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Based on anatomical connectivity and basic response characteristics, primate auditory

cortex is divided into a central core surrounded by belt and parabelt regions. The

encoding of pitch, a prototypical element of sound identity, has been studied in primary

auditory cortex (A1) but little is known about how it is encoded and represented beyond

A1. The caudal auditory belt and parabelt cortical fields process spatial information but

also contain information on non-spatial aspects of sounds. In this study, we examined

neuronal responses in these areas to pitch-varied marmoset vocalizations, to derive

the consequent representation of pitch in these regions and the potential underlying

mechanisms, to compare to the encoding and representation of pitch of the same sounds

in A1. With respect to response patterns to the vocalizations, neurons in caudal medial

belt (CM) showed similar short-latency and short-duration response patterns to A1, but

caudal lateral belt (CL) neurons at the same hierarchical level and caudal parabelt (CPB)

neurons at a higher hierarchical level showed delayed or much delayed response onset

and prolonged response durations. With respect to encoding of pitch, neurons in all

cortical fields showed sensitivity to variations in the vocalization pitch either through

modulation of spike-count or of first spike-latency. The utility of the encoding mechanism

differed between fields: pitch sensitivity was reliably represented by spike-count variations

in A1 and CM, while first spike-latency variation was better for encoding pitch in CL

and CPB. In summary, our data show that (a) the traditionally-defined belt area CM is

functionally very similar to A1 with respect to the representation and encoding of complex

naturalistic sounds, (b) the CL belt area, at the same hierarchical level as CM, and the

CPB area, at a higher hierarchical level, have very different response patterns and appear

to use different pitch-encoding mechanisms, and (c) caudal auditory fields, proposed to

be specialized for encoding spatial location, can also contain robust representations of

sound identity.

Keywords: non-human primate, vocalization pitch representation, caudal auditory cortex, spike-count code, first

spike-latency code
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INTRODUCTION

Primate auditory cortex is classically divided into three major,
putatively-sequential, hierarchical processing stages, the core,
belt, and parabelt regions (Kaas and Hackett, 2000), each with
multiple areas likely to have different functions (Tian et al., 2001;
Bendor and Wang, 2008; Fukushima et al., 2014). The different
areas are differentiated by thalamo-cortical and cortico-cortical
connections, tonotopic organization, and neuronal response
patterns to sounds (Kaas andHackett, 2000; Schreiner andWiner,
2007; Romanski and Averbeck, 2009; Hackett, 2015). Differences
in response properties can speak to functional specializations
of the different areas (Eggermont, 2001; Hackett, 2011) and
several studies have demonstrated differences in temporal and
spatial response properties of the core and the caudal medial belt
(CM) areas (Barbour and Wang, 2003; Bendor and Wang, 2005;
Kajikawa et al., 2005, 2008). Characteristics of the pure tone-
derived frequency response areas (FRAs) are the main difference
reported between auditory cortical areas in primates and other
mammals, with bandwidth (Imaizumi et al., 2004; Bizley et al.,
2005; Hackett, 2011) and response latency (Bizley et al., 2005;
Bendor andWang, 2008; Hackett, 2011) increasing between core,
belt and parabelt areas in line with a cortical hierarchy along this
axis.

In the present study we examine the encoding of the pitch
of complex vocalizations in primary core field, caudal belt (CB)
fields and caudal parabelt (CPB) field in the marmoset monkey,
a New World monkey species increasingly used in auditory
physiology (Bendor and Wang, 2005; Slee and Young, 2010;
Lui et al., 2015; Toarmino et al., 2017; Zhu et al., 2019). The
marmoset uses vocalizations in many social behaviors (Epple,
1968; Stevenson and Poole, 1976; Bezerra and Souto, 2008),
and marmoset vocalizations differ in spectral composition in
ways that allow identification of individuals (Agamaite et al.,
2015). A specialized pitch center has been identified in the
marmoset auditory cortex in the region of representation of low
frequencies (low characteristic frequencies, CFs) that interfaces
primary auditory (A1) and Rostral (R) core fields (Bendor
and Wang, 2005; Bendor et al., 2012). However, these and
other studies of pitch-encoding in primate cortex predominantly
used periodic/harmonic complex sounds or artificial vowels
with low fundamental frequency (f0), whereas natural sounds
with rich, aperiodic frequency content also can commonly
evoke pitch sensations (Yost, 1996; Schnupp et al., 2011). In
a recent study of marmoset A1 (Zhu et al., 2019), we found
that the majority of neurons in the region of representation
of high frequencies (high CF region) can encode the pitch
of naturalistic vocalizations, suggesting that distributed activity
across A1 can represent the pitch of natural sounds over a
functionally-relevant range for differentiating individuals by
their vocalizations (Weiss et al., 2001; Bezerra and Souto,
2008).

Abbreviations: A1, primary auditory cortex; CM, caudal medial belt; CL, caudal

lateral belt; CPB, caudal parabelt; R, rostral field; CB, caudal belt; ML, medial lateral

belt; FRA, frequency response areas; f0, fundamental frequency; fdom, dominant

frequency; aROC, area under the receiver operating characteristics.

Different belt regions have been associated with different
functions, with CB areas hypothesized to be involved in spatial
processing and sound localization (Tian et al., 2001), in line
with the dual processing stream theory of auditory perception
(Bizley and Cohen, 2013). Certainly, caudal auditory cortex
shows specializations to represent sound location (Tian et al.,
2001). However it also represents some aspects of sound
identity (Recanzone, 2008): neuronal responses of these areas
are also sensitive to conspecific vocalizations (Tian et al.,
2001; Recanzone, 2008) and human imaging studies have also
suggested that the auditory “dorsal stream” areas show activity
related to sound identity, as well as location (Giordano et al.,
2013; Zundorf et al., 2013).

Little is known of the encoding of pitch, a prototypical sound
identity element, in caudal auditory cortex. A hierarchical model
whereby individual voices are processed through a neural circuit
that also involves projections from the superior temporal cortex
to the ventrolateral prefrontal cortex (Romanski et al., 1999,
2005) would predict that non-core auditory fields can encode fine
variations of vocalization pitch. However, the FRAs in the non-
core areas are broad (Recanzone, 2008) and even in A1, broad
response areas have absent or significantly diminished surround
inhibition, and reduced neuronal selectivity to broad band
stimuli (Suga, 1995; Brosch and Schreiner, 1997; Rajan, 1998,
2001) like vocalizations. Given this, and the fact that A1 neurons
exhibit sensitivity to the pitch of vocalizations via mechanisms
other than FRA-based frequency-level response (Zhu et al., 2019),
there are reasons to suspect that non-core auditory fields may not
encode fine variations of vocalization pitch as can A1 (Zhu et al.,
2019).

We have now investigated neural responses in A1 and caudal
auditory areas to naturalistic vocalizations, and their ability to
represent the pitch, a critical sound feature of vocalizations. We
found that subpopulations of neurons in caudal auditory cortex
exhibited both similarities and difference in temporal response
patterns, compared to A1 neurons. Furthermore, neurons in both
A1 and caudal areas are able to represent vocalization pitch
changes via both response intensity (spike-count) and latency,
with different populations showing different coding strategies.

MATERIALS AND METHODS

Animal Preparation
Three adult marmosets (Callithrix jacchus, 2 females, 1 male)
were used to obtain the data here. All procedures conformed to
the guidelines of the Australian Code of Practice for the Care and
Use of Animals for Scientific Purposes, and were reviewed and
approved by the Monash University Animal Experimentation
Ethics Committee.

Surgical procedures have been detailed in previous auditory
cortex studies (Rajan et al., 2013) and in studies of visual (Lui
et al., 2006) and motor (Burman et al., 2008) cortex physiology.
The marmoset was pre-medicated with intramuscular injections
of diazepam (3 mg/kg) and atropine sulfate (0.2 mg/kg), and
anesthetized, 30min later, by intramuscular injection of Alfaxan
(10 mg/kg; Jurox, Rutherford, Australia). When deep anesthesia
was established (confirmed by absent withdrawal reflexes to
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noxious forepaw pinching), the animal was placed on a heating
blanket, tracheostomized, and had a femoral vein cannulated.
It was transferred to a surgical table in a sound-attenuated
room, and placed on a heating pad with a rectal probe to
maintain body temperature, through feedback control, at 37◦C.
Surgery was conducted to expose the skull and to expose
and transect the external auditory meatuses bilaterally so that
the eardrums could be visualized. The head was stabilized by
fixing the forehead to a head bar in a magnetic stand, using
a screw and dental cement to anchor the head bar on the
skull. The left auditory cortex was exposed by craniotomy and
the dura removed; the cortex was kept moist and clean with
warm saline throughout the experiment. The animal was then
switched to maintenance anesthesia with intravenous infusion
of sufentanil (8 µg/kg/h; Janssen-Cilag, Sydney, Australia) with
dexamethasone (0.4 mg/kg/h; David Bull, Melbourne, Australia)
diluted in Hartmann’s solution (injection volume 1.5 ml/h).
Artificial ventilation was introduced with nitrous oxide and
oxygen (7:3) delivered via the tracheal cannula.

These procedures and the anesthetic regime have been shown
to have minimum effects on neuronal activities in marmoset
auditory cortex to both simple and complex stimuli (Rajan et al.,
2013), while maintaining the animal in an anesthetized state
(Burman et al., 2008).

Electrophysiological Recordings
Recordings were made using a 32-contact single-shank linear
electrode array with vertical inter-electrode spacing of 50µm
(A1x32; NeuroNexus, Ann Arbor, MI, USA). Amplification (×
1,000) and filtering (bandpass 750 Hz−5 kHz) of the electrode
signal were done using TDT Systems Model RA4PA (Tucker
Davis Technologies, Alachua, FL, USA) Medusa Pre-amplifier
and a Cereplex Direct (Blackrock Microsystems, Salt Lake City,
UT, USA) station. Spiking activity was detected by manually
setting the spike-amplitude threshold during recording. Spiking
history and raw spike waveforms were stored for online and
offline analysis. Spike sorting was performed using principal
component analysis (PCA) on waveforms recorded from each
electrode. Clusters of spikes were identified by fitting a mixture
of Gaussians to the PCA space of the normalized waveform (Jain
et al., 2000; Ghodrati et al., 2016). Single-units were identified
where the recorded waveform had a signal to noise ratio (SNR)
>2.75; otherwise, recordings were classed as multi-units (Kelly
et al., 2007; Smith and Kohn, 2008).

Recordings were obtained from seven auditory cortical fields:
three core fields [primary auditory cortex (A1), rostral field
(R), and rostral temporal field (RT)], three belt fields medial
lateral belt (ML), caudal belt (CB; including caudomedial [CM]
and caudolateral [CL] fields), and the CPB field. Allocation of
penetrations to these fields was done principally on the basis of
the reliable changes in tonotopic sequence across auditory cortex
(as also seen in other animals not part of this study), and on
the physiological response characteristics (e.g., FRA bandwidth,
response latency, response duration). Additionally, in some cases,
comparisons of the histology of auditory cortex were made to
our other work (Majka et al., 2018). To ensure we obtained good
quality data for all fields, we recorded from no more than 3 fields

in any animal. In all animals, we always recorded data from A1
and A1 recordings were obtained at multiple stages during the
course of the 3–4 day experiment. This protocol allowed us to
have a cross-animal comparator and only if data in A1 were
stable within an animal and were comparable between animals,
did we then also use data from other fields that may or may
not have been common across the animals. This protocol gives
us confidence in comparing between fields even if the data from
some non-A1 fields were from different animals; in fact, based
on this protocol we excluded from this report data from a fourth
animal in which recordings were made in A1 and CM, as the A1
data were aberrant compared to A1 data from all other animals.
In this report, we present data for A1 and the caudal belt only
from animals in which the A1 data were not significantly different
from each other at the population level and the A1 data from
an individual animal was stable across time; note that the A1
spike-count data were reported previously (Zhu et al., 2019).

Here we investigate the representation of pitch, a prototypical
sound feature, in A1 and in the non-core fields CM, CL, and CPB,
thought to be specialized for sound localization (Tian et al., 2001).
Multiple penetrations were made in each animal along the lateral
bank of the lateral sulcus and superior temporal surface, to obtain
recordings from different auditory fields. Across all animals, we
obtained 292 responsive units (pooled multi-units and single-
units; see section Data Analysis below) in A1 and 629 responsive
units in caudal non-A1 areas: from animal 1,504, 79 (27%) units
in A1, 82 (98%) units in CM, and 12 (4%) units in CL; from
animal 1,512, 81 (28%) units in A1, 2 (2%) units in CM, 278 (90%)
units in CL and 237 (100%) in CPB; and from animal 1,598, 132
(45%) units in A1 and 18 (6%) units in CL; thus, apart from CPB,
data for all other fields were obtained from at least two animals.

Stimuli
Stimulus presentation was done using custom-written programs
in MATLAB (MathWorks, Natick, MA). Pure tone stimuli were
generated by a TDT RX6 multifunction processor (Tucker Davis
Technologies), which was also used for presenting vocalization
call stimuli stored as “.wav” files. The vocalization calls were
the same as in previous studies (Lui et al., 2015; Zhu et al.,
2019). The pure tone stimuli and vocalization calls were passed
to a PA5 programmable attenuator and thence to an HB7
headphone driver (Tucker Davis Technologies), before delivery
via MF1 multi-function speakers (Tucker Davis Technologies).
To calibrate the stimuli, the sound from the speaker was captured
by a condenser microphone placed in a closed sound coupler
to mimic the marmoset external ear, at 1mm from the sound
delivery tube, and amplified using a type 2,673 microphone,
powered by a type 2,804 microphone power supply. Frequency
response calibration curves of each speaker were generated
to calibrate the system output to present stimuli at desired
Sound Pressure Levels (SPLs). During an experiment, the speaker
delivery tubes were fitted in the external ear canal and inserted to
about 1mm from the eardrum.

To characterize the frequency response space of individual
units and to determine the locations of recording sites based on
auditory cortex tonotopy (see Figure 1), pure tone stimuli were
presented to the ear contralateral to the recording left hemisphere
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FIGURE 1 | Cortical recording sites, located in different cortical areas, differentiated by response characteristics. (A) Map of the spatial distribution of Characteristic

Frequency (CF; frequency of lowest threshold) of neurons in the different auditory areas demarcated by bold dashed lines (see text for details for differentiation

between fields). Filled dots indicate responsive recording sites with color indicating the mean CFs (see color map to the right of the figure) across all recording

electrodes in the penetration whose location is indicated by the placement of the dot relative to the lateral sulcus (LS) and surface vasculature. (B) Representative

frequency response areas (FRAs) from a neuron in each area (denoted above each column), with responses normalized to the maximum response in the FRA (see

color map). (C) Distribution of FRA bandwidths of neurons in the different cortical areas; triangles mark the mean bandwidth of each distribution. (D) Distribution of

response onset to CF at 20, 40 60, and 80 dB SPL; different color indicates distribution at different SPL; triangles represent the mean of the distribution. A1, primary

auditory cortex; CM, caudal medial belt; CL, caudal lateral belt; ML, medial lateral belt; CPB, caudal parabelt (CPB).

to obtain FRAs. The FRAs were determined by presenting pure
tones at 18 linearly spaced frequencies from 3 to 28.5 kHz
in 1.5 kHz steps, at levels from 20 to 80 dB Sound Pressure
Level (SPL) in 20 dB steps, with the entire matrix presented 10

times. Frequency-level combinations were randomly presented as
100ms tone bursts with 0.5ms cosine rise-fall ramps, with 500ms
inter-stimulus interval. The responses to each frequency-level
combination were summed online and displayed as tone FRAs.
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We examined the responses of auditory cortical neurons to
variations in the dominant pitch (fdom; see Agamaite et al.,
2015) for four marmoset vocalizations (“Egg,” “Ock,” “Tsik,” and
“Twitter”). The calls carry different social-behavioral meanings.
“Egg,” “Ock,” and “Tsik” are social mobbing calls with the first
associated with vigilance behavior and the latter two used to
attract and locate conspecifics, and “Twitter” is used at visual
contact with conspecifics (Epple, 1968; Stevenson and Poole,
1976; Bezerra and Souto, 2008). Only the first syllable of each
call was used to keep stimulus duration similar (35, 42, 68, and
66ms for Egg, Ock, Tsik, and Twitter, respectively). The calls vary
spectrally in both dominant frequency and harmonic structures.
“Twitter” and “Tsik” calls have similar frequency components,
with dominant frequencies around 8–10 kHz, and strong first
harmonics around 20 kHz. “Tsik” also has a second harmonics
at up to 30 kHz. In contrast, the “Ock” and “Egg” calls have very
different frequency content, with most power below 1 kHz.

All calls were resampled at 196 kHz and stored as.wav files.
For each call, up to 13 pitch-shifted calls were generated, with
calls being shifted from the original signal by 6, 4, 3, 2, 1, and
0.5 semitones up and down in pitch, using the Phase Vocoder
method (Gotzen et al., 2000). All calls and pitch-shifted tokens
were calibrated to give an average bilateral level of 70 dB through
the TDT system. In each penetration, we tested each call with all
pitch tokens presented in random fashion, until each stimulus
was presented at least 30 times. The order of testing of calls
was randomized, and trials were interleaved with 1 s inter-trial
interval. Only data from penetrations where all 4 calls were tested
were analyzed.

Data Analysis
To investigate population coding of vocalization pitch in auditory
cortical fields, we analyzed single and multi-unit data and found
similar patterns in both types of neuronal recordings. Therefore,
we will report the pooled single andmulti-unit data, referred to as
units throughout this report. Data analysis was performed using
custom-written scripts in MATLAB. For some penetrations, only
11 pitch variations were tested. Therefore, in information theory
analysis and pitch discriminability analysis, only data from the
commonly tested 11 pitch variations were used (−4 to +4
semitone shifts).

Characterization of Response Pattern
Pure tone stimuli were used to characterize each unit’s responses
in frequency-intensity space (the frequency-response area,
FRA), with spike rate at each pure tone frequency-intensity
combination calculated by averaging spike-count in a 100ms
window after stimulus onset. From the FRA, we determined
the unit’s Characteristic Frequency (CF) as the frequency which
evoked the highest response at the lowest intensity. At each
test SPL, unit tuning bandwidth was determined by finding the
frequency range that reliably evoked a response >2 SD higher
than spontaneous activity, which was defined as the mean firing
rate over 200ms prior to stimulus onset. Linear interpolation
was performed between the threshold intensities at each test
frequency to generate the bandwidth at 70 dB SPL, the SPL at
which vocalizations were presented.

To define differences between units and fields in the temporal
response patterns to pitch tokens, for each pitch token in
each unit we generated peri-stimulus time histograms (PSTHs)
representing the mean spike-count in 1ms bins across all trials
for that pitch token and response onset was taken as the first
bin of 5 consecutive bins with a firing rate that exceed the
95% confidence interval of the spontaneous firing rate. Mean
response onset was calculated across all pitch tokens for each
call. To compare the consistency of response onset between
calls, response onset time from all units of different populations
were pooled. Comparisons were made between all possible
combinations of calls (4 calls tested, 6 different combinations of
pairs of calls). The population response onset between pairs of
calls were fitted using linear regression. The slope of the fitted
regression line was compared to a slope 1.

The population response temporal pattern to each call was
determined (see Figure 4) by first normalizing the PSTH, of
individual responsive units, to each pitch token of that call (to
minimize the effects of pitch response on temporal patterns),
then averaging the normalized PSTHs across all pitch tokens to
generate themean response of that unit to the given call, and then
averaging the mean PSTHs of all responsive units to generate the
population response temporal pattern. From the mean PSTH of
each unit to a given call, response duration was also calculated as
the half-peak width of the mean PSTH, i.e., the time span when
responses were ≥50% of the normalized response. For responses
with two clearly-defined peaks (e.g., in CL, Figure 4), the half-
peak width was calculated about each peak and summed for a
single value.

To assess tuning to pitch variations of each vocalization, we
applied two metrics to responses to each token: the first spike-
latency to the token (Bizley et al., 2010), and the mean spike-
count (Zhu et al., 2019). To calculate first spike-latency, the
raw spiking data was used without correction for spontaneous
activity. First spike-latency was determined as the time of the
first spike observed after stimulus onset. Mean spike-count was
calculated by averaging the spike-count of a 40ms window,
whose start time was set individually for each pitch token to
account for any variation in spike-latency as follows: for each
pitch token, the 25th percentile of first spike-latency distribution
across trials was determined, and the start of the spike-counting
window was then set to be 5ms before that value for the first
spike-latency (see Figure 5). The use of a moving window for
counting spikes avoids potential confusion of latency tuning with
spike-count tuning, which could be introduced by inappropriate
choice of counting window start and length.

For all cortical fields, we used a 40ms window, so that only
the onset response to the stimulus was captured. Both latency
tuning and spike-count tuning to pitch was assessed by one-way
ANOVA and units determined to be tuned to pitch changes if
their spike-latency or spike-count was modulated in a statistically
significantly manner by pitch variations.

Information Theory Analysis
To assess information about pitch contained in the spike-count
and first spike-latency, we computed the amount of information
using a method that calculated the conditioned entropy
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(Cover and Thomas, 2006; Quian Quiroga and Panzeri, 2009)
which quantifies the reduction of the observers’ uncertainty
about the pitch of the stimulus with the knowledge of the
response measured either in spike-count or first spike-latency:

Icount/time =
∑S

k=1
P(k)

∑rmax

r=1
P
(

r|k
)

log2
P
(

r|k
)

P(r)
, (1)

where r represents either the spike-count or first spike-latency
to the stimulus, k represents the stimulus condition and S
represents the total number of stimuli. To minimize bias caused
by binning, the number of bins was set to be the same for
Icount and Itime calculations to match the response categories
for spike-count and first spike-latency. In ideal cases where
the stimulus representation was perfect, the maximum bits of
information with 11 equal probability stimulus conditions is 3.5
[log2 (11)].

We also computed information content using Victor’s binless
method (Victor, 2002), which controls the bias introduced
by binning responses (Chase and Young, 2007). To compute
information in first spike timing (Itime), we applied the Chase and
Young (2007) equation:

Itime =
1

N

∑N

j=1

(

λj

λ
∗

j

)

−
∑S

k=1

Nk

N
log2

Nk − 1

N − 1
, (2)

where N represents the total number of stimulus presentations;
Nk represents the total number of presentations of the kth
stimulus; S represents the total number of stimuli used; j
represents the first-spike samples and is projected onto an n-
D space, with the coordinates of the spike samples determined
by the nth Legendre polynomials where n corresponds to the
total number of spikes in the spike train of a trial. Since we
only consider the information in the first spike time, we set n =

1. These embedding coordinates are then used to calculate the
Euclidean distance between spikes. λj represents the minimum
Euclidean distance between spike sample j and all other first
spikes, and λ∗j represents the minimum Euclidean distance

between spike sample j and other first spikes elicited by the
same stimulus. Itime represents the reduced uncertainty in spiking
pattern when spike time is taken into consideration.

Information in the spike-count (Icount) was computed with
Equations (15) and (16) in Victor (2002):

Icount = −
∑nmax

n=0

∑S

k=1

N (n, ak)

N
log2 N (n, ak)

+
∑nmax

n=0

N (n)

N
log2 N (n) +

∑S

k=1

1

Nk
log2

1

Nk

+
(S− 1)(nmax − 1)

2Nln2
, (3)

where N(n,ak) is the number of trials in which a stimulus ak
elicited n spikes; nmax is themaximum spike-count elicited by any
stimulus; and Nk represents the number of stimuli used. In this
method, the entropy of spike trains that elicited the same number
of spikes was calculated separately. The last term in Equation (3)
represents the classical correction for entropy estimates. Icount

represents the reduced uncertainty in spike pattern when the
spike-count that elicited by given stimulus is known.

Pitch Discriminability
We assessed pitch discriminability of units by calculating the area
under the receiver operating characteristic curve (ROC) between
the two extreme conditions in the spike-count tuning curve or
the latency tuning curve, viz., between pitch of peak response and
pitch of lowest response in the respective tuning curve (Britten
et al., 1992; Zhu et al., 2019). For spike-count, the preferred pitch
for a call was the token with the highest spike-count and null
pitch that with the lowest. For first spike-latency, preferred pitch
had the shortest mean first spike-latency and null pitch had the
longest.

We tested population pitch discriminability in each field using
a linear decoder, using a multiclass support vector machine
(SVM) to generate the probability for each of the pitch variation
of a given call based on the distribution of the response (Duda
et al., 2001). To compare the performance of the spike-count-
based decoder with the first spike-latency-based decoder, we
sampled a portion of units tuned to pitch changes by either
measure for integration windows of 1, 2, 4, 6, 8, 16, 32, 64,
128, 256, 512ms.With each integration window, we accumulated
spikes from the onset of responses up to the end of the window.
We trained each decoder with 80% of the trials randomly selected
from each unit and tested with the remaining 20% of the trials
from that unit, to determine the predictability of the call identity.
Decoder performance for the prediction of call identity was
calculated as the percentage correct identification of the test trials.
Variability of decoder performance was estimated by decoding 20
different subpopulations or repeat the decoding procedure for the
entire population but with 20 different sets of training and testing
trials.

Statistical Analysis
As described above, a variety of different types of statistical
analyses was used to compare various data between the different
cortical fields. For overview, the tests and their use are
summarized here; the use of each test is detailed appropriately
in the Results. For all analyses, the significance level was always
set to 0.05.

(i) Comparisons between cortical fields of bandwidth, response
duration, and information content were done using the
Kruskal–Wallis test with Dunn’s multiple comparisons test
because the D’Agostino & Pearson normality test showed
that these population data were not normally distributed.

(ii) Tuning of spike-count/latency to pitch variations for each
call was examined using one-way ANOVA with Tukey’s
HSD test since normality was confirmed for these data using
the D’Agostino & Pearson normality test.

(iii) In each field, the relationship between response onset
times between calls was determined using linear regression
analyses. Here, the response onset time for a call from
all units of that field were pooled and then comparisons
were made between all possible combinations of calls using
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linear regression, with the slope of the fitted regression line
compared to a slope of 1.

(iv) The distributions of the proportion of units pitch tuned
to each call by spike-count or spike-latency measures were
compared between the different cortical fields using Chi
square tests.

(v) Pitch discriminability of units was determined by
calculating the area under the receiver operating
characteristic curve (ROC). Two-way ANOVA was
used to compare aROCs for each call with either measure
within a given cortical field. Sidak’s multiple comparisons
test used to test for the effects of different coding measures
for on mean aROC for each call separately.

(vi) Population pitch discriminability was assessed by decoder
analysis. Two-way ANOVA was used to compare decoder
performance between cortical fields and across integration
windows. Since D’Agostino & Pearson normality test
confirmed the data was normally distributed, Dunnett’s
multiple comparisons test was used to examine performance
changes with changes in size of the integration window.
One-way ANOVAwas used to examine the effect of changes
in sample size on performance within each cortical field
for each call separately. For the one-way ANOVA, we
subsequently did not perform multiple comparisons to see
which of the sample sizes showed significantly different
performance compared to others since we were only
interested in the overall change of decoder performance
with sample size.

RESULTS

We obtained recordings of neuronal responses to pure tones
and conspecific vocalizations from neurons in primary auditory
cortex (A1), the caudal medial belt (CM), and caudal lateral belt
(CL) belt areas, and the CPB (Figure 1A). To define the encoding
of vocalization pitch, we report data from units responding
to at least one pitch token of any call, amounting to 292 A1
units neuronal clusters (including 84 single-units), 84 CM units
(including 30 single-units), 308 CL units (including 124 single-
units), and 237 CPB units (including 127 single-units). We will
refer to these multi-unit clusters as units hereafter. Note that the
A1 data was that also used in our previous report on pitch coding
in A1 (Zhu et al., 2019), but data from all the other fields are fresh
to this study.

Assignment of penetrations to these subdivisions of
auditory cortex was based on converging evidence from
electrophysiological mapping of responses to pure tones
(cochleotopic organization) and histological examination of the
electrode tracks. As reported previously in marmoset auditory
cortex (Aitkin and Park, 1993; Nelken et al., 1999; Kajikawa et al.,
2005; Bendor and Wang, 2008; Mesgarani et al., 2014), we found
a cochleotopic low-to-high CF gradient from rostral to caudal A1
(Figure 1A) and a reversal of this gradient in the roughly 1mm
wide region of the caudal belt; penetrations further caudal to CM
did not contain units responsive to either tones or vocalizations
(Figure 1A), indicating this is likely not part of auditory cortex

FIGURE 2 | Distribution of neuronal response onsets to vocalizations in the

different cortical fields. (A–D) Each panel in (A–D) shows the distribution of the

onset of responses of individual units in a cortical area (see label beside each

row) to a particular vocalization (see label above each column). (E) A map of

the spatial distribution of response onset superimposed on to the map of

cortical areas (see Figure 1), with the borders between different auditory areas

showing in bold dashed line. Filled dots indicate responsive recording site with

the color corresponding to the mean response onset time across the recording

electrodes.

(Majka et al., 2018). Our results are in line with parcellation into
core, belt and parabelt auditory cortical areas on the basis of
the tuning characteristics of neurons in sites assigned to these
subdivisions (Figures 1B,C) and latency of responses to tones
and vocalizations (e.g., Figures 1D, 2). Neurons in CL showed
broader tuning to tones than those in CM (Figures 1B,C), and
delayed response onsets to vocalizations (Figure 2). Responsive
CPB units, located further lateral to CL, also had broad tuning
to tones (Figures 1B,C), but were particularly distinguished
by their very long latencies in responses to vocalizations (viz.,
Figure 2).

Response Characteristics to Pure Tones
The pure tone bandwidths of A1 and CM units had similar
distributions (Figure 1C; Kruskal–Wallis test, mean rank diff. =
75.02, p = 0.19). The bandwidths in CL were heterogeneous and
covered a large range, which may suggest subdivisions within
this area, or distinct populations of neurons. Mean bandwidth
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was widest among CL neurons and was significantly broader
than for all other populations [Kruskal–Wallis test, H(4)= 54.11,
with Dunn’s multiple comparisons test (Dunn’s test), p always
< 0.0001], while mean bandwidth in CPB was also significantly
larger than in CM and AL (Dunn’s test, p always <0.0005).
A few units from recording sites lateral to rostral A1 also
showed broader tuning curves (data not shown). Additional to
bandwidth, response onset to tones was also a good differentiator
as it gradually increased from A1 and CM to CL and was longest
for CPB units (Figure 1D). Unlike the other fields, we observed
that response onset in CL and CPB to tones was modulated by
stimulus frequency, as reported previously (Zhou et al., 2012).

Temporal Patterns of Responses to
Vocalizations
As noted, there were clear differences between areas in response
latency. To quantify this, which may speak to the issue of
hierarchical flow of information from core through belt to
parabelt auditory cortex, we calculated the mean response onset
across all pitch-varying tokens for each call for each unit. The
distribution of this mean response onset for each vocalization
is shown in Figure 2 for all units that responded to the four
vocalizations. The response onset distribution for all four areas
was unimodal, but showed significant differences. The majority
of A1 and CM units showed early response onsets to all calls
(Figures 2A,B), with mean response onset across calls at≈29ms
for A1 and 18ms for CM; the latter field had more tightly
clustered mean response onsets for all four calls, and mean
response onset times >50ms were especially rare among CM
units. The CL units (Figure 2C) had more delayed response
onsets, with mean response onset across calls at ≈54ms, while
the CPB units (Figure 2D) showed even slower response onset
latencies, averaging at≈100ms across calls. The CPB population
was clearly distinguished from that in CL by the much larger
number of units with response onset >80ms for all calls. These
patterns of increasing latency frommedial to lateral are shown in
a cortical surface spatial map of response onset changes to calls
(Figure 2E).

In all fields, response onset for any one unit remained
relatively constant across calls. For each unit that responded to
at least two calls we derived a single mean response onset time
across all pitch-varied tokens for each specific call, and compared
these mean response onsets in individual units between all
possible pairs of calls (Figure 3A). Linear regression analysis
revealed significant correlations for all pairs of calls (for all
pairwise comparisons: R2 always >0.70 and p always <0.0001),
indicating a strong correlation of response onset between calls
across the entire population. Further, across all comparisons, the
slopes of the regression lines did not differ significantly from 1
except for three comparisons-Tsik vs. Twitter, Tsik vs. Ock, and
Egg vs. Ock (p always <0.05); note that these exceptions were
not from comparison across different classes of vocalization fdom
since Tsik and Twitter both have similar high fdom while Egg and
Ock have similar low fdom.

The distributions of differences in response onset time
between pairs of calls, for each cortical area, are shown in

Figure 3B. In line with the linear regression analysis, for most
units, differences between response onset of pairs of calls were
<20ms; for most comparisons between pairs of calls for each
cortical field, mean differences were within this range except for
CPB units for the comparison between response onsets to Tsik
and Egg (mean onset time differences of 20.3ms). In summary,
for units across all populations, response onset time was closely
correlated and maintained across calls.

The four cortical fields differed in temporal response patterns
(Figure 2) beyond response onset time. For each unit, we first
normalized the unit’s PSTHs of each pitch token of each call.
These normalized PSTHs were then averaged to generate the
mean PSTH of the unit to that call, which was then itself
normalized to a maximum of 1. We pooled all the call-specific
normalized mean PSTHs from all responsive units in each
cortical area and calculated the mean population PSTH for each
call (Figure 4B). Both A1 and CM had short lasting responses
across all four calls, with early response peaks-well before≈40ms
and responses generally confined to 100ms from stimulus onset.
The A1 patterns were very consistent across calls with a response
peak at ≈25ms and another at ≈80ms. In CM all four calls
elicited the same tight response peak at ≈20ms, and three calls
elicited a much smaller second peak at ≈90ms from stimulus
onset; the second peak, to the Twitter call, at ≈90ms, was much
larger and, at the mean population level, even larger than the
first peak. The other two fields, CL and CPB, had a single, later
response peak to all calls, at ≈90ms from stimulus onset for CL
and≈110ms for CPB; in both fields, responses declined gradually
thereafter, especially in CPB, up to 500ms post-stimulus onset
unlike the tighter response durations in A1 and CM.

To compare at the level of the units in each field, we quantified
response duration of each unit for each call by the half-peak
width of the mean normalized PSTH (the temporal width at 50%
of the peak; Figure 4A; see section Materials and Methods) for
that unit across all pitch tokens of that call. The distributions of
response duration for units in each field, for each call, are shown
in Figure 4C. Overall, there were significant differences between
the different populations [Kruskal–Wallis test, H(4) = 1071, p
< 0.0001] and pair-wise comparisons showed the CL response
duration was significantly longer than that in either A1 (Dunn’s
test, p < 0.0001) or CM (Dunn’s test, p < 0.0001), and the CPB
response duration was significantly longer than that in either A1
(Dunn’s test, p < 0.0001) or CM (Dunn’s test, p < 0.0001).

Thus, in response to vocalizations, CM and A1 responses
were similarly fast and relatively short-lasting, whereas in CL and
CPB, responses were slower andmuch longer-lasting. The PSTHs
of CPB units appeared to be a slightly delayed version of the
CL profile, with similar long-lasting response duration. Overall,
response duration increased across fields as response onset was
delayed.

Spike Count and First Spike Latency as
Coding Mechanisms for Vocalization Pitch
Auditory cortical neurons can represent stimulus features via
changes in spike-count or response latency (Bizley et al., 2010).
We investigated if the different neuronal populations here used
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FIGURE 3 | Distribution of response onset time differences between calls in different auditory cortical areas. (A) The unit-specific response onset for a pair of calls was

plotted against each other (pair being compared is shown above each panel). The color of the dots indicates the population of the units. The solid black line indicates

the linear regression line of the response onset. The dotted gray line indicates the line of unity. Note that in most comparisons, the regression line is very close to the

line of unity. (B) The unit-specific difference in response onset between a pair of calls was calculated for all units that responded to the two calls being compared (pair

being compared is shown above each panel). The distributions of these unit-specific differences in response onset time listed are plotted for each of the cortical areas

(different colors for the different populations). In each panel the triangles indicate the mean onset time differences for each of the areas. Note that in all comparisons,

the great majority of units showed differences of <10ms between response onsets for any pair of calls, even in cortical areas with later response onsets (CL and CPB).

these two mechanisms differently to encode pitch changes.
Figure 5 shows exemplar raster plots of responses of units from
each cortical field to pitch changes (ordinate in left column
panels of Figures 5A–D; abscissa in middle and right column
panels of Figures 5A–D). These exemplars illustrate that, with
changes in vocalization pitch, A1 and CM units could show
marked variation in spike rates whereas any changes in spike-
latency generally reflected a change from responsiveness to lack
of response; in contrast, CL and CPB units showed marked
variation in spike-latency with little or no change in spike rate.
These effects are well-illustrated in the pitch tuning curves for
the same units in Figure 5 (middle column: firing rate changes
with pitch; right column: latency changes with pitch). The
A1 unit exhibited non-monotonic pitch tuning curves to both
spike-count and first spike-latency, and the CM unit showed
monotonic pitch tuning with both measures. In these two
exemplar units, as shown by the rasters, the change in latency
was primarily due to a switch from pitches where responses
were evoked to pitches where no reliable responses were evoked.
In contrast, the CL and CPB units only exhibited significant
pitch-associated modulation of first spike-latency, but not of
spike-count.

We evaluated the tuning of each neuron to pitch variations
in each call, using first spike-latency (as in Bizley et al., 2010)
and mean spike-count as in our A1 study (Zhu et al., 2019). First
spike-latency to each pitch token for a call was determined as the
average time of the first spike after stimulus onset across trials.
For spike-count, firing rate was the mean spike-count over a
fixed 40ms counting window varying in starting time, to capture
responses in units where onset varied markedly with pitch
(see Materials and Methods for details); window onset was set

individually for each neuron for each stimulus (each pitch token
for each call, gray box in raster plots in Figure 5), as follows.
For each individual stimulus to each unit, the distribution of first
spike-latency of responses across all trials of that stimulus was
used to determine the 25th percentile of the first spike-latency.
Then a 40ms spike counting window was set to commence
from 5ms prior to that 25th percentile time point. This process
was done separately for every unit’s responses to every stimulus;
individually set starting points for the fixed length window
ensured that we did not miss spikes because of a later response
onset time to a specific stimulus.

For each unit the variations in first spike-latency (mean spike-
count) with changes in pitch for each call were assessed by one-
way ANOVA with Tukey’s HSD test; units were classed as tuned
to pitch changes by a measure if that metric was statistically
significantly modulated by the pitch changes in the call. The
proportions of units showing pitch tuning by the spike-count
measure (including units with no tuning, “None”) (Figure 6
black bars), differed significantly across the four fields [Chi-
Squared Test, χ2

(12)
= 276.4, p < 0.0001] as did the proportions

of units showing pitch tuning by the spike-latency measure
(Figure 6 gray bars) across the four areas [Chi-Squared Test,
χ
2
(12)

= 109.7, p < 0.0001].

We consider first the distributions in the two early-responding
areas, A1 and CM. For A1, the overall distributions were
significantly different between the two measures [χ2

(4)
= 73.4, p

< 0.0001]; the latency measure gave a lower proportion of tuned
units for all calls and a higher proportion of units non-tuned.
Further, regardless of measure, many more A1 units were tuned
to the two high fdom callsTsik and Twitter than to the two low fdom
calls Egg and Ock (Figure 6, A1). The CM tuning distributions
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FIGURE 4 | Response temporal patterns and distributions of response duration. (A) Example normalized mean PSTHs across pitch tokens and individual responses

to different pitch tokens of a given call. Black curve indicates the normalized mean response of a unit in each cortical area. Gray curves indicate the responses to each

pitch tokens of a given call. Dark gray arrows indicate the half-peak width of the response which is termed as the response duration of the unit to that call. (B) Mean

normalized PSTHs for different calls in the different auditory cortical areas A1, CM, CL, and CPB. Each cell’s responses are pooled from different pitch tokens of each

call, to generate a single normalized PSTH for each unit for each call and then averaging the normalized PSTH for that call across all units in that cortical area to yield a

single mean PSTH for that call. Shading indicates standard error of the mean response. Different color indicate response to different calls. Note that in A1 and CM

response peaks occurred early, and responses were generally short lasting and complete within ≈100ms from stimulus onset, whereas in CL and CPB response

peaks occurred much later and responses were much longer-lasting, up to 500ms post-stimulus onset. (C) Distributions of response duration, calculated as the

half-peak width of the PSTH, of individual units to different calls. Color indicates different call and triangle indicates the mean of the distribution.

resembled those for A1, again with a higher proportion of units
showing tuning by spike-count compared to spike-latency [χ2

(4)

= 10.5, p< 0.05]. However, there was no reduction in the number
of tuned CM units specifically for low fdom calls: the proportions
of units tuned by either measure to the Egg call were similar to
the proportions of units tuned by either measure to the two high
fdom calls.

We next examined the distributions in the two late-
responding areas, CL and CPB. Interestingly, CL had the lowest
proportion of units showing spike-count-based tuning; >30% of
CL units showed no tuning to any call by this measure, and this
was higher than the proportion of tuned units for any call except
theTwitter. Thus, in CL there was a significant difference between
the overall distribution of tuning between the two measures
[χ2

(4)
= 85.9, p < 0.0001] with more units showing pitch tuning

by spike-latency across all calls, independent of the fdom of the
calls. In CPB, the difference in proportions of tuning by the
two measures was less dramatic and, as for the early-responding

cortical fields, more units showed spike-based tuning except for
the Tsik call [overall distributions being significantly different:
χ
2
(4)

= 11.6, p < 0.05]; again, the differences between tuning

proportions were independent of differences in fdom between
calls.

In summary, neurons in the four cortical areas could
exhibit quite different temporal response patterns in encoding
vocalizations. Response onset varied between fields with A1
and CM, having similar rapid response onsets and CL being
slower still and CPB even slower. However, all four neuronal
populations robustly retained the same unimodal-distributed
response onset across the four vocalizations. Response duration
differed between areas, in parallel with differences in the response
onset. Auditory cortical neurons could code a fine range of
variations in pitch through variations in spike-count or in
first spike-latency, but the observation of differences in tuning
proportions between spike-count and spike-latency measures
suggests that different auditory cortical populations may
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FIGURE 5 | Example neuronal response raster plots and tuning curves to vocalization pitch changes. (A–D) Exemplar unit response to vocalization pitch changes.

Label beside each row indicates the cortical areas from which the exemplar neuron was recorded. Left column: Exemplar unit response raster plots. Gray horizontal

lines separate responses to different pitch token. Gray box indicates the time window used to calculate the response duration. Middle column: Tuning curves based

on firing rate changes with pitch changes for the exemplar units for each area. Left column: Tuning curves based on changes in first spike-latency with pitch changes

for the exemplar units for each area. A1 example was from response to Egg; CM example was form response to Egg; CL example was from response to Tsik; and

CPB example was from response to Tsik.

differ in preferred coding mechanisms to encode vocalization
pitch.

Information Content in Different Coding
Mechanisms of Different Neuronal
Subpopulation
We determined if pitch-encoding by one measure was more
informative than that by the other by determining how much
information was carried in each measure, for the different
fields; here we disregarded whether neurons were tuned to the
call or not. We calculated information content in two ways:

using the conditioned entropy estimation (see section Materials
and Methods) or Victor’s binless method (Victor, 2002) which
controls the bias introduced when binning responses (Chase and
Young, 2007). Both methods revealed the same pattern of bias in

information content whereby first spike-latency contained more

information than spike-count and hence we present only the

information calculated using conditioned entropy (Figure 7).
For each call, we varied pitch by up to 11 different pitches

and hence the maximum amount of information available is 3.5
bits [log2 (11)]. However, this theoretical maximum information
value was considerably greater than the actual information (in
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FIGURE 6 | Proportions of pitch tuned units in the different neuronal populations, for the different calls. The proportions of units pitch tuned by spike-counts are

shown in black and the proportions of units pitch tuned by first spike-latency variations are shown in gray.

bits) carried by neurons in any cortical field for any call. Thus,
the largest information value by spike-count (Icount) across calls
and cortical fields was 1.329 from a unit in CL, while the largest
information value by first spike-latency (Itime) across all cortical
field is 2.557 from a unit in A1. To generate descriptive data
for each field, we pooled across all calls the information data
by each measure separately for all units in each cortical field.
This pooled data is shown in Figure 7A and shows that for all
four fields and across all calls, Icount was almost always < 0.5
bits and that generally more information was carried by Itime

for all four fields and all calls. The Icount differed significantly
across the different populations [Kruskal–Wallis, K–W, test,
H(4) = 349.7, p < 0.0001] and pair-wise comparisons showed
significant differences between cortical fields and that CL units
had the highest Icount and CM had the lowest Icount. Pair-wise
comparisons also revealed that the Itime also differed significantly
between cortical fields [K–W test, H(4)= 458.4, p < 0.0001] and
CPB units carried the highest information about pitch while CL
units carried the lowest.

For each cortical field, we then compared for individual units
the Icount against the Itime for different calls (Figure 7B). Across
all fields and across all four calls, data were clearly shifted up
from the unity line toward the Itime axis indicating the general
trend of more information in first spike-latency compared to
spike-count. This trend was more prominent in CM and CPB
populations as almost all points were above the line of unity
where A1 and CL had a few points below the unity line. Since
there were more information in Itime compared to Icount, we
then compared the information carried in spike-count and first
spike-latency separately for each call for each population, to

examine if different cortical areas varied in information on
pitch between the calls. The distributions of Icount and Itime

for the different neuronal populations, for the different calls,
is shown in Figure 7C (Icount) and 7D (Itime) and we first
consider the distribution of Icount for the different calls for each
population.

For A1, Icount (Figure 7C) was significantly different between
calls [K–W test, H(4) = 56,41, p < 0.0001] due to differences
between the high fdom calls and the low fdom calls (Dunn’smultiple
comparisons, p< 0.0005), with no significant differences between
the pairs of high fdom calls and the pairs of low fdom calls.
For CM, Icount was significantly higher in Egg, Tsik and Twitter
compared to Ock [K–W test, H(4) = 44.9, p < 0.0001, Dunn’s
test, p < 0.0001]—note that, as shown in Figure 6, in this field
tuning for the first three calls were similar and much higher than
that for the Ock call, by either measure. For CL, Icount did not
differ significantly between calls. For CPB, Icount differences only
existed between the two high fdom calls Tsik and Twitter calls
[K–W test, H(4)= 9.16, p= 0.023, Dunn’s test, p= 0.036].

With respect to Itime (Figure 7D), A1 units carried
significantly higher information for Twitter and Egg calls
compared to Tsik and Ock calls [K–W test, H(4) = 35.47, p
< 0.0001, Dunn’s test, p < 0.005]; this difference was clearly
independent of fdom since Tsik and Twitter are high fdom calls and
Egg and Ock are low fdom calls. For CM units, Itime did not differ
significantly between calls. For CL units, pair-wise comparisons
revealed that Itime significantly differed between all call pairs
[K–W test, H(4) = 134.4, p < 0.0001, Dunn’s test, p < 0.05];
units had the highest Itime for the Egg call and the lowest Itime

for the Ock. For CPB, units had the highest Itime for the Twitter
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FIGURE 7 | Mutual information about pitch in spike-count and first spike latency for different calls in different auditory cortex neuronal populations. (A) Distributions of

information, calculated using conditioned entropy estimation, across all calls, in spike-count (black) and in first spike-latency (gray) of different auditory cortical

populations (labels above each column of figures). In each panel the triangle indicates the mean of the distributions. Note that in all fields, first spike-latency carries

much more information than does spike-count. (B) Scatter plots of information in spike-count vs. that in first spike-latency of individual units in different cortical fields.

Different colors indicate different calls (see legend in row B, last panel) and the dashed gray line indicates the line of unity. For all calls in all fields, first spike-latency

carries much more information than does spike-count. (C,D) Distribution of information content of spike-count (C) or of first spike-latency (D) for each of the four calls,

in the four cortical fields. Triangles indicate the mean of each distribution and different colors indicate different calls (see legend in row B, last panel).

call and the lowest Itime for the Egg call and the Itime for the Egg
call differed significantly from those for the Tsik and Twitter calls
[Kruskal–Wallis Test, H(4) = 36.35, p < 0.0001, Dunn’s test,
p < 0.05].

Overall, there was a bias of more information on pitch changes
being contained in first spike-latency compared to spike-count.
When only considering information measured with either code,

we found significant differences across calls between different
cortical fields and within a cortical field between different calls.
The differences between fields in the information content of a
given measure could reflect the differences in response patterns
between cortical fields while the difference within fields may
reflect their ability to utilize each code to signal pitch variations
between different calls.
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Preference in Pitch Coding Mechanisms of
Different Neuronal Subpopulations
The fact that the population mean of Itime always exceeded that
of Icount in each field suggested that if pitch discriminability
governed by each measure may also differ between fields. We
generated receiver operating curves for pitch discriminability for
each call (Zhu et al., 2019) based on spike-count and on first
spike-latency and compared the area under the curve (aROC)
between two end conditions—the preferred pitch and null pitch
for that call. For spike-count, the preferred pitch for a call was the
pitch token with the highest spike-count while the null pitch was
the one with the lowest. For first spike-latency, the preferred pitch
was that with the shortest mean first spike-latency while the null
pitch was the one with the longest. Note that while the preferred
pitch and the null pitchmay not be the same for the twomeasures
(c.f, Figure 5), that difference is not material for the comparison
of discriminability between the two end conditions, i.e., howwell-
separated the response distributions were for two end conditions
of pitch.

Figure 8A plots the aROC value by the spike-count measure
for an individual unit against that for the same unit by the
spike-latency measure. For all calls, aROC values in A1 and
CM were scattered along the unity line but both CL and
CPB populations showed a scatter skewed toward spike-latency,
suggesting differential preferences for coding mechanism across
the neuronal populations regardless of call. Figure 8B compares
the mean aROC scores for each of the two measures for different
calls within each subpopulation. There were no differences
between the two measures for all calls for A1 and CM neurons.
However, for CL, aROC values significantly differed between the
two measures [Two-way ANOVA, call type: F(3,2,206) = 77.88, p
< 0.0001; coding measure: F(1,2,206) = 513.5, p < 0.0001], for
all calls tested (Sidak’s multiple comparisons, Egg: p < 0.0001;
Ock: non-significant; Tsik: p < 0.0001; Twitter: p < 0.0001). The
aROC scores for the CPB population also significantly differed
between measures [Two-way ANOVA, call type: F(3,1,394) =

66.95, p < 0.0001; coding measure: F(1,1,394) = 146.8, p < 0.0001;
interaction: F(3,1,394) = 4.053, p = 0.0070], for all calls tested;
Sidak’s multiple comparisons, Egg: Mean Diff. = 0.035, p =

0.0003; Ock: Mean Diff. = 0.076, p < 0.0001; Tsik: Mean Diff. =
0.044, p < 0.0001; Twitter: Mean Diff.= 0.059, p < 0.0001.

Thus, in early-responding cortical fields, the pitch
discriminability between two end conditions was similar by
spike-count and spike-latency measures but in later responding
cortical fields, spike-latency gave the higher pitch discriminability
between the end conditions.

Pitch Coding Is Closely Related to
Temporal Response Patterns and
Integration Window and Population Size
Affect Preferred Coding Mechanism
To probe these differential preferences in coding mechanisms,
we developed and tested linear decoders which used one of the
two measures to assign responses to the specific stimulus variable
(in this case, pitch). Due to the very different temporal response
patterns amongst the different populations, we needed to first

establish how differences in spiking activity across time affected
decoder performance. We randomly selected a sample of pitch-
tuned units from each field and, for each call, examined the spike-
count-based decoder performance and the first spike-latency
based decoder performance in a series of integration windows.
To ensure sample size was not a confounder that affected decoder
performance, for each call we used a fixed sample size for both
the spike-count-based decoder and the first spike-latency-based
decoder. The smallest sample size was from CM, and to match
with it, a sample size of 40 units was used for Tsik, Twitter, and
Egg for both decoders and a sample size of 9 was used for Ock.
Decoding was done separately using units pitch-tuned by the
spike-count measure or units pitch-tuned by the spike-latency
measure.

Figure 9A shows the effect of integration window on decoder
performance for units pitch-tuned by spike-count. For all cases,
the performance curve resembled the time course of the spiking
activity of each population: early-responding populations (A1,
CM; c.f., Figure 4) reached peak decoder performance in an
earlier integration window (typically 32ms window) than did the
late responding populations (CL, CPB; CL—integration window
of at least 64ms; CPB population-−128ms). Then, for each
window, we compared decoder performance against chance
performance generated by training and testing the decoder
with trials from random pitch tokens of each call. For all
four populations, as integration window increased beyond that
for peak performance, decoder performance declined. Despite
this, for A1 and CM, decoder performance for all calls except
Ock never dropped to chance level even with an integration
window of 512ms which well-exceeded the response duration
(see Figure 4) of A1 and CM units [Two-way ANOVA, Tsik:
cortical field: F(4,950) = 302.9, p < 0.0001; integration window:
F(9,950) = 160.6, p < 0.0001; interaction: F(36,950) = 33.83,
p < 0.0001; Twitter: cortical field: F(4,950) = 30.37, P <

0.0001; integration window: F(9,950) = 108.8, p < 0.0001;
interaction: F(36,950) = 33.83, p < 0.0001; Egg: cortical field:
F(4,950) = 305.8, p <0 0.0001; integration window: F(9,950) =

154.2, p < 0.0001; interaction: F(36,950) = 37.5, p < 0.0001;
Ock: cortical field: F(4,950) = 10.03, p < 0.0001; integration
window: F(9,950) = 11.86, p < 0.0001; interaction: F(36,950) =

2.1, p = 0.0002; with Dunnett’s multiple comparisons, p <

0.05 indicated by dashed horizontal line]. For CL, decoder
performance was also affected by integration window, dropping
to chance level when integrating spikes for longer than 128ms
for all calls. Decoder performance for CPB was much less
affected by integration window and, except for Egg and Ock,
increasing it beyond the time after achieving peak performance
did not significantly affect performance. The sensitivity of the
CL population decoder to integration window suggests that
spike-count might not be a reliable coding mechanism for
pitch in CL and an alternative coding mechanism may be
required.

Figure 9B shows the effect of integration window on decoder
performance using units pitch-tuned by first spike-latency. A
very similar pattern was observed as with spike-count: decoder
performance peak for different fields was well-correlated with
response temporal pattern and the early-responding A1 and
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FIGURE 8 | Area under the receiver operating characteristic curve (aROC) by spike-count and first spike-latency for different subpopulations. (A) Comparison of

aROC, by each of the two measures, between the preferred pitch and the null pitch for each call (different colors indicate different calls). For spike-count, the preferred

pitch for a call was the pitch token with the highest spike-count while the null pitch was that with the lowest. For first spike-latency, the preferred pitch was that with

the shortest mean first spike-latency while the null pitch was that with the longest latency. (B) Mean aROC and standard deviation for the different calls in the different

cortical fields. Black bar represents aROC by spike-count. Gray bar represents aROC by first spike-latency. ***p < 0.005; ****p < 0.001.

CM populations achieved their peak performance at about 32–
64ms while the later responding CL population peaked at
about 64–128ms and the even later CPB population peaked at
128ms [Two-way ANOVA, Tsik: cortical field: F(4,950) = 223.9,
p < 0.0001; integration window: F(9,950) = 131.1, p < 0.0001;
interaction: F(36,950) = 15.8, p < 0.0001; Twitter: cortical field:
F(4,950) = 290.3, p< 0.0001; integration window: F(9,950) = 105.8,
p< 0.0001; interaction: F(36,950) = 20.91, p< 0.0001; Egg: cortical
field: F(4,950) = 246.7, p < 0.0001; integration window: F(9,950) =
115.8, p < 0.0001; interaction: F(36,950) = 19.6, p < 0.0001; Ock:
cortical field: F(4,950) = 30.01, p < 0.0001; integration window:
F(9,950) = 22.19, p < 0.0001; interaction: F(36,950) = 3.85, p <

0.0001; with Dunnett’s multiple comparisons, p < 0.05 indicated
by dashed horizontal line]. Again, for all populations, decoder
performance gradually dropped as integration window increased
beyond that at which peak performance occurred. Interestingly,
except for decoding pitch of Egg in CPB, decoder performance
always remained higher than chance even when the integration
window increased beyond the time when peak performance was
achieved.

In summary, these results show that decoder performance
closely followed the temporal response pattern of the population.
Unsurprisingly, it was also sensitive to integration window size-
increasing integration window beyond the response duration of a
population should result in a decrease in decoder performance as
a consequence of including spikes unrelated to the stimulus. This
effect was especially detrimental for the spike-count decoder for
CL, where responses could drop below chance.

We then investigated if one code was more reliable with
respect to integration window by calculating the ratio between

decoder performance by spike-count and by first spike-latency.
As shown in Figure 9C, the preference for coding mechanisms
varied between different neuronal populations in line with their
response onset profile. For the early-responding populations
A1 and CM, for all calls there was initially better performance
(ratios < 1.0) with the first spike-latency decoder and then,
as integration window reached 8ms and both decoders started
improving toward their peak performance, there was a switch to
the spike code decoder (ratios > 1.0) outperforming first spike-
latency. Then, once peak performance had been reached for both
decoders, as integration window kept lengthening, both decoders
performed equally well for A1 and CM where the performance
ratio fluctuating around 1 for all calls.

For CL, the spike-count decoder either had a similar
performance or slightly outperformed the first spike-latency
decoder before both reached their peak performance and then,
for all calls, the first spike-latency decoder became the better
coding mechanism as the integration window kept lengthening.
For CPB, a consistent pattern was observed that first spike-
latency decoder performs better under most integration window
except for transient better performance of spike-count decoder
at the window when peak performance was reached for all calls
expect Egg, of which the decoder performance ratio fluctuating
around 1.

In summary, for A1 and CM, for integration windows≥16ms,
the spike-count decoder either performed equal to or better
than the spike-latency-based decoder. In contrast, for the late
responding CL and CPB populations, the performance of spike-
count-based decoder was greatly affected by integration window
and overall the first spike-latency-based decoder performed
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FIGURE 9 | Performance of linear decoders for pitch classification as a function of integration window, for different auditory cortical populations. (A) Performance of a

spike-count-based decoder for pitch classification, as a function of integration window. (B) Performance of a first spike-latency-based decoder for pitch classification,

as a function of integration window. (C) Comparison of the performance of the two decoders, determined as the ratio of their performance at each integration window.

Dotted line indicates a performance ratio of 1:1 indicating equal performance of the two decoders, while values >1 indicate better performance of the

spike-count-based decoder. In (A–C) different colors indicates data from different cortical populations. In (A,B) chance level (1/11) is denoted by the dotted line;

Dashed colored line indicates performance that is statistically significant higher than chance (p < 0.05); the color of the dashed line corresponds to the different

neuronal populations.

better. These observations suggest different fields may have
different preferred mechanisms for encoding vocalization pitch,
determined by the integration window.

Finally, given that population size appears to affect
neurometric performance in auditory cortex (Bizley et al.,
2010), we examined its effect on performance of the pitch
decoders (Figure 10) using the integration window that gave
peak decoder performance by each of the two measures for
each call, in each field; again we used only units that showed
pitch tuning by either measure even if the two groups did not
contain all the same units. For all calls, we tested each population
with a range of sample sizes increasing in 20-unit steps. The
maximum number of units tested was limited by our data size
and the number of tuned units in that population. For the spike-
count based decoder (Figure 10A), all neuronal populations
showed significant population size effects for each call (One-way
ANOVA, p all < 0.0001). Testing the effect of population size
on the performance of the first spike-latency based decoder with
the same series of testing sample size (Figure 10B) also showed a
significant improvement in decoder performance with increasing
sample size (One-way ANOVA, p all < 0.0001). For the different
populations, best performance by either measure varied between
calls but, for a fixed sample size, best performance was usually

observed for the high fdom calls (either Tsik or Twitter) and
worse for the low fdom call (mostly Ock in all fields except for
Egg for CPB). Limited to the size of our dataset, we failed to
estimate the maximum decoder performance to each call. We
also compared the decoder performance at a common sample
size within each subpopulation between calls and revealed
significant differences in performance between calls suggesting
the ability of encode pitch changes of different calls was different
within subpopulations.

DISCUSSION

In this study we investigated the mechanisms for neuronal
encoding of variations in the pitch of natural vocalizations
in core (A1) and a set of caudal belt (caudal medial, CM,
and caudal lateral, CL) and CPB auditory cortex fields. These
fields differ in basic neuronal response characteristics including
pure tone tuning bandwidths (determined from the FRAs)
and temporal response features like latency and duration, as
also reported previously (Recanzone, 2000; Hackett, 2011). We
found that, as in Macaque monkeys (Recanzone, 2008; Russ
et al., 2008; Kusmierek and Rauschecker, 2009), neurons in
these core and non-core fields of marmoset auditory cortex
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FIGURE 10 | Effects of population size on decoder performance. (A) Spike-count based decoder performance with different sample size. (B) First spike-latency

based decoder performance with different sample size. Different color indicates different call tested.

were responsive and could differentiate between conspecific
vocalizations but we also demonstrated, for the first time, that
neurons in these fields showed differences in temporal response
patterns to vocalizations. In general, the neurons in CL and
CPB, with significantly larger mean FRA bandwidths than in
A1 and CM, were slower to respond and had longer-lasting
responses to vocalizations than the narrower-bandwidth and
faster-responding and shorter-lasting A1 and CM neurons. We
also found that the broadening of tuning bandwidth in the
CL and CPB fields, relative to the A1 and CM fields, did
not lead to lack of pitch sensitivity and that neurons in all
four fields could encode fine scale pitch changes in individual
vocalizations.

Our experiments were conducted under anesthesia as only
the anesthetized condition allows the collection of the large
volume of data we needed to compare between cortical fields,
the collection across multiple fields in the one animal, and the
post-mortem histological examination to confirm the location of
the recording sites in different fields identified by histology as
an independent confirmation to the physiological topographic
(cochleotopic) organization. We acknowledge that responses in
the anesthetized condition may differ from those in the awake
condition but note that we have shown in previous studies
using exactly the same anesthesia as used here (Rajan et al.,
2013; Lui et al., 2015) that this anesthetic regime has minimal
effects on neuronal responses compared to what has been seen
in studies in awake animals (Wang et al., 2005) using complex
signals, and largely preserves the neuronal response to complex
stimuli such as the vocalizations we used here. In fact, we
found high and dense levels of activity in the belt fields CL
and PB, presenting a further argument that our anesthetic
does not suppress activity in high-order fields in auditory
cortex which are otherwise susceptible to anesthetic suppression
with other agents. Nevertheless, it would be interesting to
further investigate the encoding of vocalization pitch and the
discriminability to vocalization pitch in awake behaving animals

if conditions could be created to obtain the same wealth
of data across multiple fields as we have achieved in this
study.

We used one exemplar of each of four natural vocalizations
recorded from monkeys not included in this study, and
applied pitch changes to these sounds by carefully varying their
frequency spectrum without altering their temporal structure.
The frequency modulations we applied mimic the range of
naturally occurring f0 differences among individual conspecifics
(Agamaite et al., 2015). It might be argued that for generalization
of our results, we could have also tested more exemplars of each
sound; however, other exemplars may likely vary from the one
we used but this be due to factors such as recording equipment
characteristics, variations in ambient background noise levels
during recordings in natural settings or in cages, differences in
animal weight, degree of distress of animals, etc., none of which
has any bearing on the encoding of pitch per se. Our protocol
is ideally designed to evaluate the encoding of pitch of natural
vocalizations.

Coding for Vocalization Pitch in Different
Auditory Cortical Fields
We have previously shown that A1 neurons can use firing rate
to encode the pitch of vocalizations (Zhu et al., 2019) or the
spatial location of vocalizations (Lui et al., 2015), consistent
with studies, across different auditory fields, showing the use
of spike-count for multi-dimensional representation of sound
features (Panzeri et al., 2010; Walker et al., 2011). An alternative
strategy is to use spike-latency which has been suggested to
carry as much, and in some instances even more, information
than firing rate, especially when referenced to the onset of
responses in the population (Chase and Young, 2007; Gollisch
and Meister, 2008; Panzeri et al., 2010). In our present study,
neurons in the four different cortical fields could use first spike-
latency or spike-count to encode pitch changes, but differed

Frontiers in Systems Neuroscience | www.frontiersin.org 17 February 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Zhu et al. Pitch Representation in Caudal Auditory Cortex

in the preferred coding mechanisms, consistent with functional
differences between the fields. All populations had a high
percentage of neurons with pitch sensitivity if both spike-count
and first spike-latency measures were taken into account. In CL,
the reduced number of cells with pitch sensitivity when using
only spike-count as a measure was increased to 80% by using
first spike-latency, and more than 80% of CPB units showed
sensitivity to pitch changes of at least one call using either
measure.

The putative use of first spike-latency as an auditory coding
mechanism has been demonstrated for other sound features.
At different processing levels up to cortex, first spike-latency
may carry information about stimulus frequency (Heil, 1997;
Tan et al., 2008; Zhou et al., 2012); stimulus location can be
encoded in spike-latency changes, in neurons from brainstem to
auditory cortex (Eggermont, 1998; Furukawa and Middlebrooks,
2002; Stecker and Middlebrooks, 2003; Chase and Young, 2008);
first spike-latency can contain information about sound identity
(Russ et al., 2008; Bizley et al., 2010); relative population
latency can encode stimulus periodicity (which underpins pitch
discrimination for such sounds) as efficiently as spike-count
(Bizley et al., 2010); and combined with rate coding, latency
coding adds important information on stimulus periodicity to
improve population encoding of this sound feature (Bizley et al.,
2010). One issue about using first spike-latency as a reliable
coding mechanism is whether changes in first spike-latency are
sufficiently large to allow decoding of stimulus identity (Zhou
et al., 2012): we found that first spike latency could reliably
encode pitch and may outperform spike-count code depending
on neuronal populations and integration windows. Another
concern arises from the lack of knowledge in the brain of the
onset of the external stimulus (Heil, 2004). Previous studies have
addressed this concern by investigating the relative latency to
one or more reference neurons in a simultaneously recorded
population and showed that relative latency could be a reliable
neural code (Jenison, 2001; Stecker and Middlebrooks, 2003;
Chase and Young, 2007; Bizley et al., 2010). We recorded
responses across different cortical fields from multiple animals
and multiple recording sessions, and hence compared the
encoding of vocalization pitch with reference to stimulus onset,
a consistent reference point across all recording sessions and
animals.

Caudal auditory cortical belt fields are selective for spatial
information (Rauschecker and Tian, 2000; Tian et al., 2001),
but neurons in these regions are also selective to conspecific
vocalizations (Tian et al., 2001; Recanzone, 2008). One way to
achieve multiplex representations is by using different aspects
of the spike train such as spike-count over different windows
or first spike-latency to represent different features of the sound
(Walker et al., 2011). We did observe significant differences in
pitch sensitivity distribution between the two measures for all
populations, with most prominent differences in A1, CM, and
CL: the first two showed a larger proportion of pitch sensitive
neurons by spike-count measures while CL showed the opposite.
We speculate that neurons in the putative location-processing
field CL may use first spike-latency to represent sound identity
and use spike-count to represent sound location.

Decoding Vocalization Pitch Using Spike
Count or Spike Latency in Different
Auditory Cortical Fields
In all fields and for all calls stimulus related information in first
spike-latency was always higher than that in spike-count, in line
with a study on information content of these two measures in
retinal ganglion cells (Gollisch andMeister, 2008). An alternative
information estimation approach, the Victor’s binless method,
confirmed that our observation of more information in first
spike-latency was not due to bias from binning of responses. For
either measure, information content differed between calls.

To further investigate coding mechanisms in different cortical
fields for vocalization pitch, we also developed linear decoders
using the two neural codes. We found that calls with larger
information content tended to have better decoder performance,
i.e., differences in information between calls may contribute to
differences in the populations’ ability to decode pitch changes.
For example, for CPB, Egg had the lowest mean information
in first spike-latency as well as the lowest decoder performance.
This relationship was not perfect and there was some discrepancy
between information content and decoder performance, possibly
caused by the inclusion of both pitch-tuned and un-tuned units
for the information estimation analyses but only pitch-tuned
units for the decoding analysis.

When decoding the full range of pitch variations, we found
that the preference for coding mechanism could be highly
dependent on integration window and that the neurometric
performance of both measures were closely correlated with the
response time course of the population under consideration.
Using the spike-count based mechanism, early-responding
populations A1 and CM reached peak decoding performance
quickly, after accumulating spikes for about 32ms (similar to the
value for periodicity encoding seen in a previous study in ferrets,
Bizley et al., 2010), compared to the late responding populations
CL and CPB. Optimal performance of latency mechanism was
not achieved until 64ms for A1 and CM neurons but the latency
code showed better performance than spike-count code in A1
and CM in the early period up to 16ms post-stimulus onset (see

Figure 9C), in line with proposals that first spike-latency can
lead to fast stimulus discrimination (Johansson and Birznieks,
2004). For CL and CPB neurons, the optimal performance of the
spike-count code and the latency code was achieved around the
same time and the performance of the latency code was better

than the spike-count code beyond peak performance, suggesting
that in these caudal cortical areas, stimulus identity is better

represented by first spike-latency. Neurons in caudal belt fields
represent sound source location with modulation of their spike-

count (Remington and Wang, 2018). Our results suggest these
neurons also remain sensitive to sound identity by utilizing
spike-latency to represent spectral differences when sound source

location is kept constant as we have. In later reports we will
examine how these spectral differences affect location coding in

putative location-coding caudal auditory cortical neurons.
Increasing integration window beyond the peak had a

significant detrimental effect only on spike-count-based
decoding of pitch in delayed-responding CL neurons but not
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in early-responding A1 and CM neurons or in the delayed-
responding CPB neurons. Thus, the brief response duration of
the early-responding populations did not limit their ability to
encode response identity and offers stable and rapid neuronal
activity for the brain to read out stimulus identity. For CL, spike-
count appears to be an unreliable coding mechanism to represent
vocalization pitch. With respect to preferred coding mechanism,
for A1 and CM, vocalization pitch variations induced large and
reliable changes in spike-count and first spike-latency while, in
CL and CPB, changes in first spike-latency were more profound
and reliable.

In concord with previous observations (Bizley et al., 2010)
expanding population size could improve decoder performance.
Since we observed a mixed representation of pitch selectivity by
either spike-count or spike-latency across all subpopulations, for
a fixed population size, the measure that gives a larger proportion
of tuning could contribute more to perceptual discrimination.
However, we were not able to estimate the optimal population
size for encoding pitch differences due to the lack of marmoset
psychometric data for discriminating pitch differences of the
conspecific vocalizations used here. Nevertheless, our data
suggested that neurons across different auditory field possess the
ability to discriminate fine pitch differences in vocalizations.

Hierarchical Segregation of Auditory
Cortex
Our study does not provide support for previous hierarchical
parcellation of auditory cortex into core and belt fields varying
in order of information flow and in functional specialization
(Hackett, 2011).

With respect to the classification of A1 as core and
CM as belt we found no evidence supporting a simple
hierarchy of information flow between these fields. Response
latencies, response durations and response temporal profiles
to vocalizations in CM neurons were similar to those in A1
(Recanzone, 2000). The bandwidth of the pure tone FRA is
another major response parameter reported to differ between
auditory fields, with increasing bandwidth along the core-
belt axis (Hackett, 2011). Again, we did not find a simple
hierarchy between A1 and CM: bandwidths were narrowest in
A1 but not different from those in CM. Finally, neurons in CM
largely behaved like A1 neurons in their pitch discriminability
and preference for pitch coding mechanisms. These striking
similarities between these two areas raise questions about
whether CM can truly be considered as a secondary area. A
previous study in macaque showed that lesion of A1 diminished
responses in CM (Rauschecker et al., 1997) but that study
included the lateral portion of belt in front of A1 as part of

CM and did not specify the response onset time of those CM
neurons. It is possible that the lack of response after lesion
occurred in CL rather than CM. Our data suggest that CM
and A1 may be parallel areas that process auditory information
concurrently.

We also did not find evidence to support classifying CM and
CL as being at the same (second) hierarchical level. CL neurons
had significantly longer response latencies and longer-lasting
response profiles compared to the CM. In fact, the temporal
parameters of responses in CL (belt) were only slightly earlier,
faster and shorter-lasting than responses in the parabelt field,
which had the longest response latency (c.f., Hackett, 2011).
Bandwidths were very much broader in CL and CPB than in CM
and A1, again speaking against a classification of CM and CL
as being at the same level. Finally, the mean CL bandwidth was
significantly broader than for the CPB field.

Overall, our data suggest that a reappraisal of the hierarchy of
auditory cortex may be warranted and we will address this issue
in later reports.
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