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Editorials 

Reduce, Reuse, and Recycle: Shedding Light on Shedding Cells 

I n the intestine, dead or dying epithelial cells just get 
sloughed off, drop into the lumen, and die. Or do 

they? The paper by Iwanaga et al. in this issue of GAS- 
TROENTEROLOGY' suggests that intraepithelial lym- 
phocytes (IELs) and subepithelial histiocytes are in- 
volved in removing all but the most superficial parts of 
enterocytes. This part of the enterocyte lives on with- 
out its nucleus, preserving the integrity of the mucosa 
until ultimately this remnant of the enterocyte is also 
shed into the lumen. The basal part of the enterocyte 
including the nucleus is engulfed by macrophages ly- 
ing immediately beneath the epithelium. Using pseu- 
dopodia that extend to the basal part of the cell, these 
macrophages absorb the enterocyte with resulting pyk- 
notic nuclear fragments being visible within their cy- 
toplasm. The description of this novel mechanism, 
currently only documented in the guinea pig small in- 
testine, at a single stroke suggests that our cherished 
views on cell destruction and turnover in the intestinal 
epithelium may require modification. In addition, this 
brings to the forefront possible physiological functions 
for IELs and the subepithelial macrophages. The func- 
tion of both of the latter two cells has been enigmatic, 
with many “probable roles” in a variety of functions 
each with limited evidence. The study of Iwanaga et al. 
may be the first to shed light on these issues. At the 
same time it raises questions such as whether this pro- 
cess occurs in humans and why such a complex process 
should exist at all. This is certainly a most intricate 
mechanism, which could conceivably be a mode of 
conservation or a means of preventing parts of the cell, 
including the nucleus, from reaching the lumen. If it is 
a mode of conservation, is this part of a more wide- 
spread phenomenon seen in other epithelia? Life with- 
out a nucleus is not an entirely new concept; human 
red cells do it all the time. 

The functional integrity of the intestinal mucosa is 
dependent on the barrier provided by a single layer of 
columnar epithelium sitting on a basement membrane 
and held together by tight junctions. These cells serve 
in the absorption of nutrients, fluid, and electrolytes. 
The integrity of this barrier is reflected in the selected 
permeability to molecules. Hence the external world is 
kept from invading the internal environment. Any 
disruption in this epithelial layer alters the normal 

physiological function of the epithelial cells and 
disrupts its barrier function as seen in inflammatory 
bowel diseases. 

Presumably to maintain a viable epithelial cell layer 
there is a constant turnover of cells and precursors. 
Immature cells in the crypts provide new cells that 
mature into enterocytes and goblet cells that migrate 
up and over the villus. Cells at the villus tip are 
sloughed off and shed into the lumen. At least this has 
been the dogma up until now. The study of Iwanaga et 
al. suggests that the removal of dying epithelial cells is 
more complex and occurs as a result of a specific mech- 
anism designed to eliminate enterocytes at a predeter- 
mined anatomical site in a very controlled fashion 
while ensuring that the integrity of the epithelium is 
never compromised. 

The whole process of programmed cell death or 
apoptosis is complex. ’ The notion that intestinal epi- 
thelial cells die and become apoptotic with nuclei that 
become smaller and fragmented has been known for 
about 40 years since Leuchtenberger described small 
inclusion bodies of DNA in large bowel adenomas.3 
However, the process was recognized in embryos as 
part of normal embryogenesis 3 years earlier.4 Similar 
inclusions are also described in excess in other condi- 
tions associated with cell death including radiation, 
chemotherapy, and graft-vs.-host disease and even 
drug-related disease. 5 This also appears to be part of 
the normal mechanism of programmed cell death, pa- 
thology frequently representing a change in the dy- 
namics of a normal process. The question of how and 
why this occurs as part of the mechanism of normal 
enterocyte turnover during the housekeeping of the 
crypt-villus unit needs to be explored. 

Although Iwanaga et al. suggest that because subepi- 
thelial histiocytes are present in humans that the same 
process likely exists in the human gut, this hypothesis 
requires appropriate confirmation. Nevertheless our 
knowledge of the origin and function of these macro- 
phages is limited. Macrophages are frequently seen in 
the human large and small intestine immediately be- 
neath the epithelium and frequently contain nuclear 
debris, the origin of which has never been clear but 
which included epithelium, possibly IELs, and other 
cells dying in the lamina propria. However, the origin 
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and function of these histiocytes in humans is unclear. 
There are at least two possible modes of origin, per- 
haps the most logical being from bone-marrow de- 
rived monocytes; however, a second possibility is that 
they could originate from the myofibroblasts of the 
pericrypt fibroblast sheath. These cells are readily visi- 
ble in the basal two thirds of crypts but seem to fizzle 
out in the upper third of the large bowel mucosa and in 
villi. In tumor pathology most are aware of the fibro- 
histiocytic group of tumors (e.g., malignant fibrohis- 
tiocytoma) in which it seems possible that histiocyte- 
like cells are derived from fibroblast or myofibroblasts. 
Invoking the pericrypt (myo)fibroblast sheath as the 
origin of lamina propria histiocytes raises another 
thorny issue, which is whether this population is static 
(i.e., the conveyer belt of epithelial cells migrate over 
the sheath towards the lumen) or whether sheath cells 
are dynamic as well and migrate up along with the 
epithelium. Evidence from turnover studies and crypt 
labeling has supported both of these mechanisms, and 
the question therefore remains unresolved.6-‘0 If the 
sheath migrates, then the question is what happens to 
these cells when they reach the superficial mucosa. If 
they die, they can be shed with the epithelial cells (or 
part of them) into the gut lumen or engulfed by the 
superficial macrophages. But rather than be ingested 
by them, could they actually transform into them, en- 
gulf part of th eir neighboring epithelial cell as pro- 
posed by Iwanaga et al., and then migrate out? It is 
easier to postulate migration out than death because 
this would produce an even greater disposal problem 
of dead cells and cell products in the superficial lamina 
propria. There would be even less problem if sheath 
cells were a relatively static population. 

Within the epithelium, dispersed between the en- 
terocytes, are isolated mononuclear cells- the IELs. 
In the epithelium, 2%3% of the resident lymphocytes 
actually synthesize DNA in situ; at the villus tip the 
IELs are a collection of relatively young or recently 
arrived lymphocytes that transit within 3 days of ar- 
rival.” This is in contrast to the enterocyte whose 
average life span is 7 days.12 This difference suggests 
that the IELs are not simply shed along with the epi- 
thelial cells into the lumen but may reenter the lamina 
propria, possibly even from the lumen. This issue has 
not been completely resolved; however, studies in the 
rat examining the direction of the collagen fibers at the 
rupture of the basement membrane following passage 
of a lymphocyte and on the location of the cytoplasmic 
tail of the moving lymphocytes in relation to the nu- 
cleus suggest that IELs reenter the lamina propria.“*‘3 
Studies in chickens infected with coccidia also provide 

evidence that IELs are able to migrate back across the 
basement membrane into the lamina propria.‘4*” Thus 
IELs are not simply dragged along by the enterocyte 
escalator; indeed, the enterocytes probably have to mi- 
grate over IELs allowing ample opportunity for inter- 
actions between these cells. As the resident mononu- 
clear cell, the IEL is an obvious candidate to consider 
as a cell responsible for the elimination of old, injured, 
transformed, or dying epithelial cells. 

The in vivo function of IELs has, until now, eluded 
definition.” IELs are a heterogeneous population of 
mononuclear cells that morphologically include gran- 
ulated cells similar to the large granular lymphocytes 
(LGL) in peripheral blood.” Although the majority of 
these cells bear the CD8 receptor, which in peripheral 
blood lymphocytes has been associated with. cyto- 
toxic/suppresser T-cell activity, no suppresser activity 
has been shown in IELs. The majority of IEL express 
the T-cell receptor (TcR) molecule, and in the mouse 
this can be the a/P-TcR or the y/&TcR.‘*,” In con- 
trast to the ~$5 TcR cells, which have quite a wide 
spectrum of antigen receptors, IELs with y/6 TcR 
have much more limited diversity and hence antigen 
repertoire. This led to the suggestion that these IELs 
were responsible for the maintaining epithelial integ- 
rity. *’ In vivo evidence for such a function, perhaps up 
until now, has been lacking. If we are to consider the 
findings of Iwanaga et al. in the context of what is 
known of IEL function, can we support the hypothesis 
that IELs are responsible for this role? 

In vitro studies have shown that naive IELs have 
natural killer (NK),*’ cytolytic and cytokines/regula- 
tory functions. Cytolytic ability of IELs expressing ei- 
ther the a/p- or ‘y/&TcR can be shown against the 
lymphoma cell line Yac-1 that is sensitive to NK cell 
function’9,21-23 and also against virus-infected cells in a 
fashion unique to IELs. 24-26 The surface receptors used 
in these functions are not known. Cytolytic function is 
also expressed in the ability of a/P-IELs to recognize 
allogeneic (strain-related) targets in classic cytotoxic 
T-lymphocyte assays. 27 In addition to this cytotoxic 
activity, IELs can produce and secrete a host of cyto- 
kines that may allow this population to function as a 
regulatory T cell, influencing B cell function.‘8-31 
Some of these cytokines, such as tumor necrosis factor 
(TNF), may also account for the cytolytic activity of 
IELs.~’ 

Given this armamentarium of cytotoxic and regula- 
tory functions, can the IELs recognize and respond to 
senescent epithelial cells? T cell lines and clones de- 
rived from fetal thymus or peripheral lymphoid organs 
can recognize MHC class I-like molecules such as TL 
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antigens in mouse and CD1 antigens in humans.33-36 
Since CD1 antigens are expressed on human intestinal 
epithelial cells it has been suggested that this molecule 
can function to present a restricted set of self-peptides 
allowing IELs to respond to self, possibly limited even 
further to a response to relatively senescent cells. It is 
also possible that a secretory product of IELs, possibly 
interferon gamma, can induce expression of MHC 
class II on epithelial cells. 37 The plot thickens because 

cell lines derived from neonatal mouse IELs can recog- 
nize self-antigen on epithelial cells.38 IELs also have a 
high frequency of autoreactive-TcR.39-4’ These IELs 
are thought to represent cells that have escaped thymic 
deletion and possibly developed without coming into 
contact with the thymus at all, therefore representing a 
thymic-independent lineage. Under normal condi- 
tions, these T cells are functionally anergic. Whether 
such autoreactivity can be stimulated to cause IELs to 
recognize and eliminate epithelial cells is not clear, but 
that potential clearly exists. 

The study of Iwanaga et al. suggests that epithelial 
cells undergo a controlled death initiated by apoptotic 
changes in the nucleus. The ability of IELs to directly 
kill target cells by inducing apoptosis has not been 
shown. If IELs were responsible for such a function 
they would be well equipped to carry out cell killing, 
since TN!? does have cytostatic effects on epithelial 
cell lines.4’ Furthermore, the granules within IEL, like 
cytotoxic T lymphocytes (CTL), contain perforins and 
serine esterases of the granzyme family that can func- 
tion in target cell killing. 44,45 In addition, CTL contain 
granule-associated proteases called “fragmentins” that 
induce DNA fragmentation and apoptosis in target 
cells.46 The possibility that such proteins are present in 
IELs remains to be explored. If present, these proteins 
would further allow one to argue that IELs are not 
only well positioned for this function but they are also 
well armed. 

Given the background of TEL heterogeneity in phe- 
notype and function, which includes a cytolytic poten- 
tial and the ability to recognize molecules on epithelial 
cells, it is possible that the morphological data pre- 
sented by Iwanaga et al. represents the first in vivo 
evidence of a physiological role for IELs, simulta- 
neously suggesting an explanation for a function for 
subepithelial macrophages and an explanation of the 
nuclear debris frequently found in them. Further, it 
may be no coincidence that one of the few diseases in 
which an excess of IELs and particularly y/&IEL are 
documented is celiac disease, a disease characterized by 
a rnarked reduction in epithelial turnover time.47 If 
these findings are related, we should be able to predict 

that there will be a similar decrease in turnover time in 

other diseases frequently associated with increased 
IELs, such as collagenous and microscopic colitis. 
Even more speculative is the notion that if TELs are 
responsible for inducing programmed cell death, then 
in some intestinal neoplasias, initially adenomas, there 
may be a failure of programmed cell death and there- 
fore may be a primary disorder of TEL epithelial inter- 
action. 
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