adipocyte isolation
was carried out as described previously [33].

Diameter determination of floating mature adipocytes
Approximately, 50 μl of the adipocyte suspension was pipetted onto a
glass slide and the diameter of 100 cells was manually determined under a

light microscope. Adipocyte diameter from collagenase digestion was
available for 84 sc and 97 vc samples.

Histology-based adipocyte cross-sectional area determination
At least three 5 µm thick hematoxylin and eosin-stained sections with a
minimum distance of 100 µm or from different blocks were used for
microscopy and size determination. The adipocyte size estimates used for
analysis were assessed retrospectively based on a recently published
method, the Adipocyte U-Net [12]. Objects with an area smaller than
200 µm2 and larger than 16,000 µm2 were excluded as they typically
represent artifacts from tissue processing and histology.

Adipocyte area parameters
Totally, 500 cell cross-sectional area estimates and 100 cell diameter
estimates were used for data analysis on histology and collagenase-
digested adipocytes, respectively. If not given by the initial measurement
adipocyte area, diameter, volume or surface area were calculated based on
the assumption of spherical shape. Descriptive statistics (density plots and
quantile-quantile plots), as well as measures for central tendency
(arithmetic mean and median), were calculated. In addition, the first and
ninth decile were determined and the interdecile range (IDR) was
calculated as a measure of the dispersion of adipocyte sizes. Skewness
was used as a distribution asymmetry measure and kurtosis was used to
assess distribution tailedness.

Respirometry
Data on mature adipocyte mitochondrial function was available for 24 sc
and 35 vc samples originating from an earlier project of our group [30].
Briefly, 200 µl of packed isolated adipocytes were pipetted into the
experimental chamber of an Oxygraph-2k (Oroboros Instruments,
Innsbruck, Austria) and substrate-uncoupler-inhibitor titration was carried
out to assess the following respiratory states: (I) Free OXPHOS capacity
which describes the respiratory capacity potentially available for ADP
phosphorylation, (II) OXPHOS capacity describing the respiratory capacity
of mitochondria in the ADP activated state, (III) electron transfer system
capacity (ETS) describing the maximum respiratory chain capacity due to
chemical uncoupling introducing proton reflux into the mitochondrial
matrix, and (IV) leak respiration in the presence of oligomycin describing
the dissipative component of respiration that does not contribute to ATP
synthesis [35]. DNA from adipocytes was isolated for normalization
purposes and results were given as picomoles of oxygen consumed
per second and nanogram of DNA. Respiration was measured in mature
adipocytes since cell-mitochondrion interactions are preserved [36]. In
addition, isolated adipocytes offer the advantage that confounding effects
from the stromal vascular fraction on respiration and normalization can be
ruled out [37].

Statistics
Shapiro Wilk tests and quantile-quantile plots were used to test for/against
normality. All data were presented as mean ± SD. If not stated otherwise,
Pearson correlation was used to test for associations between adipocyte
size, anthropometry, laboratory values, and mitochondrial respiration. To
further explore the relationship between adipocyte size and phenotype

Table 1. Study participants’ characteristics.

Variable Mean ± SD Range (min–max)

Anthropometry

Age [years]; n= 188 48 ± 13 18–78

BMI [kg/m2]; n= 184 43.6 ± 13.3 18.2–83.3

Glucose homeostasis

Glucose [mmol/l]; n= 139 6.0 ± 3.0 2.2–22.1

HbA1C [%]; n= 99 6.0 ± 1.2 4.6–11.5

Lipids

Total cholesterol [mmol/l] n= 97 5.1 ± 1.0 1.4–8.0

LDL [mmol/l]; n= 92 3.1 ± 0.8 1.3–5.3

HDL [mmol/l]; n= 94 1.3 ± 0.4 0.6–2.4

Triglycerides [mmol/l]; n= 96 1.9 ± 1.0 0.6–6.8
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data multiple linear regression was used to adjust for differences in BMI
between individuals. P values below 0.05 were considered significant. All
analyses were conducted in R [38].

RESULTS
Histology-based calculation of adipocyte diameter or volume
from adipocyte area changes the adipocyte size distribution
shape
The adipocyte area distributions across all individuals (Fig. 1A, B) did
not fit a normal distribution and consistently showed positive
skewness for both adipose depots (Table 2). This observation based
on pooled data was in agreement with the subject and depot-specific
distributions, consistently showing asymmetry as measured by
positive skewness values (data not shown). P values < 0.05 from the
Shapiro Wilk tests and large deviations in the correlation between a
normal distribution and sample distribution displayed by
quantile–quantile plots further supported the hypothesis of
histology-derived adipocyte areas being non-normally distributed.
Density plots, histograms, and quantile–quantile plots for each
individual and depot are provided in Supplemental Figs. S1–S3.
Due to the positive skew mean and median adipocyte area was not
overlapping with the maximum of the distribution (mode) and
therefore did not reflect the major fraction of the adipocyte
population (Table 2). The calculation of adipocyte diameter from
adipocyte area, which represents a non-linear square root transforma-
tion resulted in a broader distribution of the data (Fig. 1C, D). This
observation was verified by decreased adipocyte diameter distribu-
tion skewness and kurtosis in comparison to the adipocyte area
distributions (skewsc area= 1.1 ± 0.4, skewsc diameter= 0.3 ± 0.2; skewvc

area= 1.3 ± 0.4, skewvc diameter= 0.4 ± 0.2; Table 2). Calculation of
adipocyte volume from adipocyte area represents exponentiation of
the data by the power of 3 and resulted in a sharper distribution
shape with greater asymmetry compared to the adipocyte area
distributions (Fig. 1E, F). In agreement, skewness and kurtosis of the
adipocyte volume distribution increased in comparison to the
adipocyte area distribution (skewsc area= 1.1 ± 0.4, skewsc volume=
1.9 ± 0.6; skewvc area= 1.3 ± 0.4, skewvc volume= 2.3 ± 0.8; Table 2).
Since the surface area of a sphere equals four times the largest cross-
sectional area (Asurface= 4πr2, AGreat circle= πr2, therefore Asurface=
4*AGreat circle), calculation of adipocyte surface area from adipocyte
cross-sectional area does neither change distribution shape, nor
statistical outcome measures.

Comparison between histological and collagenase-based
adipocyte diameter distributions
Overall, mean adipocyte diameter derived from histology and
collagenase digestion showed a good correlation with each other
(rPearson= 0.46, p= 3.2 × 10−8; Fig. 2A). The mean adipocyte
diameter from histology was, however, consistently smaller than
the mean collagenase adipocyte diameter as shown by the
Bland–Altman method comparison plotting (Table 2, Fig. 2B). This
can be attributed to the fact that the adipocyte diameter from
histology might not always be equivalent to the maximal diameter
of the cell in vivo [8]. With collagenase digestion, mature
adipocytes are liberated from their connective tissue and take
on a spherical shape allowing to measure the maximal cell
diameter under the microscope. Adipocyte diameter histograms
indicate that the diameter distribution from collagenase digestion
did fit the shape of a normal distribution (Fig. 2C, D) and was
considerably less skewed in comparison to adipocyte diameter
distributions from histology (Table 2).

Mean adipocyte size measurements from histology show
similar correlations with anthropometric variables and
laboratory values
As previously published, measures of mean adipocyte size showed
strong correlations with BMI in both adipose tissue depots (Fig. 3,

Table S2). Significance levels and Pearson correlation coefficients were
in a comparable range independent of the adipocyte sizing
parameter that was used (rPearson= 0.46–0.49, p= 9 × 10−12–1 ×
10−10). Other than BMI no significant associations with mean
adipocyte size were found in sc fat. In addition to BMI, mean
adipocyte size correlated with glucose (mean diameter: n= 139,
rPearson= 0.26, p= 0.002), HbA1C (mean diameter: n= 99, rPearson=
0.31, p= 0.002) and HDL (mean diameter: n= 94, rPearson=− 0.32, p
= 0.002) in the vc fat depot (Fig. 3, Table S2). Notably, despite
different individual distribution shapes, mean adipocyte cross-
sectional area, diameter, volume, and surface area were all similarly
correlated with BMI and laboratory values (Fig. 3, Table S2). Since our
data and results from previous studies show that BMI is strongly
correlated with adipocyte size multiple linear regression was used to
rule out any possible effect of differences in BMI on the association of
laboratory values with mean adipocyte diameter (Table S3). Results
from our multiple linear regression analysis were in agreement with
results from the correlation analysis. Mean sc adipocyte diameter was
only associated with BMI, while mean vc adipocyte diameter was
significantly associated with age, fasting plasma glucose, HbA1C, HDL
and triglycerides (p< 0.05, Table S3). Besides the continuous variables
that were considered in the correlation analysis sex and the absence
or presence of T2D were added as categorical variables to our
multiple linear regression model. The mean visceral adipocyte
diameter of males was significantly larger compared to females in
our multiple linear regression model (p= 0.006, Table S3). In
agreement with the positive correlations of mean visceral adipocyte
diameter with glucose and HbA1C, respectively, adipocytes of
individuals with T2D were larger compared to the control group in
a multiple linear regression model (p= 0.01, Table S3). Together, the
observed changes in adipocyte distribution shape did not influence
the correlation of extracted mean values with obesity-related traits.

Associations of adipocyte size and mitochondrial function
Since all mean adipocyte size parameters showed comparable
correlations with anthropometry and laboratory chemistry, the
relationship between adipocyte size and mitochondrial respiratory
capacity was only investigated using mean adipocyte diameter.
Correlation analysis showed an inverse relationship between sc
free OXPHOS capacity and mean adipocyte diameter (Fig. 4, n=
24, rPearson=−0.41, p= 0.045). In addition, significant correlations
between mean adipocyte diameter and OXPHOS capacity (n= 24,
rPearson=−0.53, p= 0.008) as well as ETS capacity (n= 24, rPearson
=−0.59, p= 0.003) were observed (Fig. 4, Table S4). Both sc and
vc mean adipocyte diameter showed negative correlations with
leak respiration in the presence of oligomycin (Table S4). We
observed a weaker though significant association of OXPHOS
capacity with mean adipocyte diameter in the vc depot (n= 35,
rPearson=−0.36, p= 0.035) (Table S4). When adjusting for the
effect of BMI on the association between mitochondrial respira-
tion and mean adipocyte diameter, we did not observe a
significant effect (Table S5). Initially, 500 sampled cells per depot
and individual were used to obtain individual histology-derived
adipocyte size distributions. This, however, resulted in the
exclusion of study participants where only a little adipose tissue
was available for histology. In a second analysis, we, therefore,
reduced the number of sampled cells per individual and depot to
200, thereby increasing paired adipocyte size and respirometry
data (nsc= 32, nvc= 41). Mean adipocyte diameters from 500 and
200 sampled cells were highly correlated (rPearson= 0.97, p < 2.2 ×
10−16, Fig. S4). Sc and vc mean adipocyte diameter from 200 cells
was correlated with OXPHOS capacity, leak respiration, and ETS
capacity while free OXPHOS capacity was solely associated with sc
mean adipocyte diameter (Table S6, Fig. S5). Significant associa-
tions between OXPHOS capacity (ß=−0.16, p= 0.007), leak
respiration (ß=−0.29, p= 0.011) and ETS capacity (ß=−0.221,
p= 0.001) with mean adipocyte diameter from 200 cells were
present for the sc depot after adjusting for the effect of BMI in a
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multiple linear regression model (Table S7). No significant
associations between mean adipocyte diameter and respiratory
chain function except for ETS capacity (ß=−0.14, p= 0.045) were
found when applying the multiple linear regression model to the
vc depot (Table S7). In conclusion, adipocyte respiratory capacity
was predominantly associated with mean adipocyte diameter in
the sc depot.

DISCUSSION
We applied a series of analytical approaches to histology and
collagenase-derived adipocyte size estimates with the goal to

obtain an in-depth characterization of the underlying adipocyte
size distributions and compare their relationship with phenotype
or laboratory chemistry. Since mitochondrial dysfunction is related
to obesity and/or T2D we investigated whether mitochondrial
respiration is associated with adipocyte hypertrophy.
Our data indicate that histology-derived adipocyte cross-

sectional area is characterized by positive skewness. Similar
distribution shapes have been previously reported in rodents
and humans [8, 39, 40]. We show that calculation of adipocyte
diameter, volume or surface area from cross-sectional area
introduces substantial changes to distribution shape. These
changes are caused by mathematical data transformation and

Table 2. Adipocyte size summary.

Histology Depot Mean Median First Decile Ninth decile IDR Skewness Kurtosis

Histology

Area
[µm2]

sc (n= 161) 3472.0
±
886.8

2678.8
±
795.4

443.2
±
76.7

7726.3
±
2069.0

7283.1
±
2030.1

1.1
±
0.4

4.0
±
1.7

vc (n= 188) 2748.8
±
863.6

2099.8
±
718.7

407.7
±
68.1

6043.0
±
2049.8

5635.3
±
2013.6

1.3
±
0.4

5.1
±
2.5

Diameter [µm] sc (n= 161) 59.6
±
7.8

57.7
±
8.8

23.7
±
2.0

98.2
±
13.8

74.6
±
12.8

0.3
±
0.2

2.3
±
0.4

vc (n= 188) 53.1
±
8.4

50.9
±
8.9

22.7
±
1.9

86.3
±
15.8

63.6
±
14.8

0.4
±
0.2

2.6
±
0.6

Volume
[pl]

sc (n= 161) 198.1
±
73.2

107.7
±
47.4

7.1
±
1.9

524.7
±
204.1

517.6
±
203.1

1.9
±
0.6

7.8
±
5.1

vc (n= 188) 141.5
±
64.1

75.5
±
38.3

6.3
±
1.6

369.0
±
176.9

362.7
±
176.0

2.3
±
0.8

11.0
±
7.8

Surface area
[µm2]

sc (n= 161) 13887.9
±
3547.0

10715.0
±
3181.5

1772.6
±
8276.0

30905
±
8267.0

29132.5
±
8120.2

1.1
±
0.4

4.0
±
1.7

vc (n= 188) 10,995
±
3454.4

8399.2
±
2875.0

1630.9
±
272.5

24172.1
±
8199.2

22541.2
±
8054.3

1.3
±
0.4

5.1
±
2.5

Collagenase digestion

Area
[µm2]

sc (n= 84) 9523.7
±
2375.1

9356
±
2659.6

4259.9
±
2307.4

14775.4
±
3042.1

10515.5
±
2784.8

0.6
±
1.3

5.4
±
10.7

vc (n= 97) 8292.5
±
2363.5

7949
±
2507.2

3661.0
±
1870.6

12955.0
±
3384.7

9294.0
±
2819.7

0.9
±
1.3

6.3
±
9.3

Diameter [µm] sc (n= 84) 105.6
±
14.7

107.9
±
16.3

70.5
±
21.3

136.4
±
14.5

65.9
±
20.0

−0.2
±
0.9

3.9
±
5.3

vc (n= 97) 98.3
±
15.3

99.2
±
16.8

66.0
±
17.4

127.2
±
17.7

61.2
±
16.9

0.1
±
0.8

4.1
±
4.0

Volume
[pl]

sc (n= 84) 778.0
±
273.9

701.8
±
286.4

232.4
±
173.8

1372.6
±
412.9

1140.3
±
352.0

1.3
±
1.7

8.1
±
15.1

vc (n= 97) 639
±
258.7

553.4
±
248.6

182.4
±
137.9

1138.1
±
427.2

955.6
±
367.0

1.8
±
1.6

10.2
±
13.6

Surface area
[µm2]

sc (n= 84) 38094.8
±
9500.3

37427.7
±
10638.4

17039.5
±
9229.8

59101.6
±
12168.5

42062.1
±
11139.3

0.6
±
1.3

5.4
±
10.7

vc (n= 97) 33170.2
±
9453.9

31796.8
±
10028.7

14644.1
±
7482.5

51820.1
±
13538.7

37176.0
±
11278.7

0.9
±
1.3

6.3
±
9.3
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are therefore not only limited to human adipose tissue sections
but apply to all species with similar underlying size distributions.
In agreement with previous studies, adipocyte diameter distribu-
tions from collagenase digestion show greater symmetry, follow
the shape of a normal distribution and the mean collagenase
diameter is consistently larger than the mean histology diameter
[6, 7, 41]. With isolated adipocytes, both Gaussian distributions
and bimodal distributions containing a second smaller cell
population are reported [6, 21, 42, 43]. Our study cannot confirm
the presence of the second peak in adipocyte size distributions
from isolated adipocytes and therefore supports the notion that
size distributions from isolated adipocytes are unimodal and
normally distributed. Density histograms from our study suggest
that adipocyte size distributions from histology are unimodal but
differ from isolated adipocytes by showing considerable skew
(Figs. S1–S3). Despite 500 counted cells being sufficient to extract
mean adipocyte size estimates it should be acknowledged that
higher cell counts would in our opinion be desirable to reliably

detect (if present) additional modes at lower frequencies [40, 44].
Using whole slide scans could display one method to achieve
greater counts and therefore the question of modality should be
addressed in future studies [12]. While the mean collagenase-
derived adipocyte diameter represents the most frequent
adipocyte population this is not the case for histology-derived
distributions due to positive skew. Therefore, alternative measure-
ments of adipocyte size such as IDR or modal adipocyte size are
proposed to better describe non-normal distributions.
Besides different distribution shapes, we demonstrate that

adipocyte area, diameter, volume, and surface area are equally
correlated with common anthropometry and laboratory values.
Across different sizing parameters, the correlation between
adipocyte size and measures of glucose homeostasis and blood
lipids was limited to the vc depot. Similar results were observed in
previous studies and our results are in agreement with the well-
known association between visceral obesity and metabolic
disorders [11, 45]. Therefore, non-linear data transformation of
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the initial output variable (area) assuming spherical shape does
not influence the associations between adipocyte size and
obesity-related traits. Similar to inter-method comparisons we
conclude that transformed adipocyte sizing parameters from the
same method are equally related to measures of metabolic health
and obesity [6]. Our data suggests that while the “ground truth”
adipocyte size remains unknown and shows variation between
studies reported associations with adipocyte size should in
general be comparable. In our opinion, small cohort sizes and
limited adipocyte counts propose greater limitations to signifi-
cance and comparability rather than the utilization of different
measurement methods or sizing parameters.
Mean adipocyte diameter, volume, and area are the most

common adipocyte size measures [6, 11–13]. Since mature
adipocytes are three-dimensional in shape and mainly comprised
of a triglyceride-containing unilocular lipid droplet, volume is of
high biological relevance for many research questions including
fat mass and cellularity calculations [5, 46, 47]. Less biological
relevance can be attributed to adipocyte area or diameter as they
do not directly resemble the physiological properties of the
adipocyte. Surface area is reported less frequently and is directly
proportional to the largest cross-sectional area when the spherical
shape is assumed. Since the surface area is proportional to
membrane area it is relevant for receptor binding and signaling.
Due to its linear relationship with adipocyte surface area, cross-
sectional area could also be used as a meaningful readout of
adipocyte size when signaling or biochemical processes are
investigated. It is, however, important to emphasize that the cross-
sectional area measured in histology is not necessarily equal to
the largest cross-sectional area of the cell.
Considering the inherent advantages and limitations of each

adipocyte sizing method as well as the different underlying
distributions our study emphasizes that adipocyte size cannot be
generalized, but always needs to be seen in context and
interpreted regarding physiological relevance.
As a novel finding, our study correlates mean adipocyte

diameter with mitochondrial function and our data indicate that
individuals with larger sc adipocytes show decreased mature

adipocyte respiratory capacity. To the best of our knowledge,
there are no previous studies investigating adipocyte size and
mitochondrial respiration and data is solely available for size-
separated adipocytes where no differences in mitochondrial
function between large and small adipocytes from the same
individual were observed [33, 34]. Therefore, it can be speculated
that individuals with hypertrophic adipocytes exhibit an overall
decreased mitochondrial respiratory capacity independent of
intrinsic adipocyte size variation. Our findings regarding the
association of mean adipocyte diameter and respiratory chain
function are in line with data suggesting that adipocyte
mitochondrial function is altered in individuals with obesity
[30, 48].
If mitochondria of hypertrophic adipocytes cannot provide

sufficient ATP for cellular processes and lipid metabolism due to
e.g., defects in the respiratory chain it is likely that this could
manifest for example in elevated free fatty acid levels and
increased production of reactive oxygen species (ROS) both
promoting a pro-inflammatory environment. Independent of
adipocyte size we could not detect differences in respiratory
states between depots except for leak respiration in the presence
of oligomycin (p= 0.003, Figure S6). Proton leak is thought to be
the predominant component of leak respiration and has been
identified as an important mechanism to protect against ROS [49].
As ROS are able to induce proton leak thus suggesting a feedback
loop, elevated leak respiration in vc adipocytes could also
resemble a cytoprotective mechanism against increased oxidative
stress. Decreased leak respiration with larger adipocyte size and
thus less protection against ROS could provide an explanation for
the pro-inflammatory profile of hypertrophic adipocytes. Both
hypotheses would be in line with literature reporting that vc
adipose tissue and hypertrophic adipocytes are more prone to
provide a pro-inflammatory environment compared to their sc
and hyperplasic counterparts [10, 11, 50]. Additional studies that
directly measure mitochondrial superoxide production and
inducible uncoupling are however necessary to clearly elucidate
the amount of ROS production in dependency of fat cell size
and depot.
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Fig. 3 Correlations between mean adipocyte size, anthropometric variables, and laboratory values. Data are shown as a Pearson
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As respiration was shown to be cell type-specific differences in
respiration and its relationship with cell diameter could also
originate from the fact that sc and vc adipocytes arise from
different precursors [51, 52]. Transcriptome profiling studies from
multiple different adipose tissue sites further support this
observation as sc and vc adipose tissues are clearly separated
by gene expression [53]. Since vc adipose tissue was sampled in
the proximity of the angle of his we cannot rule out that our
results are specific to this compartment. Intra-visceral depot
comparisons however suggest that different vc adipose tissue
depots show similarity regarding their gene expression [53]. Thus,
comparability between our biopsy site with other vc sites should
be given. Intra-depot comparisons from the same subject should
however be the objective of future studies to identify similarities
and differences in metabolic function and to further stratify the
current adipose tissue classification.
In conclusion, the results of the present study highlight the

importance of ascertaining method, sizing parameter, and
distribution when analyzing adipocyte size. The data suggest that
mean and median adipocyte area can deviate substantially from
the most frequent cell population if the underlying distribution is
non-normal. Additional parameters are, therefore, proposed to
complement previous adipocyte sizing methods to enable a more

in-depth description of histology-derived adipocyte size towards a
distribution-centered approach. Despite different distribution
shapes histology-based adipocyte area, diameter, volume, and
surface area are all equally related to clinical variables that have
been frequently associated with adipocyte size. The association
between sc mean adipocyte diameter and mitochondrial respira-
tion represents a new finding of how adipose tissue metabolism is
linked to adipocyte hypertrophy.
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