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Abstract
Phenology is a fundamental determinant of species distributions, abundances, and interactions. In host–parasite interactions, 
host phenology can affect parasite fitness due to the temporal constraints it imposes on host contact rates. However, it remains 
unclear how parasite transmission is shaped by the wide range of phenological patterns observed in nature. We develop a 
mathematical model of the Lyme disease system to study the consequences of differential tick developmental-stage phenol-
ogy for the transmission of B. burgdorferi. Incorporating seasonal tick activity can increase B. burgdorferi fitness compared 
to continuous tick activity but can also prevent transmission completely. B. burgdorferi fitness is greatest when the activity 
period of the infectious nymphal stage slightly precedes the larval activity period. Surprisingly, B. burgdorferi is eradicated 
if the larval activity period begins long after the end of nymphal activity due to a feedback with mouse population dynamics. 
These results highlight the importance of phenology, a common driver of species interactions, for the fitness of a parasite.
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Introduction

Behaviors or traits that vary seasonally, termed phenology in 
the ecological literature, impact both the type and strength 
of ecological interactions within populations and communi-
ties (Miller-Rushing et al. 2010; Bewick et al. 2016; Paull 
and Johnson 2014; Barber et al. 2016; Burkett-Cadena et al. 
2011). For example, seasonal matching between flower-
ing times and pollinator activity periods is a key driver of 
short- and long-term population dynamics of both plants 
and insects (Cleland et al. 2007; Gaku et al. 2004; Inouye 
2008; Kudo and Ida 2013; Memmott et al. 2007; Hegland 
et al. 2009). Differences in the seasonal activities of inter-
acting species over time or geography, caused by changes in 
climatic and environmental features, can result in population 
extinctions and in population explosions (Cahill et al. 2013; 
Johnson et al. 2010; Washburn and Cornell 1981; Powell 
and Bentz 2009; Jepsen et al. 2009; van Asch and Visser 
2007; Jepsen et al. 2008). Although the majority of studies 
focus on the phenology of plants and their interacting spe-
cies, the seasonal activity of hosts or disease vectors is also 

likely to have large impacts on the population dynamics of 
infectious microbes.

The impact of phenology on disease transmission dynam-
ics can be prominent in disease systems involving multiple 
host species or life stages because the seasonal match or 
mismatch of activities between species or stages will deter-
mine the frequency and type of pathogen transmission. For 
instance, consider the cestode Schistocephalus solidus that 
infects young three-spined stickleback fish as an intermedi-
ate host, multiplies within the fish before the fish is eaten 
by the definitive bird host (belted kingfisher) (Clarke 1954; 
Heins et al. 2016). The parasite reproduces sexually within 
the bird who defecate parasite eggs that infect juvenile fish 
(Clarke 1954). This disease system occurs in North Ameri-
can lakes that freeze over winter, causing both fish reproduc-
tion and bird migration to be temporally restricted within 
each year. A temporal mismatch in the bird and fish phenolo-
gies, such as fish reproduction occurring prior to the return 
migration of birds, could therefore reduce or eliminate ces-
tode transmission among its hosts. Further, variation in the 
environmental cues affecting the seasonal activity patterns 
of the birds and fish either among lakes or across years is 
likely to impact disease transmission dynamics. These types 
of seasonal dynamics are expected to impact parasite fitness 
in many disease systems, yet the quantitative and qualitative 
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impact of phenology remains relatively under explored (Bar-
ber et al. 2016).

Human diseases caused by zoonotic pathogens, those that 
complete their natural life cycle in wildlife but can infect 
humans, are likely impacted by the phenology of their wild-
life hosts or vectors. Parasites transmitted by hard bodied 
ticks (family Ixodidae) represent a practical case study to 
examine the impact of phenology on disease systems. The 
public health importance of diseases transmitted by these 
ticks, such as Lyme disease, has resulted in expansive field 
datasets that provide baseline expectations for the transmis-
sion consequences of tick phenological patterns, making this 
a good system to study the effects of the general conceptual 
issue of how vector phenology drives parasite transmission 
(Randolph 1999b; Randolph et al. 2000; Ogden et al. 2018). 
Ixodid ticks have three distinct developmental stages. Lar-
vae, the first developmental stage, hatch uninfected but can 
acquire Borrelia burgdorferi, the etiological agent of Lyme 
disease, while feeding on an infected host (Fig. 1). Fed lar-
vae molt to nymphs that can then transmit B. burgdorferi 
to small vertebrate hosts (primarily mice, chipmunks, and 
shrews) during nymphal feeding. Fed nymphs molt to adults 
that feed on large vertebrates before laying eggs that hatch as 
larvae. In the Northeastern USA, the nymphal stage is active 
in early summer while larvae from a different cohort feed 

in late summer, providing an opportunity for B. burgdorferi 
transmission from nymphs to larvae through the vertebrate 
hosts (Wilson and Spielman 1985). This sequential feed-
ing pattern has been alleged to contribute to higher infec-
tion prevalence found in the Northeastern USA relative to 
Southern or Midwestern USA, where the sequential activity 
patterns are less pronounced (Ogden et al. 2018; Brinkerhoff 
et al. 2011).

Here we develop a model to study the evolutionary ecology 
of parasite transmission given different phenological scenarios 
using the B. burgdorferi–Ixodes tick system as a natural exam-
ple. The relative simplicity of our model makes mathematical 
analyses tractable while capturing the fundamental impact 
of phenology on parasite fitness. This impact unfolds over 
two timescales: the within-season dynamics of infection and 
the between-season demography of the vector (Bewick et al. 
2016). Previous work (Dunn et al. 2013; Ogden et al. 2004) 
considered the within-season dynamics of infection but did 
not account for the between-season population dynamics of 
the vector species. The latter is an important factor as phenol-
ogy can alter vector population sizes resulting in an ecological 
feedback impacting parasite fitness. Our analysis builds on 
a modeling framework that integrates these effects (Bewick 
et al. 2016) and demonstrates a general approach for studying 
both the short- and long-term impacts of vector phenology for 

(a) (b)

Fig. 1   How does tick life-stage phenology impact the transmission 
of B. burgdorferi? (a.) Larval ticks hatch uninfected (Piesman et al. 
1986; Patrican 1997) and can acquire B. burgdorferi by feeding on 
an infected small animal (I). Fed infected larvae molt to nymphs and 
become active the following year (II). Small animals are infected 
when fed upon by an infected nymph (III). Fed nymphs molt to adults 
and feed on larger animals prior to laying eggs that hatch the follow-
ing year (IV). Adult ticks play a minor role in the transmission ecol-
ogy of B. burgdorferi and are thus not explicitly modeled. Equations 
describe transitions between tick life stages and infection status from 
the modeling framework. (b.) The seasonal activity patterns of the 

tick developmental stages vary from near-continuous activity of all 
stages throughout the year (i) (Diuk-Wasser et al. 2006; Ogden et al. 
2018) to developmental stages with temporally divergent activity sea-
sons of short-duration within the USA (iii) (Diuk-Wasser et al. 2006; 
Ogden et al. 2018). This latter tick-stage phenology (iii) is thought to 
result in high transmission of B. burgdorferi as large proportions of 
hosts are infected by nymphs (III) prior to larval activity (I). Black 
lines show larval activity, and gray lines show nymphal activity. Note 
that the larvae and nymphs that feed in the same summer are from 
different cohorts

124 Theoretical Ecology (2021) 14:123–143



1 3

parasite fitness. We use the Lyme disease system to describe 
our approach, although the modeling framework applies to all 
parasites that require multiple transmission events to complete 
their life cycle (e.g., West Nile Virus, Leishmania parasites, 
Yersinia pestis). Our framework can be extended to study how 
specific vector life history traits, such as differential mortality 
throughout the year, impact parasite fitness. Additionally, our 
straightforward framework makes further investigation of the 
evolutionary pressure imposed by phenology possible.

Model

We model the transmission of B. burgdorferi between I. scapu-
laris and a main vertebrate reservoir, the white-footed mouse, 
Peromyscus leucopus (LoGiudice et al. 2003). Our model 
tracks the within-season dynamics of nymphal and larval 
population activity and uses these dynamics to compute the 
between-season changes in overall infection prevalence.

Within-season dynamics describe the duration of nymphal 
and larval emergence and feeding activity in continuous time 
from the beginning of each season ( t = 0 ) to the end ( t = � ). 
The life cycle we model is depicted in Figure 1a. Ticks start 
their life cycle uninfected, but may pick up the infection as 
larvae by feeding on an infected mouse (Magnarelli et al. 
1987). Larvae then overwinter and emerge as nymphs in the 
next season who can transmit the infection to new mice who 
are also born uninfected (Hofmeister et al. 1999). The state 
variables L∙(t) , N∙(t) , and M∙(t) represent larval, nymphal, 
and mouse populations, where the subscripts denote the host-
seeking status of ticks (q for questing for a host or f for fed), 
as well as infection status of ticks and mice (i for infected, u 
for uninfected). Thus, Lq denotes the questing larvae (who by 
definition cannot be infected), while Lif  denotes fed larvae that 
are infected. We make the common assumption that mortal-
ity and vital rates for both ticks and mice are not impacted by 
their infection status (Schwanz et al. 2011; Gage et al. 1995). 
The total mouse population size is M = Mi +Mu . The within-
season dynamics are given by the following system of ordinary 
differential equations: 

(1a)
dLq

dt
= L̂(T)gl

(
t, ll

)
− Lq

(
𝛾lM + 𝜇l

)
,

(1b)
dLif

dt
= �ml�lLqMi,

(1c)
dLuf

dt
= �lLq

(
Mu +

(
1 − �ml

)
Mi

)
,

(1d)
dNiq

dt
= N̂i(T)gn

(
t, ln

)
− Niq

(
𝛾nM + 𝜇n

)
,

Here, L̂(T) represents the total larval population to emerge 
in year T, as determined by the number of nymphs that have 
successfully fed in the previous year, T − 1 , survived to 
adulthood, and reproduced (given by equation (18) below). 
Similarly, N̂i(T) and N̂u(T) represent the total number of 
questing infected and uninfected nymphs that emerge in year 
T as determined by the number of infected and uninfected 
larvae at the end of the previous year and the probability of 
over-winter survival (see equations (16) and (17)). All other 
parameters are described in Table 1.

The functions gl(t, ll) and gl(t, ln) are probability density 
functions describing the timing and length of larval and 
nymphal emergence, respectively. We describe tick emer-
gence using a uniform distribution for analytical tractability:

where t∙0 is the time emergence begins, t∙f  is the time emer-
gence stops and l∙ is the length of the emergence period 
( t∙f − t∙0 = l∙ ). The uniform distribution establishes a con-
stant emergence probability for ticks over l∙ and thus spreads 
the emergence of the tick cohort evenly across the emer-
gence period from t∙f < t < t∙0 . While our analysis relies on 
tick emergence following a uniform distribution, we con-
ducted numerical simulations when tick emergence follows a 
Gamma distribution and found that the shape of the distribu-
tion does not qualitatively change our results (Appendix E.)

Equations (1a-1h) reduce to the following set of equations 
if we assume that the host population is at equilibrium, (
M = k

(
1 −

�m

b

))
 : 

(1e)
dNuq

dt
= N̂u(T)gn

(
t, ln

)
− Nuq

(
𝛾nM + 𝜇n

)
,

(1f)
dNf

dt
= �nM

(
Niq + Nuq

)
,

(1g)
dMu

dt
= bM(1 −M∕k) − �mMu − �nm�nNiqMu,

(1h)
dMi

dt
= �nm�nNiqMu − �mMi.

g∙(t, l∙) =

⎧⎪⎨⎪⎩

0 t ≤ t∙0
1

l∙
t∙0 ≤ t ≤ t∙f

0 t∙f ≤ t

(2a)
dLq

dt
= L̂(T)gl

(
t, ll

)
− Lq

(
𝛾lM + 𝜇l

)
,

(2b)
dLif

dt
= �ml�lLqMi,
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We solve equations (2a-2g) analytically in Appendix B.

Between‑season dynamics

The within-season dynamics described above are cou-
pled to recurrence equations that describe the survival 
of larvae and nymphs between years. We do not follow 
the mouse population between years because the impact 
of overwintering infected mice on B. burgdorferi trans-
mission is thought to be negligible (Bunikis et al. 2004; 
Anderson et al. 1987). The total number of infected and 
uninfected nymphs ( N̂i(T + 1) and N̂u(T + 1) ) that emerge 
in a given year are given as a function of the number of 

(2c)
dLuf

dt
= �lLq

(
M − �mlMi

)
,

(2d)
dNiq

dt
= N̂i(T)gn

(
t, ln

)
− Niq

(
𝛾nM + 𝜇n

)
,

(2e)
dNuq

dt
= N̂u(T)gn

(
t, ln

)
− Nuq

(
𝛾nM + 𝜇n

)
,

(2f)
dNf

dt
= �nM

(
Niq + Nuq

)
,

(2g)
dMi

dt
= �nm�nNiq

(
M −Mi

)
− �mMi.

infected and uninfected fed larvae at the end of the previ-
ous year ( Lif (�) and Luf (�) ) as follows:

where Lif (�) and Luf (�) are the infected and uninfected larval 
abundances at the end of the previous season (see Appendix 
B) and �l is the larval overwintering survival probability.

Similarly, the total fed nymphal population at the end 
of the year Nf (�) gives rise to the population of larvae, 
L̂(T + 1) , that emerges the following year as described 
by the map:

where Nf (�) is found by integrating (1e) over the season 
from (0, � ) as shown in Appendix B. �n is the expected 
number of eggs produced per fed nymph, after account-
ing for survival to adulthood and for fecundity. The 
strength of density dependence on reproduction is deter-
mined by �.

With these functions, we can write the discrete, between-
season mapping of the total larval and nymphal abundances 
from one year to the next:

(3)N̂i(T + 1) = 𝜎lLif (𝜏),

(4)N̂u(T + 1) = 𝜎lLuf (𝜏)

(5)L̂(T + 1) =
𝜎nNf (𝜏)

1 + 𝛼Nf (𝜏)

Table 1   Model parameters and 
their respective values. Time 
is measured in days for all 
parameters

Parameter Description Value

t∙0 start of activity period for tick life stage ∙ varies
t∙f end of emergence period for tick life stage ∙ varies
l∙ length of emergence period for tick life stage ∙ varies
L̂ size of emerging larval population varies

N̂i
size of emerging infected nymphal population varies

N̂u
size of emerging uninfected nymphal population varies

�l density-dependent contact rate between larvae and mice 0.004 (Randolph 1999a)
�n density-dependent contact rate between nymphs and mice 0.008 (Randolph 1999a)
�nm transmission probability from nymphs to mice 0.83 (Davis and Bent 2011)
�ml transmission probability from mice to larvae 0.6 (Davis and Bent 2011)
�l larval death rate 0.015 (Ogden et al. 2005a)
�n nymphal death rate 0.015 (Ogden et al. 2005a)
�m mouse death rate 0.01 (Schug et al. 1991)
b mouse birth rate 0.1 (Schug et al. 1991)
k mouse carrying capacity varies (Ostfeld et al. 1996b)
�l larval overwintering survival probability 0.21 (Davis and Bent 2011)
�n compound fecundity and survival parameter 10 (Davis and Bent 2011)
� density dependence parameter 0.0045
� season length 210 (Ogden et al. 2018)
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where �n denotes the fraction of emerging nymphs that suc-
cessfully feed as calculated from within-season dynamics 
( 𝜙n =

Nf (𝜏)

N̂(T)
 ; see Appendix A), and 𝜙li

(
N̂i(T)

)
 and 𝜙lu

(
N̂i(T)

)
 

are functions of N̂i(T) that denote the fraction of emerging 
larvae that become infected or remain uninfected through 
feeding as calculated from within-season dynamics (e.g., 
𝜙li

(
N̂i(T)

)
=

Lif (𝜏)

L̂(T)
 ; see Appendix B).

We next calculate the basic reproductive number, R0 , to 
quantify the impact of phenology for B. burgdorferi fitness. 
R0 represents the average number of new infections caused 
by a single infected tick in an otherwise naïve population of 
mice and ticks (McCallum 2001), which gives the threshold 
for parasite invasibility given the phenology of both tick 
stages. R0 is computed as the number of infected nymphs 
that emerge in year T + 1 produced by a single infected 
nymph that emerged in year T in an otherwise uninfected 
population. Specifically, we consider a tick population that 
is at its demographic equilibrium without the infection, 
solved by setting L̂∗ = L̂(T) , N̂∗ = N̂u(T) − 1 , and N̂i(T) = 1 
in equations (20)- (21). At this demographic equilibrium, R0 
of a rare parasite infection is given as follows:

This R0 accounts for transmission between cohorts of ticks 
through intermediate mouse hosts in a given feeding season. 
When N̂i(T) = 1 , parasites persist in phenological scenarios 
where N̂i((T + 1)) ≥ 1 (i.e., slope is greater than or equal to 
unity). Details of the analytical approach are in Appendix C.

Results

The rate of B. burgdorferi transmission from nymphs to 
mice to larvae is low in systems where either nymphs or 
larvae are continuously active (Fig. 2). Controlling for total 
population sizes, when nymphal feeding is evenly spread 
throughout the year, few nymphs feed at any given time, 
resulting in limited nymph-to-mouse transmission events. 
The proportion of infected mice remains constantly low 
as new infections occur at a similar rate as mouse mortal-
ity which replaces older, potentially infected mice with 

(6)L̂(T + 1) =
𝜎n𝜙nN̂(T)

1 + 𝛼𝜙nN̂(T)
,

(7)N̂i(T + 1) = 𝜎l𝜙li

(
N̂i(T)

)
L̂(T),

(8)N̂u(T + 1) = 𝜎l𝜙lu

(
N̂i(T)

)
L̂(T)

(9)R0 =
N̂i(T + 1)

N̂i(T)
= 𝜎l𝜙li

(
N̂i

)
L̂∗

uninfected juveniles. Larval ticks rarely encounter infected 
mice, thus limiting mouse-to-tick transmission events. By 
contrast, seasonal nymphal activity concentrates nymph-
to-mouse transmission events in time, causing a seasonal 
peak in mouse infection prevalence that decays due to mouse 
population turnover (Fig. 2). The duration of the nymphal 
activity period is negatively correlated with the rate at which 
infected mice accumulate as well as the maximum mouse 
infection prevalence (e.g., small ln values in Fig. 2). That is, 
nymphal activity periods of greater duration result in a lower 
maximum mouse infection prevalence that peaks later in the 
season (Fig. 2). Larval ticks that feed at or around the peak 
in mouse infection prevalence are more likely to encounter 
an infected mouse and to acquire B. burgdorferi before molt-
ing to nymphs.

The fitness of B. burgdorferi, quantified by the basic 
reproductive number ( R0 ), is greatest when larval activ-
ity is concentrated around the peak in the mouse infection 
prevalence, thus increasing the probability that each larva 
will feed on an infected mouse (Fig. 3A. and Fig. 4A). 

Fig. 2   Concentrated nymphal emergence durations ( ln = 15 days, A) 
result in a higher and earlier mouse infection prevalence peak (B) 
compared to longer nymphal emergence durations ( ln = 60 days) for 
the same total tick population sizes. For example, a nymphal activity 
duration of 15 days ( ln = 15 days, A) results in peak mouse infection 
prevalence (B) occurring on day 15, while ln = 60 days results in peak 
mouse infection prevalence occurring on day 61. In both models, 25% 
of emerging nymphs are infected, k = 50,M = k(1 − �m∕b) = 45 . All 
other parameter values are shown in Table 1
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Fig. 3   The basic reproductive number, R0 , of B. burgdorferi is greatest when 
larval activity is concentrated around peak mouse infection prevalence. The 
left panel depicts R0 as a function of the duration of larval emergence ( ll ) and 
time between nymphal and larval emergence ( tl0 ). Panels on the right depict 
within-season dynamics for representative timing parameter values indicated 
by their respective letters on the left panel. (A) Concentrated larval emer-
gence (small ll ) that begins slightly after nymphal emergence ( 20 < tl0 < 35 ) 
increases the probability that questing larvae feed on mice recently infected 
by nymphs ( tl0 = 25, ll = 18 ). (B) Transmission decreases as larvae emerge 

later ( tl0 > 35 ) because the larval cohort feeds after peak mouse infection 
prevalence ( tl0 = 50, ll = 18 ). (C) When larval and nymphal emergence 
is more synchronous (small tl0 ), transmission to larvae increases as larval 
emergence duration increases (large ll ) because more larvae feed after infec-
tious nymphs ( tl0 = 5, ll = 40 ). B. burgdorferi is not maintained in systems 
where R0 < 1 . R0 is calculated assuming tick emergence is uniformly dis-
tributed ( U(ll) where ll is the larval emergence duration, see Appendix C). 
L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see Appendix A.) ln = 25 days; all other 
parameter values are shown in Table 1

Fig. 4   The basic reproductive number, R0 , of B. burgdorferi is greatest 
when larval emergence begins shortly after nymphal emergence such that 
larvae feed during peak mouse infection prevalence. The left panel depicts 
R0 as a function of the time between the start of nymphal and larval emer-
gence ( tl0 ) and the duration of the nymphal emergence period ( ln ). The letters 
within the left panel indicate the parameter values used to depict representa-
tive within-season dynamics in the right panels. (A) Concentrated nymphal 
emergence (small ln ) coupled with slight differences in nymphal and larval 
emergence time ( tl0 < 10 ) increases the probability that questing larvae 
feed on mice infected by nymphs ( tl0 = 10, ln = 10 ). (B) Longer dura-

tions between nymphal and larval emergence time ( tl0 > 10 ) result in lower 
mouse-to-larvae transmission rates as many mice infected by nymphs die and 
are replaced by mice born uninfected such that larvae are likely to feed on 
uninfected mice ( tl0 = 40, ln = 10 ). (C) Synchronous emergence ( tl0 = 0 ) 
can also reduce B. burgdorferi fitness when nymphal emergence duration is 
long (large ln ) as many larvae feed before mice become infected by nymphs 
( tl0 = 5, ln = 30 ). R0 is calculated assuming tick emergence is uniformly 
distributed ( U(ln) where ln is nymphal emergence length, see Appendix C). 
ll = 25, L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see Appendix A). All other param-
eter values are shown in Table 1
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Fig. 5   The larval emergence duration that maximizes R0 for B. burg-
dorferi is conditioned on nymphal emergence duration. R0 is high if 
larval emergence duration is slightly longer than nymphal emergence 
duration ( ll > ln in (A) and (B)), thus allowing larvae to feed on mice 
that were previously fed upon by nymphs. However, R0 decreases 
when larval emergence duration is much longer than nymphal emer-
gence duration ( R0 of (B) < R0 of (A)) as late emerging larvae can 
feed on uninfected mice born after the nymphal activity period. 
Transmission from mice to larvae is low when the larval emergence 

duration is less than the nymphal emergence duration ( ll < ln in (C)) 
because many larvae feed before infectious nymphs. B. burgdorferi 
is not maintained in systems where R0 < 1 . R0 is calculated assum-
ing tick emergence is uniformly distributed ( U(ll) where ll is the larval 
emergence length. See Appendix C for details). L̂ = L̂∗ , N̂∗ = N̂u - 1 
(see Appendix A). tl0 = 0 , (A) ll = 35, ln = 7 (B) ll = 48, ln = 10 (C) 
ll = 20, ln = 30 . tl0 = 0 days; all other parameter values are shown in 
Table 1

Fig. 6   Highly concentrated larval emergence increases R0 when lar-
vae emerge slightly after nymphs. (A) Concentrated nymphal emer-
gence drives high mouse infection prevalence and results in high 
transmission to larvae when larval emergence is tightly concentrated 
( ll = 15, ln = 15 ). (B) Transmission from mice to larvae decreases as 
larval emergence duration increases because larvae are more likely to 
feed on uninfected mice born after nymphal activity ( ll = 40, ln = 15 ). 

(C) Transmission from mice to larvae also decreases if larval emer-
gence duration is highly concentrated and nymphal emergence 
duration is broad because many larvae feed before nymphs infect 
mice ( ll = 20, ln = 40 ). R0 is calculated assuming tick emergence 
is U(ll) where ll is the larval emergence length (see Appendix C.) 
L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see Appendix A.) tl0 = 15 days; all 
other parameter values are shown in Table 1
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Larvae that are active long after the end of the nymphal 
activity period are likely to feed on an uninfected mouse due 
to decays in mouse infection prevalence caused by mouse 
population turnover (Fig. 3B and Fig. 4B). Similarly, larval 
activity periods that begin prior to nymphal activity periods 
result in the majority of larvae feeding on uninfected mice 
that have not acquired an infection from a feeding nymph.

The effect of larval emergence duration depends on 
whether or not larval emergence coincides with nymphal 
emergence: concentrated larval emergence decreases R0 
when larval and nymphal emergence periods are synchro-
nous (Fig. 5) because most larvae feed before nymphs have 
a chance to infect the mouse population. Conversely, con-
centrated larval emergence tends to increase R0 when lar-
vae emerge later than nymphs (Fig. 6). This occurs because 
nymphal emergence that slightly precedes larval emergence 
results in high mouse infection prevalence when larvae begin 
emerging (Fig. 6A), and concentrated emergence results in 
most larvae feeding when the prevalence of infection is still 
high. In both cases, R0 decreases with very broad larval 
emergence due to mouse turnover (Fig. 3C, Fig. 4C, Fig. 6B, 
Fig. 5B).

Discussion

Phenology is a fundamental component of all ecologi-
cal interactions. Interactions between organisms such 
as competition, predation, and parasitism are predicated 
on temporal overlap of interacting species or life stages. 
Similarly, host or vector phenology impacts parasite fit-
ness by temporally structuring transmission events between 
interacting hosts or life stages. Host or vector phenological 
patterns can even determine whether a pathogen is highly 
abundant or is unable to persist (Fig. 3). The ubiquity of 
seasonal activity among hosts and vectors, as well as the 
geographic variation in seasonal activity patterns, under-
scores the importance of phenology for the distribution 
and abundance of many pathogenic microbes including 
malaria, rabies, tapeworm, and Lyme disease (Hoshen and 
Morse 2004; Gremillion-Smith and Woolf 1988; Anderson 
1974; Ogden et al. 2018). Here we derive the basic repro-
ductive number, R0 , for a transmission dynamics model 
that explicitly considers the impact of phenology on both 
parasite transmission and vector demography to assess 
the impact of vector phenology on parasite transmission 
and fitness using the Lyme disease system as an example. 
Our results are benchmarked by field data that show a link 
between the regional differences in tick phenology and 
differences in B. burgdorferi distribution and abundance 
(Ogden et al. 2018). Investigation of parameter space in 
this model revealed the novel insight that large temporal 

differences between the activity periods of tick life stages 
decrease B. burgdorferi fitness.

Our model accounts for an important ecological feed-
back between vector demography and parasite fitness by 
incorporating the impact of phenology on demography. 
This is achieved by capturing both within-season infec-
tion dynamics and between-season vector demography in 
our mathematical analysis. Tick population sizes increase 
with earlier and more concentrated emergence because 
most ticks have sufficient time to successfully find a host 
before the season ends. By contrast, late or less concen-
trated emergence results in fewer ticks feeding before 
the season ends as the time available for later-emerging 
ticks to find a host is effectively shortened. The impact 
of this demographic feedback is limited at high mouse 
density but increases rapidly at low mouse density (see 
Appendix D). Extensions to this framework where vec-
tor mortality or contact rates with hosts vary throughout 
the year are likely to exacerbate the impact of phenology 
on demography. These results suggest that disregarding 
between-season demographic dynamics could underesti-
mate parasite fitness ( R0 ) when ticks emerge early and 
overestimate R0 when ticks emerge later. The importance 
of this ecological feedback is reflected in the finding from 
a next-generation model focusing on within-season (but 
not between-season) impacts of tick phenology on B. burg-
dorferi fitness which indicated that vector demography is 
one of the most important model parameters affecting R0 
(Dunn et al. 2013).

Parasite fitness is maximized when the activity periods of 
vector life stages are of short duration (Fig. 2). Continuous 
nymphal activity temporally distributes the finite number of 
nymph-to-mouse transmission events such that mice become 
infected at a low rate throughout the season. Mouse infection 
prevalence remains continually low because mice that die, 
including infected mice, are replaced by uninfected juveniles 
at rates similar to the rate at which new infections are intro-
duced. Mouse-to-larvae transmission events are similarly 
rare as most larvae feed on the relatively abundant unin-
fected mice. By contrast, seasonal nymphal activity concen-
trates nymph-to-mouse transmission events leading to many 
new mouse infections over a short period of time. Mouse 
infection prevalence increases rapidly during the nymphal 
activity period, as new infections occur at a much greater 
rate than mouse mortality, and subsequently decline when 
new infections stop at the end of the nymphal activity period 
(Fig. 2). Transmission from mice to larvae is very high if 
larval activity coincides with high mouse infection preva-
lence (Fig. 3A. and Fig. 4A.) The temporal concentration 
of infected hosts is likely to have important consequences 
for the transmission success and fitness of most pathogens 
(Altizer et al. 2006; Martinez 2018).
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Extended periods between nymphal and larval activ-
ity result in limited transmission efficiency (Fig. 3B and 
Fig. 4B). This novel prediction for the Lyme disease system 
is caused by the decay in mouse infection prevalence fol-
lowing nymphal activity due to mouse mortality and the 
birth of uninfected mice (Hofmeister et al. 1999; Wright 
et al. 1990). Thus, larvae feeding long after the nymphal 
activity period have a greater probability of feeding on 
uninfected mice than those that feed shortly after the 
nymphal activity period. While high mouse turnover is 
the norm in this system (Schug et al. 1991), lower mouse 
turnover would extend the period of high mouse infection 
prevalence and moderate the declines in parasite fitness 
caused by extended periods between larval and nymphal 
emergence.

Parasite fitness is predicted to be greatest when all 
individuals within each developmental stage feed simul-
taneously and larvae feed immediately after nymphs. 
This result relies on the assumption that there is no limit 
to the number of ticks that can feed on a mouse at any 
given time. Realistically, the number of ticks per mouse 
is limited by grooming and foraging behaviors. Incorpo-
rating a maximum number of ticks per mouse will alter 
the prediction that simultaneous emergence within life 
stages maximizes parasite fitness as most ticks will fail 
to find an available host, resulting in fewer fed ticks each 
year and thus a lower R0 . Further, accounting for spatial 
aggregation of host-seeking larvae would increase the 
impact of a maximum number of ticks per mouse (Ost-
feld et al. 1996c, a, 2018; Devevey and Brisson 2012). 
Incorporating this ecological realism will cause interme-
diate emergence concentrations to result in more infected 
larvae.

The observed fitness of B. burgdorferi in different 
Lyme disease foci in North America corresponds qualita-
tively with model predictions. For example, the relatively 
continuous activity of both tick developmental stages in 
the Southeastern USA has been proposed as a factor lead-
ing to the relatively low B. burgdorferi fitness observed 
in the region. In the Midwestern USA, where larvae and 
nymphs are synchronously active during a limited period, 
B. burgdorferi transmission is lower than in the North-
eastern USA but much greater than where both stages are 
more continuously active (Fig. 5) (Hamer et al. 2012). 
The correlation between B. burgdorferi fitness observed 
in nature and the expected fitness differences given the 
observed phenological patterns suggests that both the 
duration of seasonal activity and the relative timing of 
activity periods may impact transmission success and par-
asite fitness (Figs. 3, 4, 6, 5). However, vector phenology 
is unlikely the only cause of the differences in B. burg-
dorferi transmission success among these regions as many 
other features that are known to impact B. burgdorferi 

also differ including host community composition, tick 
host preferences, and landscape and climatic features 
(James and Oliver Jr 1990; LoGiudice et al. 2003; Bris-
son and Dykhuizen 2004; Ogden et al. 2005b; Brisson 
et al. 2008; Khatchikian et al. 2012; Vuong et al. 2014; 
Adalsteinsson et al. 2016; Vuong et al. 2017; Adalsteins-
son et al. 2018). Nevertheless, our results add to the body 
of literature that suggests tick phenology can impact B. 
burgdorferi fitness.

Our model captures the impact of phenology on B. 
burgdorferi transmission and fitness in a much simpler 
modeling framework than previously published studies 
that successfully address several hypotheses specific to 
the system (Ogden et al. 2004, 2008; Dunn et al. 2013). In 
particular, previous work focused on accurately predicting 
B. burgdorferi incidence given phenological scenarios in 
several realistic environments that depend upon several 
dozens of parameters, all of which require empirical vali-
dation (Ogden et al. 2004). In contrast, our model has 15 
parameters and a straightforward structure. This relative 
simplicity allows our model to serve as a basis for studying 
phenological impacts in a broad range of environmental 
scenarios and disease systems as well as exploring the 
ramifications of other complicating factors such as the 
evolutionary dynamics of virulence.

As all disease systems exhibit seasonality, phenological 
drivers may have large impacts on the transmission suc-
cess, and disease risk from, many parasites. Geographic 
variation in host or vector phenology may also be an 
important driver of documented variations in pathogen 
prevalence and disease risk (Altizer et al. 2006; Martinez 
2018). Public health predictions of disease risk may be 
improved by accounting for phenological variation. Fur-
ther, the dramatic shifts in host and vector phenology 
driven by global climate change (Penuelas 2001; Meyer 
et al. 2014; Post et al. 2001; Johansson et al. 2014) may 
result in equally dramatic shifts in pathogen prevalence at 
regional or global scales.
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Appendix A

In Appendix A we derive between-season equilibrial 
solutions for tick demography (A.1a - A.1d), ignoring 
infection status. The following differential equations 
describe within-season tick population dynamics, valid 
from (0, � ) where � is the length of the tick feeding sea-
son. For simplicity, we assume that the mouse population 
is constant so that M = k(1 −

�m

b
) where b is the mouse 

birth rate, k is the carrying capacity and �m is the mouse 
death rate. All other parameters are the same as described 
in the main text. 

(A.1a-d) is solved analytically by describing tick emer-
gence using a uniform distribution

(10a)
dLq

dt
= L̂(T)gl

(
t, 𝜃l

)
− Lq

(
𝛾lM + 𝜇l

)
,

(10b)
dLf

dt
= �lLqM,

(10c)
dNq

dt
= N̂(T)gn

(
t, 𝜃n

)
− Nq

(
𝛾nM + 𝜇n

)
,

(10d)
dNf

dt
= �nNqM.

Within-season dynamics are coupled to recurrence equations 
that describe nymphal and larval survival between years. 
The total fed larval population at the end of the year, Lf (�) 
gives rise to the population of nymphs N̂ that will emerge 
the following year, described by the map

where �l accounts for the survival between fed larvae and 
questing nymphs and the number of fed larvae at time � is 
given by

Similarly, the total fed nymphal population at the end of the 
year, Nf (�) , gives rise to the population of larvae L̂ that will 
emerge the following year, described by the map

This expression accounts for the expected number of 
questing larvae produced per nymph that feeds to reple-
tion after accounting for survival through adulthood, 
density-dependent adult fecundity, and survival from 
egg to questing larva. The number of fed nymphs at time 
� is given by

If we define

g∙
�
t, l∙

�
=

⎧
⎪⎨⎪⎩

0 t ≤ t∙0
1

l∙
t∙0 ≤ t ≤ t∙f

0 t∙f ≤ t

N̂(T + 1) = 𝜎lLf (𝜏)

Lf (𝜏) =
𝛾lL̂(T)M

ll
(
𝛾lM + 𝜇l

)
(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)xdx

+
(
1 − e−(𝛾lM+𝜇l)ll

)

∫
𝜏−tlf

0

e−(𝛾lM+𝜇l)xdx
)

L̂(T + 1) =
𝜎nNf (𝜏)

1 + 𝛼Nf (𝜏))

Nf (𝜏) =
𝛾nN̂(T)M

ln
(
𝛾nM + 𝜇n

)
(
∫

tnf

0

1 − e−(𝛾nM+𝜇n)xdx

+
(
1 − e−(𝛾nM+𝜇n)ln

)
∫

𝜏−tnf

0

e−(𝛾nM+𝜇n)xdx
)
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The maps for L̂(T + 1) and N̂(T + 1) can be written as

The equilibrium population size L̂∗ is then

Similarly for N̂∗

The stability of these equilibrium points is found by consid-
ering the biennial maps of the tick life cycle

�l =
�lM

ll
(
�lM + �l

)
(
∫

tlf

tl0

1 − e−(�lM+�l)xdx

+
(
1 − e−(�lM+�l)ll

)
∫

�−tlf

0

e−(�lM+�l)xdx
)
,

�n =
�n�nM

ln
(
�nM + �n

)
(
∫

tnf

0

1 − e−(�nM+�n)xdx

+
(
1 − e−(�nM+�n)ln

)
∫

�−tnf

0

e−(�nM+�n)xdx
)

L̂(T + 1) =
𝜎n𝜙nN̂(T)

1 + 𝛼𝜙nN̂(T)
,

N̂(T + 1) = 𝜎l𝜙lL̂(T)

L̂(T + 2) =
𝜎n𝜙nN̂(T + 1)

1 + 𝛼𝜙nN̂(T + 1)
,

L̂(T + 2) =
𝜎n𝜎l𝜙n𝜙lL̂(T)

1 + 𝛼𝜎l𝜙n𝜙lL̂(T)
)

L̂∗ =
𝜎n𝜎l𝜙n𝜙lL̂

∗

1 + 𝛼𝜎l𝜙n𝜙lL̂
∗
)

L̂∗ =
𝜎n𝜎l𝜙n𝜙l − 1

𝛼𝜎l𝜙n𝜙l

N̂(T + 2) = 𝜎l𝜙lL̂(T + 1)

N̂(T + 2) =
𝜎n𝜎l𝜙n𝜙lN̂(T)

1 + 𝛼𝜙nN̂(T)

N̂∗ =
𝜎n𝜎l𝜙n𝜙lN̂

∗

1 + 𝛼𝜙nN̂
∗

N̂∗ =
𝜎n𝜎l𝜙n𝜙l − 1

𝛼𝜙n

dL̂(T + 2)

dL̂(T)

||| L̂(T) = L∗
= −

𝜎n𝜎l𝜙n𝜙l(
1 + 𝛼𝜎l𝜙n𝜙lL̂

∗
)2

dL̂(T + 2)

dL̂(T)

||| L̂(T) = L∗
=

1

𝜎n𝜎l𝜙n𝜙l

This system is stable for 𝜎n𝜎l𝜙n𝜙l > 1 . �n,�n, and �l are 
always less than 1. Therefore, the stability of the tick demo-
graphic equilibrium depends on maintaining 𝜎l𝜙n𝜙l <

1

𝜎n
.

Figures in the main text assume both tick life stages 
are at equilibrium by using L∗ and N∗ for the sizes of 
emerging tick cohorts at the beginning of the season. 
( ̂L(T) = L∗, N̂i(T) + N̂u(T) = N∗).

Appendix B

In Appendix B we derive analytical solutions for Equa-
tions (2a-2g) from the main text. Equations (2a-2g) assume 
that the host population is at equilibrium, ( M = k(1 −

�m

b
) ). 

We put these equations again in Appendix B: 

 The system (B.1a-g) is solved analytically by describing tick 
emergence using a uniform distribution

where t∙0 denotes the start of emergence, l∙ denotes the 
length of emergence and t∙f  denotes the end of emergence 

(10e)
dLq

dt
= L̂(T)gl

(
t, tl0, ll

)
− Lq

(
𝛾lM + 𝜇l

)
,

(10f)
dLif

dt
= �ml�lLqMi,

(10g)
dLuf

dt
= �lLq

(
M − �mlMi

)
,

(10h)
dNiq

dt
= N̂i(T)gn

(
t, tn0, ln

)
− Niq

(
𝛾nM + 𝜇n

)
,

(10i)
dNuq

dt
N̂u(T)gn

(
t, tn0, ln

)
− Nuq

(
𝛾nM + 𝜇n

)
,

(10j)
dNf

dt
= �nM

(
Niq + Nuq

)
,

(10k)
dMi

dt
= �nm�nNiq

(
M −Mi

)
− �mMi.

g∙
�
t, t∙0, l∙

�
=

⎧⎪⎨⎪⎩

0 t ≤ t∙0
1

l∙
t∙0 ≤ t ≤ t∙f

0 t∙f ≤ t
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( t∙0 + l∙ = t∙f  ). The season begins with the emergence of the 
nymphs ( tn0 = 0 ). Larval emergence, tl0 can begin concur-
rently with nymphal emergence ( tl0 = 0 ) or have a start time 
that is offset relative to nymphs ( tl0 > 0).

To solve for the within-season dynamics we first find the 
time-dependent solutions for questing and fed nymphs. Emerg-
ing nymphs are split by their infection status ( N̂i(T) and N̂u(T) ) 
which was determined by whether they were infected during 
their bloodmeal as larvae in the previous season. 

 We then use Niq(t) to find the solution for mouse infection 
dynamics: 

 (B.2d) depends on the activity of questing nymphs and is 
split by whether nymphs are emerging, Mi1(t) for 0 ≤ t ≤ tnf  
or have finished emerging, Mi2(t) for tnf < t < 𝜏.

We next find the time-dependent solutions for questing and 
fed larvae, where L̂(T) denotes the emerging larval cohort. 
We use the solution for Mi(t) to split fed larvae by whether 
they became infected while feeding on a mouse. 

(10m)Niq(t) =

{
N̂i(T)

ln(𝛾nM+𝜇n)

(
1 − e−(𝛾nM+𝜇n)t

)
0 ≤ t ≤ tnf

Niq

(
tnf
)
e−(𝛾nM+𝜇n)t tnf ≤ t

(10n)Nuq(t) =

{
N̂u(T)

ln(𝛾nM+𝜇n)

(
1 − e−(𝛾nM+𝜇n)t

)
0 ≤ t ≤ tnf

Nuq

(
tnf
)
e−(𝛾nM+𝜇n)t tnf ≤ t

(11)

Nf (t) =

{
𝛾nM(N̂i(T)+N̂u(T))

ln(𝛾nM+𝜇n)
∫ tnf

0

(
1 − e−(𝛾nM+𝜇n)s

)
ds 0 ≤ t ≤ tnf

Nf

(
tnf
) ∫ t−tnf

0
e−(𝛾nM+𝜇n)sds tnf ≤ t

(11a)Mi(t) =

⎧⎪⎨⎪⎩

𝛾n𝛽nmN̂i(T)M

ln(𝛾nM+𝜇n)
Mi1

�
t, N̂i(T)

�
0 ≤ t ≤ tnf

𝛾n𝛽nmN̂i(T)M

ln(𝛾nM+𝜇n)
Mi2

�
t, N̂i(T)

�
tnf ≤ t

Mi1

(
t, N̂i(T)

)
= e

−𝜇n t−
e
−(𝛾nM+𝜇n)M 𝛾n𝛽nmN̂i (T)

(
1+e

−(𝛾nM+𝜇n)t (𝛾nM+𝜇n)t
)

ln(𝛾nM+𝜇n)
2

∫
t

0

−e
−e

−(𝛾nM+𝜇n)𝛾n𝛽nmN̂i (T)+(𝛾nM+𝜇n)(𝛾n𝛽nmN̂i (T)+ln𝜇m(𝛾nM+𝜇n))s

ln(𝛾nM+𝜇n)
2

(
−1+e−(𝛾nM+𝜇n)s

)
ds

Mi2

(
t, N̂i(T)

)
= e

−𝜇n t+
e
−(𝛾nM+𝜇n)t 𝛾n𝛽nmNiq(tnf )

𝛾nM+𝜇n

(
e
−

𝛾n𝛽nmNiq(tnf )
𝛾nM+𝜇n Mi1

(
tnf , N̂i(T)

)
+

𝛾n𝛽nmNiq

(
tnf
)
M ∫

t

0

e

−e
−(𝛾nM+𝜇n)s 𝛾n𝛽nmNiq(tnf )

𝛾nM+𝜇n
−(𝛾nM−𝜇m+𝜇n)s

)

(11b)Lq(t) =

⎧⎪⎨⎪⎩

0 t ≤ tl0
L̂(T)

ll(𝛾lM+𝜇l)

�
1 − e−(𝛾lM+𝜇l)t

�
tl0 ≤ t ≤ tlf

Lq(tlf )e
−(𝛾lM+𝜇l)t tlf ≤ t ≤ t

 The total number of fed infected larvae by the end of the 
season, Lif (�) , fed uninfected larvae by the end of the season, 
Luf (�) and total fed larvae by the end of the season Lf (�) are 
given by

Note that both Lif (�) and Luf (�) are dependent on N̂i(T) 
through the transmission dynamics of Mi(t).

The total number of fed nymphs by the end of the season 
is given by

(11c)

Lif (t) =

⎧
⎪⎨⎪⎩

0 t ≤ tl0
𝛾l𝛽mlL̂(T)

ll(𝛾lM+𝜇l)

�∫ tlf
tl0

1 − e−(𝛾lM+𝜇l)x ∫ x

0
Mi(s + tl0)dsdx tl0 ≤ t ≤ tlf

𝛾l𝛽mlLif (tlf ) ∫ t−tlf

0
e−(𝛾lM+𝜇l)x ∫ x

0
Mi(s + tlf )dsdx tlf ≤ t

(11d)

Luf (t) =

⎧⎪⎪⎨⎪⎪⎩

0 t ≤ tl0
𝛾l

̂L(T)

ll (𝛾lM+𝜇l )

�∫ tlf
tl0

1 − e−(𝛾lM+𝜇l )x ∫ x

0
(M − 𝛽mlMi(s + tl0)

�
dsdx tl0 ≤ t ≤ tlf

𝛾lLuf (tlf ) ∫ t−tlf

0
e−(𝛾lM+𝜇l )x ∫ x

0
(M − 𝛽mlMi(s + tlf ))dsdx tlf ≤ t

Lif (𝜏) =
𝛾l𝛽mlL̂(T)

ll(𝛾lM + 𝜇l)

(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)x

∫
x

0

Mi(s + tl0)dsdx

+
(
1 − e−(𝛾lM+𝜇l)ll

)
∫

𝜏−tlf

0

e−(𝛾lM+𝜇l)x

∫
x

0

Mi(s + tlf )dsdx
)

Luf (𝜏) =
𝛾lL̂(T)

ll(𝛾lM + 𝜇l)

(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)x ∫
x

0

1 − 𝛽mlMi(s + tl0)dsdx

+
(
1 − e−(𝛾lM+𝜇l)ll

)
∫

𝜏−tlf

0

e−(𝛾lM+𝜇l)x

∫
x

0

1 − 𝛽mlMi(s + tlf )dsdx
)

Lf (𝜏) =
𝛾lL̂(T)M

ll(𝛾lM + 𝜇l)

(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)xdx

+
(
1 − e−(𝛾lM+𝜇l)ll

)
∫

𝜏−tlf

0

e−(𝛾lM+𝜇l)xdx
)
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We can also write Lif (�) , Luf (�) and Nf (�) in terms of the 
total number of emerging ticks for a given season, L̂(T) , 
N̂i(T) , and N̂u(T).

where �n denotes the fraction of emerging nymphs that feed 
over a season as calculated from within-season dynamics 
and 𝜙li(N̂i(T)) and 𝜙lu(N̂i(T)) are functions of N̂i(T) that 
denote the fraction of emerging larvae that feed and become 
infected or remain uninfected, respectively, as calculated 
from within-season dynamics.

Discrete annual maps of each population can then be writ-
ten as

Nf (𝜏) =
𝜎n𝛾n(N̂i(T) + N̂u(T))M

ln(𝛾nM + 𝜇n)

(
∫

tnf

0

1 − e−(𝛾nM+𝜇n)xdx

+
(
1 − e−(𝛾nM+𝜇n)ln

)
∫

𝜏−tnf

0

e−(𝛾nM+𝜇n)xdx
)

Lif (𝜏) = 𝜙li(N̂i(T))L̂(T),

Luf (𝜏) = 𝜙lu(N̂u(T))L̂(T),

Nf (𝜏) = 𝜙nN̂(T).

𝜙li(N̂i(T)) =
𝛾l𝛽ml

ll(𝛾lM + 𝜇l)

(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)x

∫
x

0

Mi(s + tl0, N̂i(T))dsdx+

(
1 − e−(𝛾lM+𝜇l)ll

)
∫

𝜏−tlf

0

e−(𝛾lM+𝜇l)x

∫
x

0

Mi(s + tlf , N̂i(T))dsdx
)
,

𝜙lu(N̂i(T)) =
𝛾l

ll(𝛾lM + 𝜇l)

(
∫

tlf

tl0

1 − e−(𝛾lM+𝜇l)x

∫
x

0

1 − 𝛽mlMi(s + tl0, N̂i(T))dsdx+

(
1 − e−(𝛾lM+𝜇l)ll

)
∫

𝜏−tlf

0

e−(𝛾lM+𝜇l)x

∫
x

0

1 − 𝛽mlMi(s + tlf , N̂i(T))dsdx
)
,

𝜙n =
𝜎n𝛾nM

ln(𝛾nM + 𝜇n)

(
∫

tnf

0

1 − e−(𝛾nM+𝜇n)xdx

+
(
1 − e−(𝛾nM+𝜇n)ln

)
∫

𝜏−tnf

0

e−(𝛾nM+𝜇n)xdx
)
.

To check the stability of tick populations, consider the bien-
nial maps

Infection status does not impact demographic rates. There-
fore, the larval equilibrium size L̂ ∗ and total nymphal 
equilibrium size N̂∗ in the infection subsystem are identi-
cal to the result found above in Appendix A that ignores 
infection. N̂∗

i
 and N̂∗

u
 are both stable for the same conditions 

given in Appendix A because they are upper bounded by 
N̂∗ ( N̂∗

i
+ N̂∗

u
= N̂∗ ). Assuming the stability conditions in 

Appendix A are met, the nontrivial solutions for N̂∗
i
 and N̂∗

u
 

are unique because 𝜙li,𝜙lu < 1 and the transmission terms 
are 0 < 𝛽nm, 𝛽ml < 1.

Appendix C

In Appendix C we derive R0 to study how phenology 
impacts thresholds for parasite persistence. R0 is computed 
as the number of infected nymphs that emerge in year T + 1 
produced by a single infected nymph that emerged in year 
T in an otherwise uninfected population. Specifically, we 
consider the stability of the disease-free equilibrium when 
a rare infected nymph is introduced into the tick popu-
lation, solved by setting L̂∗ = L̂(T) , N̂∗ = N̂u(T) − 1 , and 
N̂i(T) = 1 in equations (20) and (21).

L̂(T + 1) =
𝜎n𝜙nN̂(T)

1 + 𝛼𝜙nN̂(T))
,

N̂i(T + 1) = 𝜎l𝜙li(N̂i(T))L̂(T),

N̂u(T + 1) = 𝜎l𝜙lu(N̂i(T))L̂(T),

L̂(T + 2) =
𝜎n𝜎l𝜙n𝜙lL̂(T)

1 + 𝛼𝜎l𝜙n𝜙lL̂(T)
,

N̂i(T + 2) =
𝜎l𝜎n𝜙n𝜙li(N̂i(T))N̂(T)

1 + 𝛼𝜙nN̂(T)
,

N̂u(T + 2) =
𝜎l𝜎n𝜙n𝜙lu(N̂i(T))N̂(T)

1 + 𝛼𝜙nN̂(T)

N̂∗
i
=

𝜎l𝜎n𝜙n𝜙li(N̂
∗
i
)N̂∗

1 + 𝛼𝜙nN̂
∗

,

N̂u ∗ =
𝜎l𝜎n𝜙n𝜙lu(N̂

∗
i
)N̂∗

1 + 𝛼𝜙nN̂
∗
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Three distinct cases of phenological patterns are rel-
evant to this system: (1) Emergence of both tick stages 
overlaps and larvae finish emerging before nymphs finish 
emerging. (2) Emergence of both tick stages overlaps and 
nymphs finish emerging before larvae finish emerging. (3) 
Nymph emergence ends before larvae emergence begins. 
Each case needs to be analyzed separately to account for 
the time-dependent differences in the dynamics.

Using Case 1 as an example to sketch our derivation:

for N̂i(T) = 1 , parasites persist in phenological scenarios 
where N̂i(T + 1) ≥ 1 . Parasite fitness is maximized when 
peak larval activity coincides with peak host prevalence.

When R0 > 1 , the number of infected nymphs, N̂i , reaches 
a stable T-periodic equilibrium

N̂i(T + 1) = 𝜎l𝜙li

(
N̂i

)
L̂∗

N̂i(T + 1) =
𝜎l𝛾l𝛽mlL̂

∗

ll
(
𝛾lM + 𝜇l

) 𝛾n𝛽nmN̂i(T)M

ln
(
𝛾nM + 𝜇n

)
(
∫

tlf−tl0

0

1 − e−(𝛾lM+𝜇l)x

∫
x

0

Mi1

(
s + tl0, N̂i(T)

)
dsdx

+ ∫
tnf−tlf

0

e−(𝛾lM+𝜇l)x ∫
x

0

Mi1

(
s + tlf , N̂i(T)

)
dsdx

+ ∫
𝜏−tnf

0

e−(𝛾lM+𝜇l)(x+tnf−tlf )

∫
x

0

Mi2

(
s, N̂i(T)

)
dsdx

)

R0 =
N̂i(T + 1)

N̂i(T)
=

𝜎l𝛾l𝛽mlL̂
∗

ll
(
𝛾lM + 𝜇l

) 𝛾n𝛽nmM

ln
(
𝛾nM + 𝜇n

)
(
∫

tlf−tl0

0

1 − e−(𝛾lM+𝜇l)x ∫
x

0

Mi1

(
s + tl0, N̂i(T)

)
dsdx

)

+
(
∫

tnf−tlf

0

e−(𝛾lM+𝜇l)x ∫
x

0

Mi1

(
s + tlf , N̂i(T)

)
dsdx

+ ∫
𝜏−tnf

0

e−(𝛾lM+𝜇l)(x+tnf−tlf )

∫
x

0

Mi2

(
s, N̂i(T)

)
dsdx

)

N̂∗
i
 for a given phenological scenario can be found by solving 

for the value of N̂i that satisfies R0 = 1 . Again, using Case 
1 as an example:

If the total tick population is stable (see Appendix A), N̂∗
i
 is 

upper bounded by N̂∗ and is therefore stable as well.

Appendix D

In Appendix D we demonstrate that tick phenological patterns 
can alter tick equilibrium population sizes and impact R0 . Not 
accounting for the impact of phenology on between-season 
tick population demography by assuming constant tick popula-
tions each year leads to over- or underestimates of tick demog-
raphy (Figure 7) and parasite fitness (Figures 8,9). Our model 
in contrast accounts for the feedback between vector demog-
raphy and parasite fitness by considering both within-season 
transmission and vector population dynamics (see Appendix B 
and C) and between-season vector demography (see Appendix 
A and B). Mouse density impacts R0 (Figure 10); the error in 
R0 estimate when not accounting for population dynamics is 
especially high when mouse density is low.

R0 is a function of the equilibrium larval population size, 
L̂∗ , which is in turn determined by tick phenology (see equa-
tion (A.3) in Appendix A).

The ecological feedback between tick phenology, tick 
demography, and R0 is ignored if a constant L̂ is assumed 
for all phenological patterns:

N̂∗
i
= N̂∗ − N̂∗

u

1 = 𝜎l
(
Lf (𝜏)

) 𝛾l𝛽mlL̂
∗

ll
(
𝛾lM + 𝜇l

) 𝛾n𝛽nmM

ln
(
𝛾nM + 𝜇n

)
(
∫

tlf−tl0

0

1

− e−(𝛾lM+𝜇l)x ∫
x

0

Mi1

(
s + tl0, N̂

∗
i

)
dsdx

)

+ Lq
(
tlf
) 𝛾n𝛽nmM

ln
(
𝛾nM + 𝜇n

)
(
∫

tnf−tlf

0

e−(𝛾lM+𝜇l)x

∫
x

0

Mi1

(
s + tlf , N̂

∗
i

)
dsdx

+ ∫
𝜏−tnf

0

e−(𝛾lM+𝜇l)(x+tnf−tlf ) ∫
x

0

Mi2

(
s, N̂∗

i

)
dsdx

)

R0 =
N̂i(T + 1)

N̂i(T)
= 𝜎l𝜙li(N̂i)L̂

∗
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where R0nc refers to the fact that R0 is ”not corrected.”
The relative error between R0 and R0nc is calculated as 

R0nc−R0

R0

.

R0nc = 𝜎l𝜙li(N̂i)L̂
Appendix E

In Appendix E we present numerical simulations of B. 
burgdorferi fitness using the Gamma distribution to 
describe tick emergence instead of the stricter Uniform 
distribution. These simulations demonstrate that the shape 
of the distribution does not significantly change the quali-
tative results presented in the main text. We also present 
numerical simulations where we relax the assumption that 
mouse population sizes are the same across seasons. These 

Fig. 7   Equilibrium larval population sizes ( ̂L∗ ) decrease at low mouse 
densities when larval activity begins much later than nymphal activ-
ity. M = k(1 − �m∕b) is the mouse population size, tl0 is the offset 
between when nymphs and larvae begin emerging, �l and �n are the 
contact rates between larvae and mice and nymphs and mice, respec-

tively. The first row shows that if �l and �n are high, large tl0 decreases 
L̂∗ slightly when nymphal and larval emergence is broad ( ll and ln ). 
The second row shows that if �l and �n are low, large tl0 decreases 
L̂∗ more strongly, especially when nymphal and larval emergence 
is broad ( ll and ln ). Note that contour colors are not the same across 
plots. All other parameter values are shown in Table 1
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simulations demonstrate that mouse population size does 
not alter the results qualitatively.

Gamma distributed tick emergence

A more natural tick emergence function follows the 
Gamma distribution:

where emergence begins at t = t∙0 , �∙ is the shape parameter 
and �∙ is the scale parameter. We vary �∙ in Figures 11 and 
12 to alter tick emergence width. Figures 11 and 12 show 
how R0 varies as a function of the time between the start of 

g∙(t, �∙,�∙) =

{
0 t ≤ t∙0
e�∙ t t�∙−1(

1

�∙
)−�∙

Γ(�∙)
t∙0 ≤ t

nymphal and larval emergence ( tl0 ), the larval emergence 
width parameter ( �l ) and the nymphal emergence width 
parameter ( �n).

Larval emergence is sometimes bimodal (Brunner and 
Ostfeld 2008); we thus also model larval emergence using 
the following distribution:

gl(t, �l,�l) =

⎧⎪⎨⎪⎩

0 t ≤ tl0

1∕5
e�l (t−tl0 )t�l−1(

1

�l
)−�l

Γ(�l)
+ 4∕5

e�l (t−tl0−10)t�l−1(
1

�l
)−�l

Γ(�l)
tl0 ≤ t

Fig. 8   The difference between R0 that takes into account L̂∗ 
(black line) and R0nc that assumes constant L̂ regardless of phenol-
ogy (gray line) is most dramatic for large offset between nym-
phal and larval activity, low contact rates between ticks and mice 
( �l = 0.002, �n = 0.004 ) and low mouse density ( M = 20 ). The dif-

ference between R0 and R0nc is negligible for higher contact rates 
( �l = 0.004, �n = 0.008 ) and higher mouse density ( M = 45 ). L̂ was 
calculated using the equation (A.3) for L̂∗ when nymphal and larval 
phenology is synchronous ( tl0 = 0). As the offset between nymphal 
and larval activity increases, L̂∗ and L̂ diverge driving differences in 
estimates for R0 and R0nc

Fig. 9   The relative error between R0 and R0nc increases as the offset 
between larval and nymphal emergence increases. This error is exac-
erbated for low host density and low contact rates between ticks and 
mice because fewer ticks successfully feed by the end of the season 
which drives lower equilibrium tick sizes. M = k(1 − �m∕b) is the 
mouse population size, �l and �n are the contact rates between larvae 
and mice and nymphs and mice, respectively. All other parameter val-
ues are shown in Table 1

Fig. 10   R0 decreases as mouse density increases because of dilution. 
R0 decreases when larval activity begins much later than nymphal 
activity because of mouse turnover
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Fig. 11   The basic reproductive number, R0 , of B. burgdorferi is great-
est when larval emergence begins shortly after nymphal emergence 
such that larvae are active during the peak in mouse infection preva-
lence. The left-hand panel depicts R0 as a function of the time between 
the start of nymphal and larval emergence ( tl0 ), and the larval emer-
gence width parameter ( �l ), and the letters indicate the parameters for 
the within-season dynamics on the right-hand panels. (A) Concentrated 
larval emergence (large �l ) coupled with a slight difference between 
when nymphs and larvae begin emerging ( tl0 < 35 ) increases the prob-
ability that questing larvae feed on mice recently infected by nymphs 

( tl0 = 20, �l = 0.55 ). (B) Greater differences between when nymphs and 
larvae begin emerging ( tl0 > 35 ) result in lower mouse-to-larvae trans-
mission rates as many mice infected by nymphs die and are replaced by 
mice born uninfected such that larvae are likely to feed on uninfected 
mice ( tl0 = 50, �l = 0.55 ). (C) Synchronous emergence ( tl0 = 0 ) can 
also reduce B. burgdorferi fitness when larval emergence duration 
is long (small �l ) as many larvae feed after infected mice have died 
( tl0 = 5, �l = 0.2 ). R0 is calculated assuming tick emergence is Gamma 
distributed. 𝜆n = 0.5,𝜙l = 𝜙n = 10, L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see 
Appendix A). All other parameter values are shown in Table 1

Fig. 12   The basic reproductive number, R0 , of B. burgdorferi is great-
est when larval emergence begins shortly after nymphal emergence 
such that larvae are active during the peak in mouse infection preva-
lence. The left-hand panel depicts R0 as a function of the time between 
the start of nymphal and larval emergence ( tl0 ), and the nymphal emer-
gence width parameter ( �n ), and the letters indicate the parameters for 
the within-season dynamics on the right-hand panels. (A) Concentrated 
nymphal emergence (large �n ) coupled with a slight difference between 
when nymphs and larvae begin emerging ( tl0 < 25 ) increases the prob-
ability that questing larvae feed on mice recently infected by nymphs 

( tl0 = 10, �n = 0.55 ). (B) Greater differences between when nymphs and 
larvae begin emerging ( tl0 > 25 ) result in lower mouse-to-larvae trans-
mission rates as many mice infected by nymphs die and are replaced by 
mice born uninfected such that larvae are likely to feed on uninfected 
mice ( tl0 = 50, �n = 0.55 ). (C) Synchronous emergence ( tl0 = 0 ) can 
also reduce B. burgdorferi fitness when nymphal emergence dura-
tion is long (small �n ) as many larvae feed before nymphs infect mice 
( tl0 = 5, �n = 0.2 ). R0 is calculated assuming tick emergence is Gamma 
distributed. 𝜆l = 0.5,𝜙l = 𝜙n = 10, L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see 
Appendix A). All other parameter values are shown in Table 1
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Fig. 13   The basic reproductive number, R0 , of B. burgdorferi is high 
when larvae emerge shortly after nymphs emerge so that larvae are active 
when mouse infection prevalence is high, despite bimodal larval emer-
gence. The left-hand panel depicts R0 as a function of the time between 
the start of nymphal and larval emergence ( tl0 ), and the larval emer-
gence width parameter ( �l ), and the letters indicate the parameters for 
the within-season dynamics on the right-hand panels. (A) Concentrated 
larval emergence (large �l ) coupled with a slight difference between 
when nymphs and larvae begin emerging ( tl0 < 30 ) increases the prob-
ability that questing larvae feed on mice recently infected by nymphs 
( tl0 = 20, �l = 0.65 ). (B) Greater differences between when nymphs and 

larvae begin emerging ( tl0 > 30 ) result in lower mouse-to-larvae trans-
mission rates as many mice infected by nymphs die and are replaced by 
mice born uninfected such that larvae are likely to feed on uninfected 
mice ( tl0 = 50, �l = 0.65 ). (C) Synchronous emergence ( tl0 = 0 ) can 
also reduce B. burgdorferi fitness when larval emergence duration is 
long (small �l ) as many larvae in the first peak feed before nymphs infect 
mice and many larvae in the later peak feed after infected mice have died 
( tl0 = 5, �l = 0.2 ). R0 is calculated assuming nymphal emergence is 
Gamma distributed and larval emergence has a bimodal Gamma distribu-
tion. 𝜆n = 0.5,𝜙l = 𝜙n = 10, L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see Appen-
dix A). All other parameter values are shown in Table 1

Fig. 14   The basic reproductive number, R0 , of B. burgdorferi is high when 
larvae emerge shortly after nymphs emerge so that larvae are active when 
mouse infection prevalence is high, despite bimodal larval emergence. The 
left-hand panel depicts R0 , in this case as a function of the time between the 
start of nymphal and larval emergence ( tl0 ), and the duration of nymphal emer-
gence period ( �n ), and the letters indicate the parameters for the within-season 
dynamics on the right-hand panels. (A) Concentrated nymphal emergence 
(large �n ) coupled with a slight difference between when nymphs and larvae 
begin emerging ( tl0 < 25 ) increases the probability that questing larvae feed 
on mice recently infected by nymphs ( tl0 = 10, �n = 0.55 ). (B) Greater dif-

ferences between when nymphs and larvae begin emerging ( tl0 > 25 ) result 
in lower mouse-to-larvae transmission rates as many mice infected by nymphs 
die and are replaced by mice born uninfected such that larvae are likely to 
feed on uninfected mice ( tl0 = 50, �n = 0.55 ). (C) Synchronous emer-
gence ( tl0 = 0 ) can also reduce B. burgdorferi fitness when nymphal emer-
gence duration is long (small �n ) as many larvae feed before nymphs infect 
mice ( tl0 = 5, �n = 0.2 ). R0 is calculated assuming nymphal emergence is 
Gamma distributed and larval emergence has a bimodal Gamma distribution. 
𝜆l = 0.5, L̂ = L̂∗, N̂i = 1, N̂u = N̂∗ − 1 (see Appendix A). All other param-
eter values are shown in Table 1
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Figures 13 and 14 show how R0 varies as a function of the 
time between the start of nymphal and larval emergence ( tl0 ), 
the larval emergence width parameter ( �l ) and the nymphal 
emergence width parameter ( �n ) when larval emergence is 
bimodal.

Variable mouse density

The main mammalian host of B. burgdorferi, Peromyscus 
leucopus, often has variable density from year to year, (Ost-
feld et al. 1996b). We relax the assumption that mouse den-
sity is constant across years by simulating how randomly 
varying mouse density from one year to the next impacts 
parasite fitness given different phenological patterns. These 
results are shown in Figure 15.
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