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Simple Summary: Lung cancer is the leading cause of cancer death worldwide. Detecting lung
malignancies promptly is essential for any anticancer treatment to reduce mortality and morbidity,
especially in high-risk individuals. The use of liquid biopsy to detect circulating biomarkers such
as RNA, microRNA, DNA, proteins, autoantibodies in the blood, as well as circulating tumor
cells (CTCs), can substantially change the way we manage lung cancer patients by improving
disease stratification using intrinsic molecular characteristics, identification of therapeutic targets
and monitoring molecular residual disease. Here, we made an update on recent developments in
liquid biopsy-based biomarkers for lung cancer early diagnosis, and we propose guidelines for an
accurate study design, execution, and data interpretation for biomarker development.

Abstract: Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limi-
tations in early detection impede lung cancer diagnosis when the disease is still localized and thus
more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important
tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent
advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based
biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells
(CTCs), and compared the most promising studies in terms of biomarkers prediction performance.
While we observed an overall good performance for the proposed biomarkers, we noticed some
critical aspects which may complicate the successful translation of these biomarkers into the clinical
setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers
during the discovery, prioritization, and clinical validation phase. The integration of innovative
minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer
early detection.

Keywords: lung cancer; early diagnosis; biomarkers; liquid biopsy

1. Introduction

Lung cancer is an aggressive disease accounting for ~380,000 deaths/year only in
Europe (WHO; http://gco.iarc.fr; accessed on 21 April 2021) and ~2 million deaths/year
worldwide. With the COVID-19 pandemic, these rates are unfortunately expected to rise,
mainly due to delays in screening, hospitalizations and therapies, which will cause a
stage-shift for newly diagnosed lung tumors [1–3].
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Detecting lung malignancies promptly is essential for any anticancer treatment to
reduce mortality and morbidity, especially in high-risk individuals [4]. The US National
Lung Screening Trial (NLST) and other non-randomized trials [5] demonstrated that Low-
Dose Computed Tomography (LDCT) screening can reduce mortality (~20%). Recently,
the European NELSON trial has observed a lung cancer mortality reduction of ~25% at
10 years and up to ~30% at 10 years [6]. The drawback of LDCT screening is the presence
of uncertainties about high costs, risk of radiation exposure, and false positives observed
in the screening population [7], which may obstacle a fully safe large scale implementation
of the LDCT screening for lung cancer in Europe [8]. The false-positive rate is particularly
problematic, as suspicious nodules may require invasive investigations, causing unneces-
sary morbidity and reduced acceptance of screening among at-risk individuals. Therefore,
the integration of LDCT screening with innovative cancer biomarkers analyzable through
minimally invasive approaches aimed to increase screening accuracy is highly demanded.
Several pre-clinical studies have suggested that circulating molecules such as microRNA,
DNA, proteins, autoantibodies in the blood, as well as circulating tumor cells (CTCs), could
be potentially useful to diagnose lung cancer and increase screening accuracy [9–12]. In
addition, some studies in actual lung cancer screening cohorts confirmed the diagnostic
validity of measuring blood biomarkers for lung cancer early detection [13–15]. Yet, pitfalls
and caveats emerged during validation of some proposed biomarkers for lung cancer early
detection once applied to independent cohorts/multicenter studies and/or actual lung
cancer screening cohorts, which highlight the need to establish a roadmap to develop
effective biomarkers.

We reviewed the literature for the most promising biomarkers and relevant technical
issues, of which here we present a summary with the aim to propose guidelines for an
accurate study design and execution, and data interpretation for biomarker development.
We hope that these guidelines will aid further research and facilitate the translation of
circulating biomarkers into clinical setting.

2. Lung Cancer Biomarkers

In the last 10 years, there has been a sharp rise in published studies on lung cancer
diagnostic biomarkers, with over 544 papers published only in the last 5 years (Figure 1A).
However, a sizable fraction of these works relies on a relatively small cohort of samples
analyzed, without validation of biomarkers in independent cohorts and, more importantly,
in lung cancer screening trials. Ideally, robust biomarker(s) should facilitate the selection of
at-risk individuals independently of risk factors such as age and smoking habits, and/or
provide pathological information about indeterminate pulmonary nodules (IPNs) to aid
clinical decision making, and/or provide predictive/prognostic information. Here, we
focused on the most promising minimally invasive, reproducible and extensively validated
biomarkers assessed in prospective studies, including lung cancer screening trials.
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Figure 1. (A) Papers on lung cancer diagnostic biomarkers. PubMed free search engine which primarily accesses the MEDLINE
database was interrogated (April 2021) by using ‘advanced search’ tool and with the following MESH terms: Lung neoplasms;
Biomarkers; Diagnosis. (B) Schematic representation of best practice in biomarker development for early detection of lung cancer.
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2.1. DNA-Based Biomarkers

Circulating tumor DNA (ctDNA) was extensively investigated in the latest years due to
recent technological advances in the field of next-generation sequencing (NGS). Indeed, the
NGS technologies allow the analysis of custom panels of genes (i.e., targeted gene panels, TGP)
at an affordable cost (~330€ per sample; [16]) and the detection of mutant alleles presenting
with low frequency (<1%; [11,17,18]), which is mandatory when dealing with ctDNA, i.e.,
underrepresented among the more abundant cell-free DNA (cfDNA) of hematopoietic origin.
Although ctDNA was shown to be effective in the diagnosis of advanced lung cancer, the use
of ctDNA for detection of early stage lung tumors is suboptimal (with sensitivity ranging
from ~50%, [11,19] to 15% in the case of stage I NSCLC; [20]), which can be ascribable to
the rare amount of ctDNA present in blood samples of stage I disease patients; indeed, the
low proliferation/metabolic rate, and/or dismal tumor angiogenesis, and/or lack of necrotic
areas of these localized and tiny tumor lesions all contribute to a reduced ctDNA shedding, as
recent observations have suggested [21].

Furthermore, commercial TGPs are usually designed to track druggable cancer driver
mutations in more advanced cancer which, therefore, can be underrepresented in early
stage disease, i.e., characterized by lower intra-tumor genetic heterogeneity [22–24]. Con-
sequently, the chance to capture nucleotide variants in ctDNA of stage I is dismal. As an
alternative, some groups applied the CAncer Personalized Profiling by deep Sequencing
(CAPP-Seq) [11] in liquid biopsies to overcome the limited sensitivity of more standard
approaches. CAPP-seq introduced a preliminary bioinformatics approach to select target
genes containing regions recurrently mutated in the cancer of interest [11]. Despite signifi-
cant results reached by applying such technology to track molecular residual disease (MRD)
during lung cancer therapy [25], the application of CAPP-seq for diagnosis of early stage
lung cancer still resulted in a suboptimal sensitivity (~50% [21]). Whole-exome (WES) or
whole-genome (WGS) sequencing [26] of ctDNA, covering the entire set of known human
genes in order to overcome limitations of TGP, have been also attempted [27]. However, it
should be kept in mind that the larger the gene panels, the more difficult it is to obtain high
sensitivity for mutation calling and to maintain affordable costs. The high level of ctDNA
fragmentation (~100–150 bp in size; [27,28]) should also be considered when designing li-
braries for NGS. Other caveats in the detection of ctDNA are related to clonal hematopoiesis
(CH), i.e., an age-dependent process determining the accumulation of somatic mutations
in hematopoietic stem and progenitor cells ultimately leading to the clonal expansion of
mutated hematopoietic cells; CH accounts for the non-tumor derived mutations detected
from plasma [29]. Therefore, it is worth considering to sequence matched white blood cell
(WBC) DNA and cfDNA to determine the tumor specific fraction of cfDNA mutations.

Beyond detecting ctDNA mutations, other groups described methylation profiling
of cfDNA as a source of innovative minimally invasive cancer biomarkers. A global
hypomethylation of DNA is usually observed in cancer cells, yet hypermethylated regions
overlapping with CpG islands promoters of tumor suppressor genes were also discovered
and exploited to detect ctDNA [30]. The analysis cfDNA using specific methylation
signatures to estimate the ctDNA fraction was indeed showed to be a valuable approach
for diagnostic and prognostic purposes in lung cancer [31,32]. In a recent large trial with
a multi-cancer cohort of over 6000 participants, the methylation profile of ctDNA was
found to be highly specific (~99.3%) and to reach an acceptable sensitivity of 67.3% in a
set of 12 cancer types and including lung cancer. However, sensitivity dropped down
when analyses were limited to early-stage disease (39%; <25% in lung cancer) [33], thus
suggesting the need for further investigation of cfDNA methylation signatures in actual
lung cancer screening trials for refinement and validation.

2.2. RNA-Based Biomarkers

Different circulating RNA species (microRNA, miRNA; piwi-interacting RNAs, piRNA;
transfer RNAs, tRNA; small nucleolar RNAs, snoRNA; small nuclear RNAs, snRNA) were
identified in the human serum [34]. Circulating microRNAs (c-miRNAs) are predominant in
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the literature, and their remarkable stability in harsh conditions and resistance to circulating
RNAses [35] make them ideal candidates for developing lung cancer biomarkers. C-miRNAs
are released by virtually all human cells by passive (e.g., in apoptotic bodies, complexed
with AGO proteins) and active (e.g., in exosomes [36]/microvescicles) mechanisms [37],
and can influence tissue homeostasis by a sort of paracrine signaling [37] or by triggering
pathogenic mechanisms including neoplastic transformation and tumor progression [38,39].
Indeed, tumor cells, cancer-associated fibroblasts (CAFs) and blood cells were found to
release miRNAs in the microenvironment which then enter into the bloodstream [37,40].

Therefore, monitoring miRNA species and relative quantities in the blood represents
a valid strategy for early diagnosis of lung cancer. Few studies underwent an extensive
validation of c-miRNA as minimally invasive biomarkers for lung cancer early detection
(Table 1). Montani et al. validated [13] a serum 13 c-miRNAs signature (miR-Test) by
using the qRT-PRC in high-risk individuals (n = 1115; >20 pack-year smoking history, aged
>50 years) enrolled in an Italian LDCT screening trial (the COSMOS study), which showed
a sensitivity of 0.78, a specificity of 0.75, and an AUC of 0.85. Likewise, Sozzi et al. [14]
validated a 24 c-miRNA signature (the MSC classifier) by using the qRT-PCR in plasma sam-
ples of high-risk subjects enrolled in another Italian LDCT screening study (the bioMILD
study; n = 939 participants), with a sensitivity of 0.87 and a specificity of 0.81. Wozniac
et al. [41] analyzed plasma samples of 100 non-small cell lung cancer (NSCLC) patients
(stage I–IIIA) and 100 healthy subjects, using the same qRT-PCR technology as the one used
by the Italian studies, and identified another set of 24 miRNAs showing a predicted AUC of
0.78 when accounting for overfitting [41]. In Table S1, we reported overlapping c-miRNAs
in the various signatures identified by qRT-PCR.Notably, authors meta-analyzed the MSC
classifier as well as another 34 c-miRNA signature identified by Bianchi et al. [9] (from
which the miR-Test was derived) and reported an AUC of 0.70 and 0.78, respectively [41].

In multiethnic and multicentric studies on NSCLC patients and matched controls (lung
cancer-free or with benign lung nodule individuals), Wang et al. [42] and Ying et al. [43],
using the qRT-PCR, have identified two serum c-miRNA diagnostic signatures composed
by 5 miRNAs each (miR-214 was commonly found; Table S1). Other studies using different
screening platforms, such as microarray analysis of serum samples [44] or whole-blood
samples [45], have identified lung cancer diagnostic c-miRNA using large cohorts of
clinically detected lung cancer patients (Table 1).

Table 1. List of studies reporting the development of c-miRNA-based biomarkers diagnostic for
lung cancer.

Authors PubMed ID miRNA (n) AUC Sample Type LDCT

Boeri et al. [46] 21300873 13 0.88 Plasma Yes
Sozzi et al. [14] 24419137 24 - a Plasma Yes
Bianchi et al. [9] 21744498 34 0.89 Serum Yes

Montani et al. [13] 25794889 13 0.85 Serum Yes
Wozniak et al. [41] 25965386 24 0.78 b Plasma No

Shen et al. [47] 21864403 3 0.86 Plasma No
Lin et al. [48] 28580707 3 0.87 Plasma No

Chen et al. [49] 21557218 10 0.97 Serum No
Wang et al. [42] 26629532 5 0.82 Serum No
Ying et al. [43] 32943537 5 0.91–0.97 Serum No
Zhu et al. [50] 27093275 4 0.97 c Serum No

Nadal et al. [51] 26202143 4 0.99 Serum No
Asakura et al. [44] 32193503 2 0.99 Serum No

Fehlmann et al. [45] 32134442 15 - d Blood No
The number of miRNA (n) in each diagnostic signature is reported together with the performance (AUC, i.e.,
area under curve) and the type of biospecimen where biomarkers were derived (Serum or Plasma). LDCT,
studies which performed validation of biomarkers on actual LD-CT screening trials (Yes). a Sensitivity, 88% and a
specificity of 80%; b Predicted performance when applied to independent samples. c miRNAs combined with
carcinoembryonic antigen (CEA). d Sensitivity, 82.8%, and a specificity of 93.5%. PubMed identifiers (PubMed ID)
are reported to allow retrieving cited publications.
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Despite the proven validity of most of these c-miRNA signatures for early diagnosis of
lung cancer, there are still limitations in their application in medical laboratories. Challeng-
ing issues related to sample processing and miRNA profiling, pre-analytical and analytical
standardization as well as the considerable cost of sophisticated technologies, make the
translation of such biomarkers from the bench to the bedside very complicated.

Later, we will further discuss some of these limitations with the aim to provide
guidelines for biomarker profiling and translation to the clinic.

2.3. Protein-Based Biomarkers

The ability of tumor antigens [12] and tumor-associated autoantibodies (TAABs) [52]
in body fluids to serve as potential biomarkers for lung cancer early detection has been
investigated for years. In 2015, Doseeva et al. [53] showed that the combined use of tumor
antigens (CEA, CA-125, and CYFRA 21-1) and autoantibodies (NY-ESO-1) was accurate
enough (sensitivity, 77%; and specificity, 80%) for the early detection of NSCLC among
high-risk individuals. Analysis of CEA and CA-125 among others protein biomarkers (i.e.,
CA19-9, PRL, HGF, OPN, MPO and TIMP-1) were also included in a multi-analyte blood
test (CancerSEEK; [19]), which increased the sensitivity in tumor detection when combined
with ctDNA mutation profiling [19].

A large number of studies, systematically reviewed by Yang and colleagues [54],
showed that lung cancer patients produce antibodies recognizing self-antigens (i.e., TAAbs).
These TAAbs were tested as potential biomarkers for lung cancer detection at different
stages of tumor progression. Among TAAbs, the New York esophageal squamous cell
carcinoma-1 (NY-ESO-1) autoantibodies appeared to be most promising for NSCLC detec-
tion alone or in combination with other TAAbs [54]. However, the diagnostic utility would
be more evident if patients affected by bona fide autoimmune disease could also be included
in the analysis, in order to test whether TAAbs are actually specific for lung cancer.

Recently, the detection and quantification of complement activation fragments in plasma
samples from high-risk individuals who underwent LDCT screening were found to be a valid
strategy to identify lung cancer biomarkers [15]. A simple diagnostic model based on the
quantification of complement-derived fragment C4c and cancer antigens, i.e., 21.1 (CYFRA
21-1) and C-reactive protein (CRP), was able to discriminate between benign and malignant
pulmonary nodules (AUC, 0.86), with a high specificity (92%) in a cohort of individuals
enrolled in a CT-screening program. This was an important finding due to the considerable
fraction (~24%; [5]) of false positive findings by LDCT at the baseline. Authors also showed
that the model combined with clinical factors can be valuable in patients with indeterminate
pulmonary nodules (IPNs) to decide for more effective therapeutic strategies [55].

2.4. Immune Serum Conversion as Biomarker for Lung Precancerous Lesions

Quantification of inflammation, via measurement of systemic levels of pro-inflammatory
cytokines released by activated immune cells, showed a correlation between inflammation
and a higher risk for lung cancer incidence in smokers [56,57]. On the other hand, exten-
sive independent analysis of cohorts of non-smokers confirmed the association between
sustained inflammation and a higher risk of developing lung cancer [58–68]. In this sense,
pro-inflammatory immune activity, which is reflected in the level of circulating cytokines,
may be a contributing factor to tumorigenesis in the lung.

The immune system affects not only the tumorigenesis, but also the progression of the
disease [69–71]. Thus, whilst research efforts have focused on inflammatory mediators for
their potential roles as risk factors for lung cancer in healthy individuals, in parallel, inflam-
matory mediators have also been assessed for their role in tumor progression in patients
with established tumors. Even early stage premalignant lesions are highly infiltrated by
immune cells, suggesting that the immune system may affect the transition to malignant
lesions [72]. Thus, inflammatory cytokines could drive the progression to malignancy. To
date, a detailed and systematic characterization of circulating inflammatory cytokines in
patients bearing premalignant lesions in the lungs is still largely missing.
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Interestingly, in line with the hypothesis that chronic inflammation is detrimental
during carcinogenesis and cancer progression, Ridker and colleagues have recently demon-
strated that atherosclerotic patients treated systemically with canakinumab, an antibody
inhibiting pro-inflammatory cytokine IL-1β, are protected from lung cancer development,
most likely due to the reduction of pro-tumoral inflammation [73]. This seminal clinical
finding further highlights how circulating immune mediators may be pivotal for lung
cancer progression.

2.5. Circulating Tumor Cells (CTCs) for Lung Cancer Screening

In 2014, a ground-breaking paper showed that, by using a size-based enrichment tech-
nology (ISET®, Isolation by Size of Epithelial/Tumor cells), it was possible to detect cells
with morphological features of malignancy (i.e., circulating tumor cells, CTCs) in blood
samples of patients suffering of chronic obstructive pulmonary disease (COPD) [74]. The
presence of CTCs was shown to anticipate the radiological diagnosis of stage I NSCLC [74],
thus leading to an increasing interest around the diagnostic role of CTCs and their imple-
mentation as a possible biomarker in lung cancer screening programs.

CTCs can be defined as tumor cells in transit in the circulatory system. They originate
from primary and secondary tumor sites and are endowed with the molecular features
needed to overcome some of the numerous and challenging steps of the metastatic cascade,
including intravasation, survival in the blood microenvironment and dissemination to
distant organs [75,76]. CTCs are rare events, mixed with a huge number of other cell types,
mainly erythrocytes (3.5–7 billion/mL) and leukocytes (4–11 million/mL), and occurring
at a variable frequency, even less than 1 cell per milliliter of peripheral venous blood
depending on the tumor type and stage [77,78].

CTC detection for lung cancer diagnosis was found to be promising in initial and
explorative studies by Hofman and colleagues [10,74]. The same research group then
launched a large multicenter prospective French trial (AIR study, NCT02500693), which
enrolled a cohort of 614 high-risk subjects according to the NLST-UPSTF criteria (aged
55–74 years, 30 or more pack-year smoking history; current smokers or heavy smokers
having quit in the last 15 years) in order to assess the diagnostic accuracy of CTCs detected
by the ISET® technology. However, the sensitivity of CTC analysis in detecting 19 lung
cancers found at first low-dose computed tomography (LDCT) scan was low, i.e., ~26% [79].

Encouraging results in terms of detection rate were recently obtained using a 4-color
FISH test (Table 2) performed on the peripheral blood mononuclear cell (PBMC) fraction
isolated by density gradient centrifugation. Through this technique, it was possible to detect
cells with at least 2 polysomies or gains in 4 loci involved in the NSCLC tumorigenesis
or prognosis (i.e., at 10q22.3, 3p22.1, 3q29 loci, or at chromosome 10 centromere) in 89%
of 107 patients with ≤30 mm diameter pulmonary nodules. Contrariwise, none of the
100 lung cancer-free control cases were scored positive when the cut-off value was ≥3 cells
with genome abnormalities. Overall, sensitivity was 88.8%, specificity 100%, and accuracy
94.2% [80]. Although the frequency and number of PBMCs with aneuploidy was higher in
patients compared to controls, both the validity of a cut-off value of at least 3 cells with
aneuploidy to call as CTC-positive a lung cancer patient and the significance of the presence
of a maximum of 2 cells with aneuploidy in individuals at high risk for lung cancer should
be confirmed in further case series. However, this paper suggests that looking at the entire
PBMC population, rather than selecting specific subsets of cells, and using DNA-based
detection techniques could considerably augment test sensitivity and specificity. In another
work the introduction of alternative protein markers besides cytokeratins (CKs), such as
the glycolysis enzyme hexokinase 2 (HK2), increased the detection of CTCs in a cohort of
18 stage III lung adenocarcinoma patients without clinical evidence of distant metastases
from 39% when considering CKposCD45neg to 61% when considering HK2highCD45neg cell
subsets [81]. This suggests that using epithelial markers alone may not be sufficient to
detect CTCs in non-metastatic setting, and that by adding other markers such as metabolic
gene expression analysis can improve lung cancer diagnostic accuracy.



Cancers 2021, 13, 3919 8 of 21

Table 2. Technical performance and clinical significance of circulating tumor cell (CTC) detection in early stage non-small cell lung cancer (NSCLC) patients and in screening programs.

Clinical
Setting

n NSCLC
Patients * n Control Subjects * CTC Enrichment and

Detection Method
CTC Identification

Criteria
Peripheral Blood

Volume
n Target Cell-Positive

Cases (Percentage) Clinical Significance Reference

preoperative 210 (191 stage
I–III) 40 control subjects

EpCAM-based capture and
expression of CK8–18-19 and

CD45 (CellSearch)
Size-based isolation by

filtration through porous
membranes (ISET, Rarecells)

and staining with colorants for
cytological samples

Round to oval
morphology and
CK+ CD45- for

CellSearch
Morphological

features of
malignancy for ISET

7 mL for CellSearch
10 mL for ISET

82 (39.3% stage I–III) by
CellSearch

104 (49.5%; 49.7% stage
I–III)0 control subjects by

both technologies

EpCAM-positive
selection is less sensitive
than size-based isolation

Hofman V et al.,
Int J Cancer 2011

[82]

screening 0

245 cancer-free (168
COPD, 42 smokers,

35 non-smoking)
subjects

Size-based isolation by
filtration through porous

membranes (ISET, Rarecells)
Staining with colorants for

cytological samples

Morphological
features of

malignancy
10 mL

5 COPD (3.0%) at first
CT-scan→5 out of 5

confirmed diagnosis of
lung cancer at

subsequent scans

CTC detection
anticipates lung cancer
diagnosis by CT-scan

screening (1 to 4 years)

Ilie M et al., Plos
One 2014 [74]

screening 15 (advanced
lung ca.)

32 GGO
19 no GGO

Antibody-based capture of
EpCAM+ cells (GILUPI
CellCollector, GILUPI)

_a) EpCAM/CK and CD45
expression by

immunofluorescence, and
morphological features by

imaging analysis(b)
Cancer-related gene panel

mutations by NGS

EpCAM+/CK+
CD45- and mutated

cancer genes
Estimated 1.5–3 liters

11 patients (73.3%)
5 GGO (15.63%)

0 no GGO

CTC can be detected in
subjects with

preneoplastic nodules
and can differentiate
GGO from no GGO

He Y et al., Sci
Rep 2017 [83]

screening 0

High-risk
individuals

(smoking habits, age,
chronic infections,

PSA level) 3888

Microfluidics for flow rate-,
surface interaction-, plasticity-,

and elasticity-based cell
separation (IsoPic, iCellate)

Pan-CK and CD45 expression
by immunofluorescence

CK+ CD45− 7.5 mL 107 (3.2%) patients

Detection frequency
compatible with

screening-detected lung
cancer rate; follow-up

needed to validate
results

Castro J et al.,
Dis Markers

2018 [84]
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Table 2. Cont.

Clinical
Setting

n NSCLC
Patients * n Control Subjects * CTC Enrichment and

Detection Method
CTC Identification

Criteria
Peripheral Blood

Volume
n Target Cell-Positive

Cases (Percentage) Clinical Significance Reference

screening
29 treatment-
naïve (stage

I–IV)

31 high-risk w/ or
w/o benign nodules
20 control subjects

Size-based isolation by
filtration through filters with a

syringe pump (CellSieve
Creatv MicroTech)

CK8/18/19, EpCAM and CD45
expression assessed by
Immunofluorescence

CK+/EpCAM+
CD45− (single cells

or cluster of ≥2 cells)
7.5 mL

Single CTC:
29 patients (100%)

18 high-risk (58.1%)
0 control subjects

CTC cluster:
12 patients (41.4%) 0
high-risk or control

subjects

High detection rate of
single target cells, good

specificity of clusters

Manjunath Y
et al., Lung

Cancer 2019 [85]

screening 115 (97 stage
I–III)

87 long-term
smokers

20 healthy controls

Size-based isolation by
filtration through filters with a

syringe pump (CellSieve,
Creatv MicroTech)

CK8/18/19, EpCAM, CD14
and CD45 expression assessed

by immunofluorescence

Cell diameter ≥30
µm, CK+/EpCAM+

CD14+/ CD45+
7.5 mL

88 patients (86.5%):
38 (65.5%) stage I, 13
(72.2%) stage II, 19

(90.5%) stage III
6 long-term smokers

(6.9%)0 healthy controls

High specificity and
sensitivity of tumor-
macrophage-hybrid

cells

Manjunath Y
et al., JTO 2020

[86]

screening
19 (Stage I–IV

screening-
detected)

592 LDCT-screened
lung cancer-free
heavy smokers

Size-based isolation by
filtration through porous

membranes (ISET, Rarecells)
Staining with colorants for

cytological samples

Morphological
features of

malignancy
10 mL 22 control cases (3.7%)

5 patients (26.3%)

CTC detection rate not
sufficient for application
in screening programs

Marquette CH
et al., Lancet

Respir Med 2020
[79]

preoperative 34 (non-
metastatic)

20 lung cancer-free
10 benign lung

nodules

Antibody-based capture of
EpCAM+ cells (GILUPI
CellCollector, GILUPI)

(a) Cytokeratin
CK7/19/panCK, PD-L1 and

CD45 expression by
immunofluorescence(b) DNA

CNV by NGS

CK+ CD45− and
DNA CNV

Estimated 1.5–3 liters
[83]

18 patients (52.9%)
1 control case (3.3%)

Technical approach able
to validate CTC

authenticity

Duan G-C et al.
OncoTargets and

Therapy 2020
[87]

screening 107 (67% stage
I–II)

100 lung cancer-free
individuals

Ficoll density gradient
collection of PBMC

4-color FISH with probes at
10q22.3/CEP10 and

3p22.1/3q29

Polysomy in at least
two fluorescence

channels
10 mL 95 patients (88.8%)

0 control subjects

Genetically abnormal
circulating cells can be

detected with high
accuracy

Katz DL et al.,
Cancer

Cytopathol 2020
[80]

* Evaluable for CTC analysis. Abbreviations: CK, cytokeratin; ISET, Isolation by Size of Epithelial/Tumor cells; COPD, chronic obstructive pulmonary disease; GGO, ground-glass opacity nodule; PSA, prostate-specific
antigen; LDCT, low-dose computed tomography; NGS, next generation sequencing; CNV, copy-number variation; FISH, fluorescence in situ hybridization; PBMC, peripheral blood mononuclear cells.
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Compared to cell-free circulating biomarkers, circulating cells represent an ideal and
promising systemic ‘surrogate’ of a tissue as they offer the opportunity to investigate the
entire cell at morphological, protein, RNA and DNA level, and to develop experimental
models for functional studies. However, the analysis of CTCs in blood samples requires
the enrollment of trained personnel and the acquisition of dedicated technologies to enrich
blood samples and detect target cells unambiguously. Results of studies in the diagnostic
and preoperative setting demonstrate that the accuracy and clinical validity of each kind of
technical approach for CTC analysis is still variable and has to be carefully assessed and
confirmed in large multicenter and validation trials.

3. A Roadmap to the Successful Development of Blood-Based Biomarkers for Lung
Cancer Early Detection

The bottleneck for the successful translation of biomarkers to the clinical use generally
lies in the suboptimal standardization in each step of the biomarker pipeline, including
discovery, prioritization, and clinical validation. We prepared a summary of the main
issues and the best practices in biomarker development (Figure 1B). The first fundamental
step in biomarker discovery is establishing a high-quality design which includes making
explicit hypotheses on the potential application/integration into current recommended
screening programs as well as adopting enrollment protocols with clear inclusion and
exclusion criteria for patients and controls. Moreover, heterogeneity (epidemiological,
biological and molecular) needs to be considered as the driver for adequate sample size to
fulfill the best design. Indeed, published studies often lack acceptable sample size with
respect to the numerous phenotypic features that should be considered to widely represent
the screening population [88], and the number of variables that should be analyzed to
deconvolute the high level of genetic heterogeneity of lung cancer. To limit self-selection
bias, instead of convenience selection of subjects (based on easy availability of the sam-
ple) [89], control populations should be identified based on matching criteria with the
patients’ cohort, and extensively represent the actual incidence and prevalence of lung
cancer in the screening population.

In the absence of standards for handling specimens (collection, storage and processing)
and controls for pre-analytical factors, randomization and blinding should be applied to
reduce bias from the experimental analysis. Indeed, quality and reproducibility of biomark-
ers can be influenced by uncontrolled pre-analytical conditions (i.e., fasting, lipemia, partial
hemolysis [90]) and by sample collection bias, especially when the biomarker is labile or
sensitive to temperature fluctuation or handling conditions (i.e., type of collection tubes,
centrifugation steps, long-term or short-term storage, freeze/thaw cycles; [91,92]). We
therefore suggest performing initial pilot experiments to measure the stability of circulating
biomarkers, i.e.: (i) by testing different samples collection strategies, using different col-
lection tubes for serum or plasma collection [93–96]; (ii) quantifying how much hemolysis
(partial or hidden) can influence biomarker concentration [97,98], (iii) checking if analyte
concentration is influenced by fasting status [90], and (iv) testing if different storage condi-
tions (short-term vs. long-term; +4 or −20/−80 ◦C or liquid nitrogen) can alter biomarker
quantity and quality [90]. After such analyses, a standard operating procedure (SOP) for
sample collection and handling should be defined and rigorously applied to the specific
biomarkers screening study.

Nowadays, high-throughput data allow the identification of many biomarkers act-
ing jointly on the risk of lung cancer; these markers can be easily combined in a single
multivariable statistical model; moreover, to avoid the resulting possible overfitting (i.e.,
capturing noise instead of the true underlying data structure), machine learning approaches
with sample-splitting or cross-validation should be considered [99]. The performance of
a new biomarker for the early detection of cancer is easily measured by true-positive
and false-positive rates, and summarized through receiver operating characteristic curves
(ROC). However, the “average” performance is often presented in the literature, with ROC
calculated across all study subjects, while subgroup and/or multivariable analysis should
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better reveal the utility of biomarker testing in specific groups (i.e., tumor stages, nodule
density, histotypes).

Exploration of biomarkers’ performance in subgroups could also help with ranking
the selected candidates for clinical relevance. Moreover, when a new biomarker study is
published, only limited discussion on the biological function of the candidates is reported,
and assay/platform reproducibility and standardization are frequently lacking (see below).
In our experience, an in-depth analysis of technical and biological variables which might
have an impact on the detection and quantification of selected biomarkers should also be
performed. For example, uncontrolled environmental conditions during sample processing
could influence the quantification of biomarkers of interest. Marzi et al. [90] showed, by
using an automated purification system based on spin columns for nucleic acid purification,
that efficiency in miRNA extraction was inversely proportional to temperature increase
during daily runs. Similar findings were also described by other research groups [100].

In the case of analysis of multiple biomarkers (e.g., DNA, RNA and protein), the
collected samples (whole blood, plasma, serum) can be split in several aliquots which can
be differently prioritized for processing based on stability of the biomarkers of interest;
in case of RNA, which is more liable, the relevant sample aliquot can be processed imme-
diately while other aliquots (for other biomarker types) can be processed subsequently.
Likewise, the use of different extraction kits with or without additional centrifugation
steps could affect quantities and species of the biomarkers of interest. Cheng et al. [101]
showed that plasma samples can be contaminated by residual platelets, which impact most
miRNA measurements (~70%), therefore authors suggested to add pre- or post-storage
centrifugation steps in order to remove residual platelet contamination. Furthermore,
miRNA quantities may vary depending on the kit used for extraction [102,103].

To keep track of the impact of these pre-analytical and analytical variables, we strongly
recommend using endogenous and exogenous controls. In circulating miRNA, biomarker
analysis measuring both endogenous controls (e.g., RNU6, RNU44, miR-16 [104]) and exoge-
nous controls, e.g., synthetic miRNAs from other organisms (ath-miR-159a and/or cel-miR-39),
allows monitoring sample degradation, extraction efficiency and performance of miRNA
detection by using different screening platforms (e.g., qRT-PCR, ddPCR, microarray, NGS).

Lastly, the analytical translation in a clinically applicable platform and validation in
a large prospective trial are both needed to complete validation of candidate biomarkers.
Industrial and clinical partners could facilitate these phases, providing funding supports
and know-how in large-scale test production, regulatory affairs and commercialization [88].
A major issue in the validation of biomarkers for lung cancer early detection is to prove
its benefit in the context of screening programs, where lead- and length-time biases and
overdiagnosis are peculiar. Therefore, the choice of the end-point is essential and, although
biases could occur in interpreting causes of death, lung-cancer mortality reduction should
represent the primary endpoint [99], then followed by the evaluation of overall mortality.

4. Overview of Platforms for Circulating Biomarkers Detection: A Focus on
c-miRNA Detection

The performance of different screening platforms available in terms of sensitivity,
specificity and reproducibility, as well as relative costs of analysis should also be considered
in advance before starting biomarkers profiling. As previously described, c-miRNAs
are the most discussed in the literature as promising biomarkers for lung cancer early
diagnosis. Besides the several pre-analytical and analytical factors, which can impinge on
the biomarker reliability as we previously discussed, some considerations should be made
on the impact on the accuracy of c-miRNA biomarkers when using different experimental
platforms and technologies for biomarkers detection.

To quantify c-miRNA expression, a variety of platforms have been developed so far,
mainly based on quantitative PCR (qRT-PCR), microarray, or next-generation sequencing
(NGS) technology. Recently, the efficiency and concordance of different miRNA profiling
platforms were assessed [105–108]. In 2014, Mestdagh et al. [105] analyzed the expres-
sion level of 196 common miRNAs measured by 12 different application platforms to
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provide a sort of “miRNA quality control (miRQC)” analysis. They performed experi-
ments with high and low RNA input amounts and organized output measurements into
four groups to represent the various testing questions, i.e.: reproducibility, specificity,
sensitivity, and accuracy [105]. Similar qRT-PCR platforms showed a different perfor-
mance in terms of reproducibility and specificity [105]. Sensitivity, on the other hand,
is very much technology-related, with qRT-PCR platforms (i.e., TaqMan Cards PreAmp;
ThermoFisher) being superior to hybridization- (i.e., microarray) and sequencing-based
platforms. Furthermore, the hybridization platforms displayed higher specificity, but lower
detection rates compared to most of the qRT-PCR and sequencing platforms [105]. Overall,
the authors reported that sensitivity and specificity have a deep and important inverse
relationship [105].

Next-generation technologies are now also available for miRNA profiling. For ex-
ample, Small RNA sequencing (RNA-Seq), in particular, was reported to be superior for
discovery studies, but less useful for high-throughput or fast turnaround applications [105].
Furthermore, when various RNA isolation and library preparation protocols are used,
the reproducibility of small RNA-seq is significantly and negatively affected [106,109].
Recently, Godoy et al. [107] evaluated a small RNA-seq method optimized for low-input
samples [106,110,111] (i.e., liquid biopsy) to three relatively novel platforms, i.e., (i) the HTG
Molecular’s EdgeSeq miRNA Whole Tran-scriptome Assay (EdgeSeq), (ii) the Abcam’s
FirePlex (FirePlex), and (iii) NanoString’s nCounter (nCounter). These three platforms
were selected for their rapid turnaround time and ease of use, properties that are attrac-
tive for biomarker assays. The authors used pools of synthetic RNA oligonucleotides
and standardized extracellular RNA human plasma samples to assess reproducibility,
bias, specificity, sensitivity, and accuracy. Briefly, the authors concluded that: (i) small
RNA-seq was the most accurate, sensitive and specific method with an AUC of 0.99 for
miRNA detection, which was superior to EdgeSeq (AUC = 0.97), nCounter (AUC = 0.94)
or FirePlex (AUC = 0.81); (ii) EdgeSeq was the most reproducible and had the least de-
tection bias; and (iii) nCounter was less sensitive than small RNA-seq, EdgeSeq, and
FirePlex. Recently, Hong LZ et al. [108] performed a systematic evaluation of multiple
qPCR platforms (MiRXES ID3EAL, Qiagen miScript, TaqMan Cards preAMP, Exiqon LNA),
nCounter technology (NanoString) and miRNA-Seq for microRNA biomarker discovery
in human biofluids. Performance parameters such as reproducibility, detection rate, and
inter-platform correlation were used to evaluate each technology. MiRXES qRT-PCR and
miRNA-Seq platforms had an almost perfect reproducibility between runs, calculating
the Concordance Correlation Coefficient (CCC = 0.99), while the other three qRT-PCR
platforms had moderate inter-run concordance (CCC > 0.9), and the NanoString platform
had poor inter-run concordance (CCC = 0.82). The MiRXES qRT-PCR and NanoString
platforms detected the highest and the lowest number of miRNAs above the LLOQ (lower
limit of quantification) in serum samples, respectively. The authors concluded that the
miRNA-Seq technology is preferable for discovery, while targeted qRT-PCR for subsequent
validation of candidate extracellular miRNA biomarkers is recommended.

Finally, the droplet digital PCR (ddPCR) technique is becoming the gold standard in
the application of liquid biopsy due to a number of advantages: (i) it allows an absolute
quantification by means of sample partitioning and Poisson statistics (an internal/external
normalization is thus not required); (ii) it has a superior precision and sensitivity in de-
tecting low-abundant targets; (iii) it is less affected by PCR inhibitors [112–115]. However,
ddPCR is less frequently used for c-miRNA measurements due also to a restricted mul-
tiplexing capacity, longer turnaround time for sample processing, and higher costs. In
Table 3, a summary of the pros and cons of c-miRNA screening technologies is provided.
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Table 3. miRNA platforms comparison.

Method Platform (Vendor) Turnaround
Time

Costs Per
Sample

Panel Content
(Human miRNA) Reproducibility SE SP ACC

qRT-PCR

miScript (Qiagen) +++ $$ 1066 Medium [105,108] Medium [105] Medium [105] High [105]

miRCURY Exiqon (Qiagen) +++ $$ 752 High [105]
-Medium [108]

Medium
[105,108]

High [105]
-Medium [105] High [105]

TaqMan Cards preAMP (Life
Technologies) a +++ $$ 754 Medium [108]

-Low
High [94]

-Medium [108]
High [105]

-Medium [105] High [105]

TaqMan OpenArray (Life
Technologies) a + $ 754 Low [105] Medium [105] High [105] High [105]

SmartChip (WaferGen) +++ $$ 1036 High [105] Low [105] Medium [105]
-Low [105] Low [105]

qScript (Quanta BioSciences) +++ $$ 489 High [105] Medium [105] High [105]
-Medium [105] High [105]

miRXES ID3EAL (miRXES) +++ $$ 560 High [108] High [108] NA NA

GeneChip miRNA
arrays

microarray (Affymetrix) ++ $ Up-to-date content
from miRBase 20 Medium [105] NA High [105]

-Low [105] Low [105]

microarray (Agilent) ++ $ Up-to-date content
from miRBase 21 High [105] Low [105] High [105]

-Medium [105] Low [105]

nCounter platform nCounter (NanoString) + $ 800 Medium [105]
-Low [108] Low [107,108] High [105]

-Medium [107] Low [105]

sRNA-Seq
(miRNA-seq)

TruSeq (Illumina) ++ $ Up to 2693 b

(miRBase 22)
High [105,107,108] High [107,108]

-Medium [105] High [105,107] Medium [105]

Ion Torrent (Life Technologies) ++ $ Up to 2693 b

(miRBase 22)
Medium [105] Medium [105] Low [105] Medium [105]

HTG EdgeSeq
HTG EdgeSeq (HTG Molecular

Diagnostics) plus Illumina or Thermo
Fisher Ion Torrent sequencers

+ $$ 2083 High [107] High [107] High [107] NA

Standard flow
cytometer FirePlex (Abcam) + $$ up to 65 miRNAs

per well Low [107] Medium [107] Low [107] NA

Platform comparison. a Standard TaqMan MicroRNA Assays use a target-specific stem-loop reverse transcription primer; b Number of mature microRNAs in miRBase release 22; NA = not analyzed [105,107,108].
From $ to $$, qualitative scale of costs for sample processing. From + to +++, qualitative scale of turnaround time for sample processing.
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5. Discussion

Cancer biomarkers substantially change the way we manage lung cancer patients by
improving disease stratification using intrinsic molecular characteristics, identification of
therapeutic targets and monitoring molecular residual disease. However, the application
of biomarkers for lung cancer early diagnosis is still limited by a lack of substantial
trial-like research studies where the accuracy of proposed biomarkers is analyzed in
real-world datasets. Previous studies highlighted pros and cons of different circulating
biomarkers proposed for lung cancer detection and possible integration in the clinical
routine (reviewed in Seijo et al. [116]). Circulating biomarkers can be very effective to
inform clinical decision making in the management of indeterminate pulmonary nodules
(IPNs) and in the management of diagnosed and resected lung cancer patients. Current
management of IPNs is largely based on watchful waiting and may imply a risk of disease
dissemination. Nodules found on annual LDCT screening, which are frequently very small
in size and hamper current biopsy techniques, may benefit from an integrated risk model,
which includes the different sources of information: clinical, imaging and biomarkers. This
type of integrated risk model might also inform decisions regarding screening intervals,
personalized follow-up of lung cancer patients, and prognostication.

Here, we made an update on recent developments in liquid biopsy-based biomarkers
for lung cancer early diagnosis and proposed a roadmap for optimal biomarkers identifi-
cation and development. A limit of this study is that we opted for a focused analysis on
extensively validated biomarkers in large cohorts of samples including lung cancer screen-
ing studies rather than describing all circulating biomarkers proposed in the literature.

We have also brought to light the current limitations in biomarker research, which can
be briefly summarized in: (i) poorly designed studies for biomarker discovery and vali-
dation; (ii) uncontrolled pre-analytic and analytic variabilities lacking standard operating
procedures; (iii) frequent lack of validation studies using independent cohorts of samples
collected from lung cancer screening studies; and (iv) somewhat sophisticated technologies
for biomarker profiling that are hard to transfer to the clinical setting.

Biomarker research clearly offers substantial help in the characterization of at-risk
population subgroups for screening selection and—more importantly—in the identification
of disease precursors, predictive and prognostic factors before signs and symptoms of
the disease appear. In particular, the analysis of liquid biopsies (i.e., plasma/serum) is
emerging as promising for the quantification of biomarkers through also the use of lab-
on-chip technologies, which would allow a rapid disease detection/monitoring and a
biological characterization at the bedside [117,118]. Furthermore, genomic and proteomic
breath tests besides airway epithelium signatures, are being trialed for early and non-
invasive diagnosis of cancer and pulmonary disease, in particular for lung cancer and
COPD [119,120]. Likewise, new emerging RNA-based biomarkers such as long non-
coding RNA (lncRNA), circular RNA (circRNA) and platelets mRNAs have been described
circulating in the blood with a potential for lung cancer early detection (Tables S2–S4;
Figure 2).
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Figure 2. Forest plot showing the AUC and 95% confidence interval (when reported) for c-miRNA-based signatures (listed
in Table 1) and other RNA-based biomarkers (listed in Tables S2–S4). Red squares represent the AUC for each marker and
black vertical bars extend from the lower limit to the upper limit of the 95% confidence interval (95% CI).

6. Conclusions

Thus far, all these multi-source biomarkers have never been combined into a coordi-
nated and comprehensive workup for screening, diagnosis and treatment decision. The
main barrier consists of difficulties in organizing worldwide large-scale studies with cen-
tralized resources for data/sample collection and processing following standard operating
procedures. In addition, it is urgent to develop innovative approaches using big data and
artificial intelligence (AI) analytics, such as machine learning, to improve both lung cancer
early detection, personalized prevention strategies, and early treatments. We therefore
look forward for these next-generation biomarkers in lung cancer screening programs to
ameliorate early diagnosis, prognosis, and therapeutic response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153919/s1, Table S1: List of circulating miRNA markers diagnostic for lung cancer
analyzed by qRT-PCR, Table S2: List of circulating lncRNA markers diagnostic for lung cancer, Table
S3: List of circulating circRNA and pri-miRNAs markers diagnostic for lung cancer, Table S4: List of
mRNA platelets markers diagnostic for lung cancer.
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