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A B S T R A C T   

The excessive intake of fructose in the regular human diet could be related to global increases in 
metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and 
young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal 
permeability and circulatory endotoxin by changing the gut barrier function and microbial 
composition. Excess fructose transports to the liver and then triggers inflammation as well as de 
novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue 
by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of 
the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression 
of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some 
evidence that high intake of fructose negatively affects both male and female reproductive sys-
tems and may lead to infertility. This review addresses dietary high-fructose-induced de-
teriorations that are obvious, especially in gut permeability, microbiota, abdominal fat 
accumulation, insulin signaling, and reproductive function. The recognition of the detrimental 
effects of fructose and the development of relevant new public health policies are necessary in 
order to prevent diet-related metabolic disorders.   

1. Introduction 

Global increases in metabolic disorders could be related to the excessive intake of fructose in the regular human diet. The current 
human diet contains high calorie mainly from the processed food rich in fat and sugar. Consistent evidence indicates an association 
between a high intake of processed food and increased cardiometabolic risks in people [1,2]. The experimental studies on high-fat diets 
have received more scientific attention than high-fructose diets; however, the destructive effect of excess calorie may not primarily 
depend on nutritional fat in the habitual human diet. In the last decades, the adverse health effect of fructose has been subjected to 
several scientific review articles [3–6]. Sugar-sweetened soft drinks are the most commonly consumed source of fructose [7–9]. The 
added fructose in beverages is found as sucrose (glucose + fructose, disaccharide) or High-Fructose Corn Syrup (HFCS; free fructose, 
and glucose). Fructose consumption was determined to be higher especially in adolescents than in other age groups over the last 
decades [10,11]. The habitual daily fructose consumption was estimated as about 46 g/day in a study performed on 3817 children and 
adults from the Dutch National Food Consumption Survey between 2007 and 2010. The total fructose intake was the highest in boys 
aged 14–18 years as 61 g/day, whereas it was relatively low in the girls aged 9–13 years as 56 g/day. About one-third of the total 
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fructose has been consumed as free fructose mainly from soft drinks [10]. In relation to diseases, epidemiological data indicated that 
diabetes prevalence is 20% higher in the countries utilizing HFCS as a sweetener than in the low-consuming countries [12]. The total 
fructose intake (approximately 61 g/day) especially from sweetened beverages was determined to be higher in children (5–9 years old) 
with Non-Alcoholic Fatty Liver Disease (NAFLD) than the overweight or normal weight participants. Additionally, the increased body 
weight and waist circumference were also considered in children who consumed a large amount of fructose [13]. In previous studies, 
higher consumption of soft drinks and fruit juices was also determined in both children and adults with NAFLD [14,15]. Recently, it 
was reported that the consumption of HFCS- or sucrose-sweetened beverages provided at 25% energy requirement for 16 days in 
healthy young adults increases hepatic lipid content and postprandial triglyceride level but decreases insulin sensitivity [16]. In a 
cross-sectional survey on adults (n = 283) living in Lebanon, the mean consumption of total fructose was estimated approximately as 
51.4 g/day and a high intake of added fructose was correlated with a high incidence of metabolic syndrome [17]. These data pointed 
out that fructose is a significant component in the current human diet and its high intake is coincided with an increase in the prevalence 
of metabolic disorders including NAFLD, which is another worldwide disease although not completely included in this paper. The 
critical outcomes of high consumption of added sugar particularly fructose deserve special attention for public health. This review 
addresses crucial findings related to the dysregulatory impact of dietary fructose on gut permeability, microbiota, abdominal fat mass, 
insulin signaling, and reproductive function with a novel complimentary perspective. 

Fig. 1. The outcomes of high-fructose intake in the intestine 
Dietary fructose is transported into the enterocytes via GLUT5. Some part of the intestinal fructose is metabolized to other metabolites such as 
glucose and organic acids, by ketohexokinase, aldolase-B, and triokinase. Most of the intestinal fructose reaches the liver through the hepatic portal 
vein by GLUT2-mediated transport, thereby entering carbohydrate metabolism and participating in DNL. On the other hand, the unabsorbed 
fraction of fructose as well as its metabolites negatively affect the gut microbiota and thus lead to a decrease in SCFA levels and a change in intestinal 
microbial composition, mainly in the Firmicutes/Bacteriodetes ratio. Excessive fructose intake produces an elevation in the Gr (− ) bacteria pop-
ulation, resulting in increased endotoxin levels. High levels of endotoxin cause increased intestinal permeability characterized by impaired gut 
barrier function and enhanced mucosal inflammation. The endotoxin triggers intestinal inflammation through macrophage activation, which leads 
to the release of inflammatory factors, and it also causes barrier dysfunction by disrupting tight junction proteins such as occludin, claudins, and 
zonula occludens. Also known as leaky gut, this condition contributes to the intestinal translocation of bacterial endotoxin via the portal vein and 
the subsequent activation of liver-resident macrophage (Kupffer) cells. The TLR-4-mediated activation of Kupffer cells induces the production of 
reactive oxygen species and inflammatory cytokines by stimulating the NF-κB pathway and thus contributes to hepatic inflammation and steatosis. 
Abbreviations: GLUT5: Facilitative Glucose Transporter-5, DNL: de novo lipogenesis, SCFA: Short Chain Fatty Acid, TLR-4: Toll-Like Receptor-4. 
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2. Fructose absorption 

Fructose is taken into the body as a monosaccharide or disaccharide from sucrose, HFCS, fruits, honey, and some vegetables [18]. 
When fructose is consumed as sucrose, it must be split into fructose and glucose before being absorbed. Fructose enters enterocytes and 
then transports to the portal bloodstream via the specific transporters. Absorption and transport of dietary fructose are performed by 
facilitative Glucose Transporters (GLUTs) located in the enterocyte membranes [19]. Of GLUTs GLUT2, 5, 8, and 12 are involved in 
fructose transport in the organ level [20]. As shown in Fig. 1, fructose is mainly taken up into the enterocyte by GLUT5 located on the 
apical side of the membrane and transported to the portal bloodstream by GLUT2 existed on the basolateral side of the enterocyte [21]. 
GLUT5 is mostly expressed in the small intestine, kidney, brain, fat, testes, muscle, and liver, whereas GLUT2 is presented in the 
intestine, liver, pancreas, and kidney [22]. GLUT5 transports only fructose, but GLUT2 both glucose and fructose as well as galactose. 
The intestinal fructose absorption is increased in the coingestion with glucose due to upregulation of GLUT5 [23]. This indicates that 
fructose can be more absorbed from enterocytes in the consumption of sucrose or HFCS, which contain both fructose and glucose. 

The uptake of fructose, but not glucose, into enterocytes is insulin and sodium-independent process without requiring ATP hy-
drolysis [18]. After taking fructose into the cytosol of enterocytes, most of the fructose is directly passed into the portal circulation 
where it participates in carbohydrate metabolism and de novo lipogenesis. Hepatic fructose is rapidly phosphorylated by Ketohex-
okinase (KHK) to Fructose-1-Phosphate (F1P), which is further metabolized to glyceraldehyde 3-phosphate and dihydroxyacetone 
phosphate by aldolase-B. Later, these products are converted to substrates for lipogenic and gluconeogenic pathways [4]. On the other 
hand, the remaining fructose in the enterocyte is also metabolized by KHK to F1P that is processed to further metabolites such as 
Short-Chain Fatty Acids (SCFAs), glucose, and organic acids by aldolase-B and triokinase sequentially [24]. It is generally accepted that 
the liver is the main site of fructose metabolism. However, a recent isotope tracing study by Jang et al. showed that some part of dietary 
fructose is metabolized in the small intestine [25]. In the intake of low-dose fructose (<0.5 g/kg), its approximately 90% is phos-
phorylated and then metabolized primarily to glucose and organic acids in the intestine, thus its unmetabolized small part passes into 
the portal circulation as fructose. Differently, in the high intake of fructose (1 g/kg), the capacity of the intestinal fructose metabolism 
surpasses and extra fructose carries to the liver [25]. The low doses of fructose is mainly cleared by the small intestine, while 
high-fructose exceeds the capacity of intestinal fructose metabolism and, the surplus fructose transports to the liver, thus may cause 
harmful metabolic effects. Also, an unabsorbed fraction of fructose is being an unfavorable substrate for gut microbiota (we mentioned 
this in the following section). On the other hand, fructose malabsorption which is an exceptional gastrointestinal dysfunction can occur 
in high-fructose ingestion. The absorption capacity of fructose has been proposed to extend to 5–50 g at one serving in a healthy adult 
[26]. Incomplete absorption of fructose was first considered in children with chronic diarrhea. Excessive intake of fruit juices con-
taining high-fructose in children was determined to be associated with diarrhea and other gastrointestinal complications [27]. The 
fermentation of unabsorbed fructose by gut microbiota causes the accumulation of gaseous products that expand the intestinal wall. 
Accordingly, it has been stated that unabsorbed fructose results in abdominal pain, flatulence, diarrhea, and other gastrointestinal 
symptoms by drawing fluid into the intestinal lumen as well as forming gaseous compounds [28]. The prevalence of fructose 
malabsorption in toddlers was found to be higher compared to adults possibly due to the lower intestinal expression of GLUT5 [29]. 

Previous studies showed that high-fructose intake enhances the intestinal expression of GLUT2, GLUT5, GLUT8 and GLUT12 
showing an adaptive mechanism for the overconsumption of monosaccharide [20,30]. This situation in the intestine appears to be a 
way of coping with excess fructose by enhancing its absorption. Therefore, in the malabsorption of fructose, it was proposed that 
activation of these transporters could be functional targets in the prevention and/or treatment of the disease [20]. However, the 
exertions to increase fructose absorption could enhance its circulatory fraction, which is a risky situation for many organs of the body 
against its harmful effects. On the other hand, intestine spesific inhibition of GLUT2 and GLUT5 would be a beneficial approach for 
fructose-dependent metabolic disorders [18]. However, a decrease in intestinal monosaccharide absorption would be expected to 
cause a pathology similar to fructose malabsorption. Therefore, the approaches to prevent the undesirable effects of high-fructose seem 
to be a double-edged sword. Further comprehensive studies are needed before the GLUTs can be used as therapeutic targets in the 
management of fructose-related disturbances. Alternatively, it can be proposed that the limitation of fructose intake would be a more 
efficient way rather than trying to modulate its absorption. 

3. The impact of fructose on the intestinal permeability 

The intestinal epithelium, being a single-cell lining, serves as a physical barrier to prevent the entry of microorganisms and certain 
microbial products into circulation. This selective permeable epithelial barrier is constructed by the tight junction, adherens junction, 
and desmosomes, which are connected with epithelial cells. Tight junctions play a critical role in regulating intestinal barrier function 
and coordinating the passage of small molecules and ions. The tight junction components are composed of occludin, claudins, zonula 
occludens (ZO-1, ZO-2, and ZO-3), and the junctional adhesion molecule [31]. Zonula occludens are essential proteins that link the 
transmembrane tight junction proteins to cytoskeleton. The junctional adhesion molecule has a regulatory role in the permeability; 
however, occludin and claudins are the main transmembrane proteins of the intestinal barrier construction [32]. 

The increased intestinal permeability reflects a deterioration in gut barrier function, which is especially associated with a decrease 
in the tight junction proteins. The barrier damage leads to the entry of microorganisms and their metabolites into the intestinal wall, 
also spreading inflammatory components to the whole body. Intestinal permeability may be changed in several situations, including 
gut microbiota modification, mucus layer alteration, and different eating habits such as a diet rich in fat and sugar [33,34]. Recent 
studies have shown that among dietary sugars, fructose has a specific function in the intestinal barrier destruction [35–38]. As detailed 
above, in excessive fructose intake, the absorptive capacity of the ileum would be saturated; consequently, the unabsorbed fraction of 
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fructose would be influential in the determination of the intestinal bacterial diversity, and inflammatory status and barrier function 
[35,37,39]. In addition, the increased inflammation in the intestine may enhance cell shedding and thus contributes to the impaired 
gut barrier function [32]. For the first time, Bergheim et al. reported that liver damage induced by 30% fructose administration in 
drinking water to mice was associated with increased intestinal translocation of endotoxin, which is also known as Lipopolysaccharide 
(LPS). In the same study, fructose, in comparison to sucrose, glucose, or artificial sweetener, was established to cause a more severe 
inflammatory condition that is evidenced by increased portal endotoxin levels and hepatic Tumor Necrosis Factor-α (TNF-α) 
expression. They also showed that sterilization of the gut with non-resorbable antibiotics remarkably reduced fructose-induced hepatic 
lipid accumulation [40]. The following study demonstrated that liver damage in high-fructose consumption is accompanied by hepatic 
Toll-Like Receptor-4 (TLR-4) activation induced by endotoxin derived from intestinal bacterial overgrowth [41]. TLRs can be activated 
by microbial pathogen-associated molecules such as endotoxin that occurs in the cell membrane of gram-negative bacteria and plays 
an influential role in fructose-induced endotoxemia [42]. In another investigation by the same research group, it has been reported that 
the intake of 30% fructose solution in mice leads to barrier dysfunction due to impairment of the tight junction proteins occludin and 
ZO-1, thus causing an increase in bacterial endotoxin level in the portal vein [37]. Consistent with previous studies, in our recent 
research, we found that 20% fructose intake in drinking water caused ileal inflammation evidenced by increased macro-
phage/leukocyte infiltration as well as expression of Inducible Nitric Oxide Synthase (iNOS) and Nuclear Factor kappa-B (NF-κB). 
Moreover, this dietary intervention resulted in increased intestinal permeability due to a decline in the ileal expression of occludin and 
claudin-1 and an alteration in gut microbial composition. All these intestinal changes are associated with increased plasma endotoxin 

Fig. 2. The effects of high-fructose intake in the liver and adipose tissue 
Dietary monosaccharides are mainly metabolized in the liver. Fructose and glucose are taken up from the portal vein to the liver via GLUT2 and, 
then metabolized into pyruvate and acetyl-CoA that promote hepatic DNL. In this process, fructose as well as its metabolites stimulate the major 
transcription factors SREBP-1c and ChREBP, which increase the fatty acid synthesis by inducing gene expression of enzymes such as FASN. In 
addition to triggering DNL, fructose also contributes to hepatic steatosis by suppressing fatty acid oxidation. The increased hepatic fatty acids are 
converted to triglyceride and packaged as VLDL, which is released into circulation. High consumption of fructose causes a marked fat deposition, 
especially in the abdominal region. Fructose leads to fat accumulation in adipose tissue by both stimulating lipogenic gene expression and sup-
pressing lipolytic enzyme adipose triglyceride lipase, thus triggering visceral adiposity. Enlarged visceral adipose tissue begins to produce in-
flammatory cytokines due to free fatty acids and/or endotoxin (derived from intestinal microbiota)-mediated TLR-4 activation, which then 
exacerbates macrophage infiltration into adipose tissue. In this way, the activation of inflammatory and lipogenic pathways caused by high-fructose 
intake contributes to both fat accumulation and suppression of insulin signaling in adipose tissue. Abbreviations: GLUT2: Facilitative Glucose 
Transporter-2, DNL: de novo lipogenesis, TLR-4: Toll-Like Receptor-4, SREBP-1c: Sterol Regulatory Element-Binding Protein-1c, ChREBP: Carbo-
hydrate Response Element Binding Protein, FASN: Fatty Acid Synthase, VLDL: Very Low-Density Lipoprotein, ATL: Adipose Triglyceride Lipase, TG: 
Triglyceride, FA: Fatty Acid. 
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levels [35]. In a very recent study, it was proposed that gut barrier dysfunction induced by high-fructose in rats may be related to 
nitration of intestinal tight junction and adherent junction proteins as well as apoptosis of intestinal enterocytes [43]. Moreover, a 
study by Volynets et al. showed that the excess fructose consumption in mice led to increased intestinal permeability, Firmicu-
tes/Bacteriodetes ratio, and endotoxemia without increasing body weight, while a Western-style diet primarily caused weight gain but 
not endotoxin translocation [38]. It is clear that the overconsumption of fructose plays a specific role in the development of intestinal 
dysfunction by causing an increase in endotoxin levels due to the disruption of intestinal integrity and microbial community. The 
gastrointestinal changes caused by high-fructose intake are summarized in Fig. 1. 

There is an anatomical link between the intestine and liver via the hepatic portal system, called as “gut-liver-axis”. The liver is 
directly exposed to gut microbiota and their products thereby acting as a first line of defense against harmful attacks [44]. As mention 
above, high-fructose intake can cause hepatic inflammatory damage by increasing intestinal translocation of endotoxin [40]. Also, 
gut-derived bacterial endotoxin due to high-fructose activates the resident macrophages Kupffer cells of the liver through a 
TLR-4-dependent mechanism [41]. As demonstrated in Fig. 2, the endotoxin translocates to the liver due to intestinal barrier dis-
integrity and microbial dysbiosis, thus binds to TLR-4 receptor on the surface of the macrophage cell. Endotoxin-induced TLR-4 
stimulation activates NF-κB via the adaptor proteins Myeloid Differentiation Factor 88 (MyD88) and/or Interferon Regulatory Factor 3 
(IRF3), subsequently leading to the production of inflammatory cytokines and reactive oxygen species [15,45]. Additionally, we 
recently show that the increased plasma level of endotoxin, TNF-α, and IL-1β in fructose-fed rats is associated with activation of Kupffer 
cells as well as hepatic expression of TNF-α, NF-κB and iNOS, implied that the liver is under attacked by an inflammatory infection 
[35]. A previous study demonstrated that TNF-α has a crucial function in the onset of fructose-induced liver damage as well as insulin 
resistance, through its receptor TNFR1 [46]. Moreover, it has been shown that an elevation in hepatic TNF-α level due to increased 
intestinal permeability, and endotoxemia stimulates lipogenic enzymes and lipid accumulation. Mechanistically, TNF-α activates 
caspase-2 by binding to TNFR1 on hepatocytes and then induces the expression of lipogenic genes including Sterol Regulatory 
Element-Binding Protein 1 (SREBP1), acetyl-CoA carboxylase, and Fatty Acid Synthase (FASN), thereby increasing hepatic steatosis 
[45]. In this line, high intake of fructose was reported to induced hepatic inflammatory status together with the increased expression of 
SREBP1 and FASN, thus contributed to the development of hepatic lipogenesis [33,35,47]. Taken together, it can be suggested that 
chronic fructose consumption both directly increases de novo lipogenesis, and indirectly enhances hepatic lipid accumulation through 
TNF-α activation due to the translocation of bacterial endotoxin. The hepatic alterations caused by high consumption of fructose are 
shown in Fig. 2. 

In parallel with preclinical studies, it has been reported that the intestinal barrier function and microbial community are changed in 
individuals with NAFLD. A clinical study has demonstrated that high-fructose consumption leads to an elevation in the translocation of 
bacterial endotoxin and the hepatic TLR-4 expression, thus contributing to the development of NAFLD [15]. In a subsequent study, 
patients with NAFLD were reported to have impaired gut permeability together with bacterial overgrowth and decreased ZO-1 
expression in duodenal biopsy specimens [48]. Moreover, children with NAFLD were found to have excess fructose consumption in 
conjunction with elevated plasma inflammatory markers such as TNF-α, IL-6, and endotoxin, indicating increased intestinal perme-
ability. Furthermore, chronic fructose intake for 2 weeks was shown to enhance circulating endotoxin levels in adolescents with 
NAFLD, and this elevation was found to be correlated with the increased markers of insulin resistance and inflammation [49]. In 
contrast to the above studies, a recent pilot study reported that a high intake of fructose did not affect intestinal permeability and gut 
microbiota as well as endotoxin level in obese humans who consume a certain amount of fructose known to develop NAFLD [50]. Thus, 
it can be suggested that the changes occurred in the gut-liver axis due to high-fructose consumption play a causative role in the 
development of dyslipidemia and hepatic steatosis. However, further clinical research is required to elucidate possible effects of 
fructose. 

4. The impact of fructose on gut microbiota 

In recent years, metagenomic approaches showed that the intestinal microbiota has a very complex structure and plays an 
influential role in health maintenance and disease status. Intestinal dysbiosis, which is described as an alteration in microbial 
abundance and/or diversity, was determined to be associated with several inflammatory metabolic disorders including obesity, 
NAFLD, type 1 and type 2 diabetes [51,52]. Intestinal microbiota comprising trillions of bacteria, which mainly belongs to Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia phyla, forms a heterogeneous and dynamic microbial ecosystem 
in the gastrointestinal tract [53]. In the first studies on the obesity-microbiota relationship in animals and humans, it was detected an 
increase in the abundance of Firmicutes, but a decrease in Bacteroidetes [54,55]. Following these initial findings, many studies 
demonstrated that the Firmicutes/Bacteroidetes ratio has increased in diseases such as obesity, type 2 diabetes, atherosclerosis, and 
NAFLD [35,56,57]. Contrary, this ratio was found to be decreased in clinical trials with obese, NAFLD, type 1 and 2 diabetes [58–61]. 

From the studies conducted on animals, transplanting of the obese microbiota caused an increase in the body weight of lean mice 
[62]. In genetically obese ob/ob mice, it has been reported that two-week antibiotic treatment reduced the numbers of cecal aerobic 
and anaerobic bacteria, along with increased glucose tolerance as well as decreased liver triglyceride and plasma endotoxin levels 
[63]. However, the alteration of intestinal microbiota by probiotics bacteria such as Lactobacillus and Bifidobacterium species was 
shown to exert positive effects on health maintenance of rat [64]. Lactobacillus species from Firmicutes may produce improving effects 
on hyperglycemia, hyperinsulinemia, and dyslipidemia in metabolic disorders of rodents [65–69]. Similar to animal studies, a 
meta-analysis study evaluating 32 clinical trials has been demonstrated that probiotic treatment with especially Lactobacillus species 
improves metabolic parameters including total cholesterol, triglyceride, C reactive protein, HbA1c, fasting plasma glucose, fasting 
insulin levels, and both systolic and diastolic blood pressure in type 2 diabetic patients. As a result, probiotic supplementation is 
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recommended to promote better metabolic control in patients with diabetes [70]. Another factor that directly affects the intestinal 
microbiota is prebiotics, known as indigestible carbohydrates. Prebiotic supplementation was shown to have a positive metabolic 
effect on obese and diabetic mice [71]. Also, gut microbiota affects host energy balance by regulating glucose and lipid metabolism 
through SCFAs like propionate, acetate, and butyrate production as a result of polysaccharides digestion induced by intestinal bacteria 
[72]. Most of the propionate and acetate reach the liver via the portal vein and metabolize in hepatocytes, while butyrate is utilized as a 
source of energy by intestinal epithelial cells [73]. Also, butyrate has been shown to have an antiinflammatory effect via the inhibition 
of NF-κB and proinflammatory cytokine production [74]. Moreover, SCFAs have a function in the suppression of appetite and 
attenuation of fat deposition by modulating relevant hormones and genes [75]. 

In the last decades, the changes in eating habits such as a Western-style diet containing high-sugar, fat, and salt may cause 
detrimental effects on host health by changing the microbial composition [76]. It has been shown that a diet containing 60% fat in mice 
causes an increase in the Firmicutes to Bacteriodetes ratio and also a decrease in Proteobacteria. This dietary intervention also 
increased the level of endotoxin in the feces and blood together with an induction of macrophage infiltration and inflammation in the 
adipose tissue in the presence of high circulatory cytokine level [77]. In a study investigating the effects of a diet rich in fat and sucrose 
on the gut microbiota of mice, two dietary interventions decreased the diversity and abundance of butyrate-producing bacteria as well 
as some other beneficial bacteria [78]. Another study reported that a high fat/high sucrose diet increases the abundance of Firmicutes 
but decreases Bacteroidetes, Actinobacteria, and Verrucomicrobia amounts in the fecal microbiota of mice [79]. Also, in high-fat-fed 
mice, there was an increase in the abundance of endotoxin-producing bacteria, but a decrease in SCFA-forming microorganisms [80]. 
Similar to high fat and sucrose diets, excess fructose intake has been shown to cause various changes in the composition of gut 
microbiota and its function [81]. In high-fructose intake, the intestinal monosaccharide transport capacity has saturated, and extra 
fructose reaches the colon and generates a partially selective medium of nutrients for the gut microbiota [25]. In progressing, colonic 
bacteria are able to metabolize the unabsorbed fructose into SCFAs and organic acids [81]. In a study performed in Sprague-Dawley 
rats, it was shown that fructose feeding increased Coprococcus and Ruminococcus bacterial strains which are significantly decreased 
after antibiotic treatment or fecal transplantation. The decrease in plasma endotoxin and TNF-α concentrations after antibiotic 
treatment indicates that the microbiota also contributes to the fructose-induced inflammatory condition [82]. In a study, dietary 30% 
liquid fructose in mice was shown to increase the Firmicutes to Bacteroidetes ratio by lowering the abundance of Bacteroidetes phyla, 
which is not altered by a Western-style diet. Furthermore, they observed that translocation of endotoxin in mice fed with a 
high-fructose or Western-style diet results in a reduction of mucus thickness in the colon [38]. In mice given high-fructose, the mi-
crobial alteration was accompanied by an elevation in serum endotoxin level, hepatic lipid accumulation, and inflammation [33]. In 
the other study, the high-fructose intake in mice caused a decrease in Bacteroidetes, but an enhancement in the pathogenic bacteria 
including Deferribacteraceae and Helicobacteraceae [79]. However, dietary fructose, which is given 40% in chow, did not change the 
abundance of Bacteroidetes but impaired Actinobacteria and Proteobacteria in the small intestine and colon in mice [83]. In a different 
study feeding protocol, we showed that dietary fructose, which is given 20% in drinking water, increased the Firmicutes/Bacteriodetes 
ratio as well as decreased the richness of Actinobacteria in rats [35]. In another experiment, it has been shown that a high-fructose diet 
which contains 60% fructose in chow increased the ratio of Firmicutes/Bacteroidetes and abundances of Deferribacteres, Verruco-
microbia, and Actinobacteria phyla in mice. At the genus level, high-fructose intake increased Bacteroides, Akkermansia, and Rumi-
nococcus, which are mucin-degrading bacteria [84]. Akkermansia muciniphila is mostly thought to play a role in thinning of the mucus 
layer as a result of feeding on a high-fructose diet. However, the high-fructose diet did not produce a change in the fecal Akkermansia 
muciniphila abundance, but this bacterium has been found to be densely clustered at the colonic mucus layer [85]. It was also shown 
that dietary high-fructose reduces the richness of gut microbiota regarding both species and community, which are known as alpha and 
Shannon-Wiener diversity, respectively. The families of Bifidobacterceae, Enterococcaceae, and Erysipelotrichaceae were proposed as the 
prominent bacteria in the microbial changes induced by this dietary intervention using Linear discriminant analysis Effect Size (LEfSe) 
analysis. In addition, it was determined decreased concentration of most SCFAs, but increased inflammatory metabolites in feces [84]. 
The changes in gut microbiota and its metabolites were suggested to have a role in chronic intestinal inflammation caused by a 
high-fructose diet. In a recent study, fructose-rich chow was demonstrated to increase the Proteobacteria phylum in the cecal micro-
biota of mice. This phylum is known to be the main source of endotoxin in the gut microbiota, thus a rise of Proteobacteria has been 
claimed to be one of the causes of fructose-induced endotoxemia [86]. However, we and other researchers reported that there was no 
alteration in Proteobacteria abundance despite an elevation of plasma endotoxin level with the high-fructose diet [35,77,82]. 

In a human study, it was examined the influence of short-term two different formulations of high-fructose on the gut microbiota of 
healthy adult women [87]. The study subjects received fruit-rich and HFCS-supplemented diets with equal fructose amounts. In 
participants, the fruit-rich diet increased the abundance of Firmicutes, which contains butyrate-forming bacteria such as Anareostipes, 
Faecalibacterium, and Erysipelatoclostridium, while decreased the richness of Bacteroidetes with pathogenic genus Parabacteroides. On 
the contrary, the HFCS diet decreased Faecalibacterium and Erysipelatoclostridium, but increased the Bacteroidetes abundances [87]. 
Results of the above study show that different forms of fructose ingestion, such as fruit-rich diets and HFCS, may cause diverse effects 
on the gut microbiota. Therefore, the fructose intake from fruits appears to increase the favorable bacteria from Firmicutes phyla. This 
situation actually shows that the assessment of microbiota data by examining changes at the phylum level does not provide always 
precise information. Therefore, additional data analyzing family, genus, or species and also metabolites need to obtain accurate in-
ferences from microbiota research. 

In different perspective, the contribution of the microbiota to the fructose-induced metabolic disorder is evidenced that probiotic or 
prebiotic supplementation ameliorates the high-fructose-associated metabolic abnormalities. The probiotic supplementations con-
taining L. acidophilus, L. casei and L. plantarum were shown to improve glucose intolerance, hyperinsulinemia, oxidative stress, and 
dyslipidemia in high-fructose-fed rats [67,88]. Other study results demonstrated that L. reuteri GMNL-263 treatment reduced serum 
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lipid parameters including triglyceride and cholesterol levels, and also suppressed hepatic expression of lipogenic genes such as FASN 
and SREBP-1 in fructose-fed rats [89]. Previously, we have shown that supplementation of L. plantarum and L. helveticus decreased 
hepatic weight, triglyceride content, and FASN expression as well as improved insulin signaling pathway, endothelial Nitric Oxide 
Synthase (eNOS), and GLUT2 expression in liver of fructose-fed rats [68]. Moreover, our recent study results demonstrated that the 
treatment with kefir, which is a probiotic-prebiotic mixture, suppressed hepatic inflammation and lipogenesis, but promoted insulin 
signaling, in association with a change in the fecal microbiota, thus producing a more healthy status [35]. 

Evidence suggests that both the taxonomic and functional composition of the gut microbiota may have a role in the development of 
metabolic disorders. It is known that dietary fructose causes some changes in the intestinal microbial structure by both directly 
affecting the fecal content and also inducing metabolic disturbances. In fructose-induced microbial imbalance of the intestine, there is 
a decrease in beneficial commensal microorganisms that prevent the passage of pathogenic microbes and also maintain the integrity of 
the intestinal barrier through the production of mucus and lipid metabolites such as SCFAs. The fact that the treatments with probiotics 
and/or prebiotics targeting the intestinal microbiota have positive effects on metabolic syndrome reveals that microbiota involves in 
the pathogenesis of certain diseases [35,90,91]. Although there is no definitive treatment regimen for metabolic disorders, which are 
common health problem nowadays, consuming probiotic/prebiotic product for the regulation of intestinal microbiota will contribute 
to health maintenance, in addition to giving up or reducing unhealthy eating habits. In this regard, it is important to clarify the 
relationship between the pathological conditions and alterations in the gut microbiota induced by other diets rich in processed food. 

5. The impact of fructose on abdominal adiposity 

Abdominal adiposity as a regional excess fat accumulation could be a main driving force and potential health risk in metabolic 
syndrome and obesity, therefore has received increasing attention in the literature [92]. Regarding animal studies, Sprague-Dawley 
rats fed with a fructose-rich diet had more epididymal adipose tissue mass and high plasma insulin level than those of starch or 
dextrose-feeding rats [93]. The administration of 10% fructose solution to male rats for three weeks increased visceral adipose tissue 
mass and adipocyte size together with high blood levels of glucose, insulin, and triglyceride, but there was no change in body weight 
[94,95]. Similarly, it was found significant increases in plasma triglyceride level and visceral adipose tissues (epididymal or omental) 
of rats that consumed 10% fructose solution without having an effect on their body weight [96–98]. In rats fed with a diet containing 
20% fructose for the 8-week study period, it was determined an increase in epididymal fat and mesenteric fat mass as well as adipocyte 
volume but no alteration in total body weight compared to control [82,99]. In compliance with the above studies, we have demon-
strated that 10% fructose intake in drinking water for 6 months caused an expansion of omental adipose tissue of both male and female 
rats together with an increase in the plasma insulin and triglyceride levels. Metabolic disorder induced by long-term excess fructose 
intake was closely linked to abdominal fat accumulation, but independent of general obesity because there was a marked increase in 
body weight of males, but not that of females [100]. Recently in another study, 20% fructose in drinking water, relatively in a short 
feeding period of 15 weeks, also produced a remarkable increase in omental adipose tissue mass as well as plasma insulin and tri-
glyceride levels in male rats without changing their body weight [35]. All these animal data disclosed common characteristics of 
metabolic disorder induced by dietary high-fructose, especially concerning the point of visceral obesity. 

In humans, the first comprehensive analysis paper on the adverse health effects of dietary fructose by Elliot et al. elucidated the 
relation between excess consumption of fructose and body adiposity [101]. In a cross-sectional analysis study, total sugar intake was 
found to be positively correlated with body mass index and total fat accumulation in high-risk pediatric populations. The same 
investigation also reported that the modest reduction in sugar intake was effective in reducing obesity and the risk factors of type 2 
diabetes [102]. A study performed on overweight and obese subjects, which are given either glucose- or fructose-sweetened drinks, 
providing 25% of energy requirements for 10 weeks, showed that fructose-consuming subjects had increased total abdominal fat, 
visceral adipose tissue volume, fasting plasma glucose, and insulin as well as postprandial triglyceride levels, but both groups displayed 
similar weight gain. Moreover, glucose consumption, but not fructose, specifically increased subcutaneous adipose tissue mass. Thus, 
the study results explored that fructose and glucose have different effect profiles on the distribution of regional adipose tissue inde-
pendent of gaining weight [103]. The results of a cross-sectional study performed on 559 adolescents aged 14–18 y exhibited that total 
fructose intake (free fructose + sucrose) is positively associated with increases in visceral adiposity, systolic blood pressure, fasting 
glucose, HOMA-IR, and triglyceride, which are independent of age, sex, socioeconomic status, and energy intake [104]. In advance 
analyses, it was found that the connection between fructose intake and cardiometabolic risk markers may be related to visceral fat 
accumulation. Basically, it was known that hypertriglyceridemia and low HDL cholesterol were common abnormalities found in 
patients with abdominal obesity [105]. In subjects with abdominal obesity, the 75 g daily fructose intake, which is corresponding to 
13% of the total energy for 12 weeks, significantly enhanced liver fat content, but produced a relatively low increase in their body 
weight and waist circumference. Also, visceral fat mass accretion was significantly correlated with liver fat accumulation. There was a 
considered individual difference in susceptibility to visceral adiposity as well as hepatic fat accumulation [106]. In a prospective study 
on middle-aged adults for 6 years, individuals who consumed regular sugar-sweetened beverages, at least 1 serving daily, were found 
to have a 29% greater increase in visceral adipose tissue mass compared to non-consumers [107]. The results from a double-blind study 
on 14 lean adolescents and 23 obese adolescents, who were matched for age, sex, and metabolic parameters, showed that ingestion of 
75 g fructose, but not glucose, produced a hiperinsulinemia in obese participants than in leans [108]. In short-term studies, isocaloric 
fructose restriction for nine days in obese Latino and African American children noticeably reduced triglyceride and insulin levels, liver 
fat, and visceral fat accumulation determined by magnetic resonance spectroscopy [109,110]. All these human data demonstrated that 
excess fructose consumption in the diet was mostly associated with abdominal adiposity, hypertriglyceridemia, and hyperinsulinemia 
consequently causing a cardiometabolic risk. 
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Given studies on animals and humans, it is plausible to assume that excess intake of dietary fructose is a causative factor in the 
expansion of abdominal fat tissue in association with hypertriglyceridemia and hyperinsulinemia but independent of general obesity. 
In this assumption, some minor discrepancies can be ascribed to the methodological differences such as sugar concentration and 
feeding duration. Insulin may stimulate the uptake of fatty acids by adipocytes, which in turn activates lipogenic genes and lipogenesis, 
known as de novo fatty acid synthesis, but the mechanisms in adipose tissue are less understood than those of the liver [111]. Insulin 
causes lipid storage in adipocytes by both activating triacylglycerol synthesis and inhibiting its metabolism. In type 2 diabetes, insulin 
fails to inhibit hepatic gluconeogenesis but maintains to activate lipogenesis, thus producing a toxic combination of hyperglycemia and 
hypertriglyceridemia [112]. Likely, a high-fructose diet leads to the activation of hepatic lipogenesis and accumulation of ectopic fat in 
association with hyperinsulinemia [35,113,114]. Studies conducted on rodents demonstrated that a diet rich in fructose may stimulate 
lipogenesis by increasing gene expression of FASN, SREBP1, and Carbohydrate Response Element Binding Protein (ChREBP) in adipose 
tissue [35,97,115,116]. Dietary high-fructose also causes inhibition of adipose triglyceride lipase thus blocking lipid mobilization from 
adipocytes [97,117]. In a recent study, we showed that the gene expression of Angiopoietin-Like Protein 8 (ANGPTL8), which reg-
ulates plasma triglyceride levels by inhibiting lipoprotein lipase, is increased in adipose tissue in rats fed with a high-fructose diet 
[118]. Both its stimulatory effect on the adipose lipogenic genes and inhibitory effect on the lipolytic enzyme accounts for fat accu-
mulation in the adipose tissue. 

Fructose exposure also augments the accumulation of fatty acids in differentiated human adipocytes in culture and thus may lead to 
the initiation of adiposity accretion [119]. As presented in Fig. 2, the elevated fatty acids as well as triglyceride due to excessive 
fructose-induced hepatic de novo lipogenesis are transported to fat tissue for storage, thereby producing a dangerous metabolic link 
between liver and adipose tissue. Moreover, dietary fructose was proposed to activate intracellular cortisol, subsequently initiating 
fatty acid flux from subcutaneous adipocytes to visceral fat tissue for storage [120]. Fructose in the brain also stimulates 
Corticotropin-Releasing Hormone (CRH) and Adrenocorticotropic Hormone (ACTH), and thus causing an increase in cortisol secretion 
from the adrenal glands. The elevation in cortisol levels leads to hepatic gluconeogenesis, hyperglycemia, insulin resistance and fat 
accumulation in abdominal tissue [120]. It is well known that hypercortisolemia and chronic cortisol treatment cause an expansion of 
visceral adipose tissue [121]. This knowledge gives a support to the cortisol proposal to explain fructose-induced abdominal fat 
accumulation. Fructose has been also proposed to promote adipogenesis via ROS in the uric acid pathway [122]. However, why 
high-fructose specifically produces abdominal fat accumulation, but not subcutaneous, is not yet completely understood. Anyway, 
fructose appears as a unique nutritional component causing visceral fat deposition. Given, it is reasonable to propose that the reduction 
in dietary fructose intake will decrease abdominal fat mass and thereby could be imperative in health maintenance even without 
dramatic calorie restriction. Although the distribution of body fat is determined by many factors including age, sex, hormones, diet, 
physical activity, stress, and drugs, dietary fructose exclusively appears to be an effective factor in abdominal fat deposition. Based on 
the available findings on animals and humans with high-fructose intake, abdominal fat accumulation seems to be a critical outcome 
and a visible sign of adverse metabolic effects. 

Functionally, adipose tissue regulates fat and glucose metabolism secreting several factors and showing specific adaptive changes 
in response to energy intake [123]. Adipose tissue has an ability to adjust rapid and long-term changes in energy balance leading to 
tissue expansion or reduction. In the over-calorie intake, triglycerides begin to accumulate in adipocytes causing a rise in the adipocyte 
size and the tissue mass [124]. In metabolic disorders, the enlargement of white adipose tissue is associated with insulin resistance as 
well as inflammatory status due to macrophage infiltration and cytokine generation [125–127]. The adipose tissue also generates 
many inflammatory adipokines such as leptin, adiponectin, resistin, and visfatin which can modify insulin sensitivity by affecting 
insulin signaling pathways and glucose transporters [128]. However, the relation between insulin resistance and inflammatory process 
in adipose tissue remains completely understood [124]. In vitro studies provide some insight into the subject, in which the long-term 
challenge of adipocytes with cytokines was found to suppress insulin signaling and lead to insulin resistance [129,130]. Several in-
flammatory and macrophage-specific genes were shown to upregulate in white adipose tissue in high-fat or high-fructose feeding of 
rodents together with an increase in plasma insulin level [131,132]. The depletion of macrophages from visceral adipose tissue 
prevents the development of insulin resistance and fat accumulation in mice on a high-fat diet [133]. Dietary fructose-induced insulin 
resistance in mice causes visceral fat accumulation, macrophage infiltration, production of proinflammatory cytokines, and activation 
of endoplasmic reticulum stress in the visceral adipose tissue [134]. Moreover, the number of macrophages and the level of inflam-
matory cytokine were found to be high in the adipose tissue of rodents fed with high-fructose diet [118,135]. On the other hand, 
lifestyle-based weight loss strategies such as caloric restriction diet may also have protective effects in patients with metabolic syn-
drome through attenuating visceral adipose tissue mass as well as improving peripheral lipid profile, reducing insulin levels and in-
flammatory factors [136]. In the clinical perspective, recent studies have proposed that Sodium-Dependent Glucose Cotransporter 
Proteins 2 (SGLT2) inhibitors and Glucagon Like Peptide-1 (GLP1) receptor agonists, which are among the novel anti-diabetic mol-
ecules, may have beneficial effects on metabolic disorders by inhibiting cytokine release from visceral adipose tissue as well as 
reducing body weight [137,138]. In this line, it is possible to propose that these new anti-diabetic drugs may counteract the 
pro-inflammatory state associated with the expansion of adipose tissue caused by a high-fructose diet. Hence, it is generally accepted 
that inflammation in adipose tissue plays a causative role in the development of insulin resistance in the metabolic disorders, but the 
mechanistic pathway is still unclear. Fig. 2 shows the alterations in adipose tissue due to the high intake of fructose. 

6. The impact of fructose on insulin signaling 

Insulin has essential metabolic and anabolic functions in the maintenance of health status. The action of insulin is disturbed in the 
setting of metabolic diseases including type-2 diabetes, obesity, and metabolic syndrome possibly due to suppression of the insulin 
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signaling pathway. The binding of insulin to the specific membrane-bound receptors in target tissues is necessary to integrate its well- 
known physiologic effects in the body. For the establishment of metabolic homeostasis, insulin receptors are expressed on many so-
matic cells, especially in the liver, skeletal muscle, and white adipose tissue. Insulin produces tissue-specific physiologic effects in the 
insulin-responsive cells via almost the same signal transduction pathway that is diverged in the distal effectors [139]. In insulin 
resistance, the signal transduction system shows various changes in the different target tissues [112]. Also, the metabolic homeostatic 
effects are exerted to maintain with a high level of circulating insulin as observed in type-2 diabetes, obesity, overnutrition, and excess 
fructose intake [140]. In this section, rather than providing detailed knowledge of the insulin signaling system, we will try to delineate 
key molecules in insulin action and give special attention to modifying effect of dietary high-fructose. 

In this pathway, insulin action begins with its binding to the Insulin Receptor (IR) on cell membranes, and the signal transmits to 
the downstream effectors. IR can connect to several phosphotyrosine-binding proteins including Insulin Receptor Substrates (IRS). Of 
IRS isoforms, IRS1 and IRS2 are known to mediate the metabolic effects of insulin. Phosphoinositide-3-kinase (PI3K), which is in a 
crucial position in insulin signaling, is activated after tyrosine phosphorylation of IRS proteins. The signal is maintained via AKT 
(protein kinase B) activation by phosphorylation. Then the activated AKT phosphorylates several downstream effectors in different 
functional pathways. IRS, PI3K, and AKT as proximal insulin signaling elements are essential for the initiation of insulin action [139]. 
The tyrosine phosphorylation of IRS1 protein involves the activation of the insulin signaling pathway; however, its serine phos-
phorylation has been implicated in insulin resistance [141]. Also, Protein Tyrosine Phosphatase Non-Receptor Type 1 b (PTP1b) 
negatively controls insulin signaling transduction through dephosphorylation of the IR and IRS1/2 [142]. Basically, insulin inhibits 
hepatic glucose output through the glucose transporter GLUT2 but enhances glucose uptake into muscle and adipose tissue via GLUT4. 
The main glucose uptake by GLUT4 into the tissues due to insulin stimulation is critically dependent on the activation of the 
IRS1/PI3K/AKT pathway. The IRS/PI3K/AKT-dependent mechanism controls glucose transport into tissues, gluconeogenesis, and de 
novo lipogenesis, but differently, this latest is also regulated by phosphorylation of lipogenic enzymes [140]. On the other hand, insulin 
also has a regulatory effect on vascular tone via activation of the IRS1/PI3K/AKT/eNOS pathway. Nitric oxide produced from 
endothelium is known to mediate the vasodilatory effect of insulin as well as regulate its delivery to target tissues such as the liver, 
skeletal muscle, and adipose tissue [143,144]. In a preceding study, IRS1 knockout mice were shown to have impaired endothelial 
vasodilation and insulin resistance [145]. Further studies explored that there was a functional link between insulin signaling and eNOS 
[146,147]. In the insulin signaling pathway, the mammalian Target of Rapamycin-1 (mTORC1) and Forkhead Box O1 (FOXO1) are 
well-characterized AKT targets with important physiological functions [140,148]. The insulin at high concentrations also stimulates 
the mitogenic pathway implying activation of the Mitogen-Activated Protein Kinase (MAPK) pathway [149]. 

In experimental insulin resistance, the disruption of insulin signaling in the tissues of animals may cause hyperinsulinemia and 
diabetes [150]. In insulin resistance, physiologic actions of insulin are exerted to preserve with a high level of insulin as a compen-
satory mechanism in which it can be observed some tissue-specific functional changes. This resistant circumstance could be the 
consequence of a defect in insulin activation at the levels of IR, IRS1, PI3K, and AKT which are key effectors of insulin signaling thus 
diminishing glucose entry into the tissues due to disruption of GLUT4 translocation [148]. The suppression in hepatic insulin signaling 
was proposed to lead to a reduction in hepatic glycogen synthesis without decreasing lipid synthesis, thereby causing the dangerous 
combination of hyperglycemia and hypertriglyceridemia [112,151]. The molecular mechanisms for insulin resistance may involve 
endoplasmic reticulum stress, reactive oxygen species, mitochondrial dysfunction, and branched-chain amino acids [139,152–154]. 
Moreover, the metabolic dysfunction in insulin resistance may be associated with inflammatory cytokines derived from activated 
macrophages of adipose tissue [155,156]. Expansion of adipose tissue may cause homeostatic stress and increase chemotactic signals 
in adipocytes macrophages [157]. The proposal of inflammatory cytokine in insulin resistance was initiated with studies on the 
neutralization of TNF-α and advanced with c-Jun N-terminal Kinase (JNK) activation in adipocytes [158,159]. However, the mech-
anistic link between inflammatory status and insulin resistance is still being elucidated [156,160]. In this section, insulin-resistant 
states in response to excess fructose intake have been presented by considering the insulin signaling pathway. 

Animal and human studies indicate that similar to overnutrition, long-term excess fructose intake increases insulin secretion but 
decreases its metabolic actions in the target tissues thus leading to insulin resistance. Relatedly, accumulating evidence signified that 
high intake of fructose produces insulin resistance via suppressing proximal insulin signaling pathway, besides through the well- 
characterized mechanisms such as activation of de novo lipogenesis, reactive oxygen species, endoplasmic reticulum stress, mito-
chondrial dysfunction, and inflammatory cytokines [5]. An early study by Catena et al., in 2003 reported that fructose feeding (66% in 
diet) for two weeks causes a decline in the number of insulin receptors and IR gene expression as well as binding of radiolabeled insulin 
in the liver and skeletal muscle [161]. Moreover, hyperinsulinemia from fructose-fed rats was found to be associated with a decrease in 
nitric oxide-mediated vasodilation to insulin in the arteries, revealing vascular insulin resistance [162,163]. In a further step, a 
downregulation in IR, IRS1, pIRS1 (Tyr), pAKT, and PI3K as well as GLUT4 was established in the soleus muscle of male rats fed with a 
diet containing fructose [164]. Considering the negative control of insulin signaling, the intake of high-fructose led to an increase in 
PTP1b expression along with a decrease in hepatic IR, IRS1, and pAKT expression [151]. These preceding findings point to suppression 
in insulin action through signaling pathways in metabolic disturbance caused by dietary fructose. In this subject, we determined that 
dietary HFCS in male rats (20% in drinking water for 12 weeks) produced vascular insulin resistance by decreasing endothelial 
vasodilation to insulin as well as suppressing the expression of IRS1 and eNOS [165]. However, administration of pure fructose at 10% 
solution in drinking water for 24 weeks, reduced aortic expression of IRS2 and eNOS as well as insulin-induced vasodilation in female 
rats, but not males, showing a gender-dependent difference [100]. In relation to tissue division, we reported that HFCS-induced 
suppression in hepatic IRS1 and eNOS expression was associated with an increase in hepatic expression of FASN and SREBP-1c as 
well as triglyceride accumulation and microvesicular fat deposition in the liver [114]. In the development of hepatic insulin resistance 
after high-fat feeding, attenuation in liver eNOS content was proposed to play an important role in the suppression of insulin signaling 
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at the level of IRS1 and p-AKT, besides the onset of hepatic inflammation [147,166]. Therefore, insulin-induced nitric oxide output in 
the liver sinusoidal endothelium via the stimulation of the AKT/eNOS signaling was proposed to participate in the maintenance of 
hepatic blood flow as well as liver function. In confirmation of this link between insulin signaling and eNOS in different tissue, fructose 
feeding in male rats was demonstrated to decrease IRS1/2, PI3K, AKT, and also eNOS protein expressions in vasculature, liver or 
skeletal muscle [167,168]. On the other hand, some studies suggested that suppression of insulin signaling due to dietary high-fructose 
depends on the downregulation of IRS2 in the liver. In this context, it has been shown that dietary fructose (10% solution for 14–60 
days) reduced hepatic expression of IRS2, but not IRS1, in female rats [169–171]. Differently, in the liver of male rats, we displayed 
that administration of fructose (20% concentration in drinking water for 15 weeks) reduced both IRS1 and IRS2 gene and protein 
expressions besides IR mRNA, p-AKT, and p-eNOS protein expressions. These changes were associated with an increased hepatic 
triglyceride accumulation, fatty degeneration, and FASN expression indicating a reverse interaction between insulin signaling and 
lipogenesis [35,68]. The presence of insulin resistance is also evidenced by overt hyperinsulinemia, hypertriglyceridemia, and 
increased abdominal fat mass. Thus, it can be suggested that the attenuation of IR/IRS1-2/AKT/eNOS signaling may lead to lipogenic 
gene activation and liver fat accumulation in fructose-induced insulin resistance. However, the expressions of GLUT5 and GLUT2, 
which are the main fructose transporters, were augmented in the liver of rats upon fructose feeding, revealing excess fructose uptake by 
the liver evidenced by the increased amount of hepatic fructose content [35,68]. The insulin resistance due to suppression of hepatic 
insulin signaling may lead to a compensatory enrichment in fructose transporters, thereby providing substrate abundance for the 
overproduction of triglyceride by the liver. The impaired insulin signaling and increased fructose transporter expression in liver could 
be possible mechanisms underlying increased hepatic lipogenesis and fat accumulation in the high consumption of dietary fructose. In 
partial supporting this view, it was proposed that triglyceride synthesis in the liver is mainly dependent on substrate availability but 
generally independent of insulin action [172]. However, in liver insulin receptor knockout mice, overexpression of FASN and 
SREBP-1c induced by dietary fructose did not cause hepatic steatosis signifying a critical role of hepatic insulin signaling for the 
metabolism of triglycerides [173]. In aggregate, although hepatic insulin signaling and substrate availability as well as lipogenic genes 
have critical roles in de novo lipid synthesis, the mechanisms by which fructose led to fatty liver remain mostly unidentified [174]. 

With regard to the adipose tissue compartment, dietary high-fructose (20% in drinking water for 15 weeks) in rats was demon-
strated to cause a downregulation in the gene expression of IRS1, IRS2, and eNOS, but upregulation in lipogenic genes including 
SREBP-1c and FASN, similar to the findings in the liver [35]. However, in a previous study investigating the impact of fructose feeding 
at long-term and relatively low concentrations (for 24 weeks, 10% solution in drinking water), it was not determined a suppression, but 
surprisingly an upregulation in the expression of insulin signaling genes in adipose tissues of both male and female rats together with a 
marked increase in omental adipose tissue mass [175]. These discrepancies point out possible compensatory and adaptive changes 
depending on fructose concentration and feeding duration. In another study, 10% fructose-sweetened water supplementation for 10 
weeks did not change IR, IRS1, IRS2, PI3K, and AKT mRNA expressions but increased IRS1 (Ser) phosphorylation, accompanied by an 
increase in epididymal adipose tissue mass and adipocyte size [176]. However, in examining the sex-dependent effect of dietary 
fructose on the visceral adipose tissue insulin signaling pathway, it was found an increase in protein expressions of p-IRS1 (Ser) and 
PTP1b, whereas a decrease in p-AKT in female rats, but not in males, consuming 10% fructose solution for 9 weeks [177]. Considering 
with above section on abdominal adiposity, current findings signified that further investigation is required to elucidate the causal 
relationship between the excess fructose-induced expansion of adipose tissue and insulin signaling. On the other hand, as regards the 
kidney, it was found an increase in the expression level of p-IRS1 (Ser), but a decrease in p-IRS1 (Tyr) and p-AKT in renal tissues of rats 
fed 10% fructose solution for 8 or 12 weeks showing a suppression in the renal insulin signaling pathway [178–181]. In partial 
agreement, dietary fructose in rats (20% solution for 15 weeks) led to an impairment in renal IRS1 and AKT protein expression together 
with an elevation in the expression of GLUT5 and sodium-glucose linked transporter-2 (SGLT2), which are specific fructose and glucose 
transporters respectively [67]. These results suggest an enhancement in tubular reabsorption of both monosaccharides in the blunted 
insulin signaling. Thus, excess fructose intake could be a risky nutritional component in the development of renal irregularities when 
considering its well-known uric acid-generating effect. 

Inflammatory factors, especially iNOS, may have a role in the coupling of metabolic and vascular insulin resistance as well as 
impaired insulin signaling in the liver from diabetic obese mice [182,183]. In concert with this proposal, we reported that high 
vascular expression of iNOS was associated with suppression of aortic expression of IRS1 and eNOS as well dysregulation of metabolic 
parameters [165]. In the other studies, it was also reported an inverse association between the activation of inflammatory cytokines 
(iNOS, NF-κB, TNF-α, IL-1β, and IL-6) and suppression of insulin signaling pathway in the liver, adipose tissue, or kidney of rats fed 
with high-fructose [35,67]. In this line, high-fructose intake led to activation of Nod-like receptor pyrin domain-containing 3 (NLRP3) 
inflammasome in the kidney of rodents with decreased IRS1/AKT level [180,181,184]. Moreover, reduced expression of p-IR, p-IRS1 
(Tyr), and/or p-IRS2 protein was associated with increased expression of inflammatory cytokines in the liver of fructose-fed animals 
[185,186]. The decreased expression of IRS1 in adipose tissue following high-fructose consumption of rats is accompanied by an 
increase in inflammatory factors such as NF-κB, IL-1β, IL-6, and TNF-α [177]. Also, fructose feeding-induced augmentation in p-IRS1 
(Ser) expression in adipose tissue of rats was accompanied by an elevation in the inflammatory index with molecular and histo-
pathological examinations [187]. In the soleus muscle of rats fed with fructose-rich diet, the elevated IRS1 (Ser) and reduced IRS1 
(Tyr) expression were associated with an upregulation of Cyclooxygenase-2 (COX-2) and Inhibitor kappa-B alpha (IκB-α) expression 
[188]. As a result, excess fructose intake produces an activation of inflammatory status, but a suppression of insulin signaling, thereby 
suggesting a close reciprocal relationship between these two processes. Thus, we depicted a perspective on how fructose suppresses 
insulin signaling at the level of target organs including vasculature, liver, adipose tissue, skeletal muscle, and kidney. Suppression of 
insulin signaling in the main target tissues, possibly due to an elevation in inflammatory cytokines production, precedes impaired 
insulin action in the whole body characterized by systemic insulin resistance. 
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7. The impact of fructose on reproductive function 

The low testosterone level might be an important characteristic of metabolic syndrome in men, like hyperglycemia, insulin 
resistance, dyslipidemia, abdominal obesity, and low-grade inflammation [189,190]. In men, testosterone deficiency is a constant 
indicator of infertility and is also interestingly involved in cardiovascular disease and mortality [191]. Studies have documented that at 
least 20–25% of men with metabolic syndrome or type 2 diabetes has low free testosterone levels and gonadal dysfunction [191–193]. 
Also, the increased body mass index in males is associated with a reduced plasma level of testosterone with a concomitant increase in 
plasma level of estrogen [192]. However, the meta-analysis results disclosed that the association between obesity and subfertility is 
somewhat controversial [194,195]. In relevance to fat distribution, the results of a retrospective study in men display a negative 
correlation between visceral adiposity and male fertility indicators such as sperm count, sperm motility, serum testosterone level, and 
testosterone/estradiol ratio [196]. Regulatory role of abdominal adiposity on testosterone levels appears to be important in the 
progress of complications of metabolic diseases in men. Notably, aromatase enzyme derived from white adipose tissue modulates the 
conversion of androgen to estrogen and thus affecting body fat distribution [197]. The aromatase activity is positively correlated with 
abdominal adiposity, pointing that there was an increased estrogen production, but a decreased testosterone, in visceral adipose tissue 
[198]. Moreover, in relation to regional adiposity, epididymal fat accumulation in the scrotum area may cause an increase in scrotal 
temperature thus disturbing the microenvironment of testes and maturation of spermatozoa [199]. On the other hand, systemic 
chronic inflammation in metabolic diseases may cover the male genital system and cause testicular dysfunction by disrupting hormone 
homeostasis and spermatogenesis [200]. The impact of dietary high-fructose, which is one of the contributory factors of metabolic 
syndrome, on male reproductive function is poorly understood. 

Recently we showed that the intake of high-fructose in rats causes a decline in the testicular concentration of testosterone and testis 
weight [201,202]. Also, it was determined a decrease in sperm count and motility, but an increase in abnormal sperm morphology due 
to excess fructose consumption in rats [201,203–207]. Dietary high-fructose was also demonstrated to cause degeneration in the 
Sertoli cell and seminiferous tubule as well as a reduction in germ cell number [201,202,206,208,209]. It was also determined to 
produce architectural distortion with a high apoptosis index in seminiferous epithelial cells of rat testis [206]. The histochemical 
examination in the germ cells of high-fructose-fed rats disclosed the increased apoptotic activity evidenced by high expression in-
tensity of Raf1, Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), and caspase-3 as well as terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) positive staining [201]. In similarity, the damage in porcine epididymis due to exposure to cadmium, 
which is a major industrial and environmental toxicant, was associated with the increase in the apoptotic index, which is determined 
by the upregulation of Raf1 and caspase-3. TUNEL staining further verified the provocation of apoptosis [210]. Previously, cadmium 
was also shown to elevate the testicular Bax/Bcl-2 ratio, a main indicator of apoptosis, and cleaved caspase-3 activity together with an 
impairment in testis weight, sperm count, and motility in rats [211]. Another endocrine disrupter bisphenol-A activates the phos-
phorylation of ERK1/2 and caspase-3 in rat Sertoli cells [212,213]. ERK production depending on Raf cascade activation and caspase-3 
plays an important role in the regulation of germ cell apoptosis and spermatogenesis [214,215]. The studies have ascertained that the 
imbalance between germ cell survival and apoptosis of testicular cells induced by environmental toxicants profoundly affects sper-
matogenesis [216]. The overexpression of Raf1 leads to disruption of intercellular tight junctions downregulating occludin tran-
scription in the epithelial cells [217]. Activation of caspase-3, which is a constant marker of apoptosis, shows a negative correlation 
with sperm motility and viability [218]. These findings revealed that apoptotic factors have both physiologic and pathologic roles in 
the male reproductive system. Excess intake of dietary fructose like environmental harmful compounds provokes apoptosis in 
testicular tissues of animals, thus may lead to reproductive toxicity. 

MAPK/ERK pathway consisting of p38 MAPK, ERK1/2, and JNK has a critical role in the modulation of apoptosis in the testis as 
well as some reproductive processes including the progression of germ cell and spermatogenesis [219,220]. An upregulation of p38 
MAPK, ERK, and JNK expressions was determined in the testis of rodents with type-1 diabetes or high-fat diet-induced obesity 
[221–223]. The activation of p38 MAPK signaling and oxidative stress was shown to induce apoptotic cell death and testicular damage 
in rodents with type 1 diabetes [222,224,225]. Also, some toxic chemicals, such as dinitrobenzene, phthalates, and bisphenol A causes 
testicular injury by stimulating the MAPK pathway [226–228]. In the subject of dietary fructose, recently we demonstrated that excess 
fructose intake induces an elevation in the testicular expression of p38 MAPK, phosphorylation of p38 MAPK and ERK1/2 together 
with dysfunction and degeneration in the testis of rats [201]. Thus, it is plausible to propose that activation of apoptotic and mitogenic 
factors in the testis of rats following dietary high-fructose intake disturbs the development of germ cells and spermatogenesis. 

MAPK/ERK pathway has also a modulatory role on the epididymal tight junction proteins thereby controlling permeability to 
water, ions, and solutes [219]. The blood-testis barrier produces a physical obstacle between the testes and the bloodstream. The 
barrier components such as claudins, occludins, and junctional adhesion molecules construct tight junctions inter-adjacent cells and 
adjust the selective permeability of the epithelium. The blood-testis barrier also protects the seminiferous tubules against detrimental 
insults and thereby playing a vital role in the process of spermatogenesis [229,230]. The barrier can be destroyed by certain chemicals 
and metabolic diseases. For example, exposure to cadmium was proposed to lead to male infertility damaging the blood-testis barrier 
[231,232]. The high-fat diet-induced obesity in male mice was shown to produce a decrease in the expression of tight junction proteins 
of the testis and fertility [178,233]. Of the conditions of metabolic disease, diabetes mellitus was suggested to change the permeability 
of blood-testis barrier and thus disturb spermatogenesis [234]. In compliance with this proposal, a downregulation in the expression of 
N-cadherin and claudin-11 was determined in the testicular tissue of type-1 diabetic mice [222,235]. Our study results for the first time 
demonstrated that dietary high-fructose causes a decrease in the expression of the major components of blood-testis barrier, including 
N-cadherin and claudin-11 in the testicular tissues of rats so rendering them defenseless against the damaging insults [201]. Besides, 
excess fructose intake activates the inflammatory process as evidenced by high expression levels of cytokines including TNF-α and 
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iNOS as well as NF-κB in the testis of rats [202]. In the chemical and nutritional framework, testicular inflammation was also 
considered in exposure to reproductive toxicants such as manganese, cadmium, and bisphenol A [210,236,237] as well as in obesity 
induced by a high-fat diet [178]. The increase in seminal levels of inflammatory cytokines was determined to be associated with 
decreased total sperm count, motility, and vitality in patients with metabolic syndrome [238]. A study reported that the frequency of 
male accessory gland inflammation was around 43% among infertile type 2 diabetic patients [239]. The inflammation in the male 
accessory gland exhibits a high spreading rate in diabetic patients with testosterone deficiency displaying a regulatory role of 
inflammation on testosterone production [240]. These findings show the importance of the local inflammatory status of the male 
genital tract in metabolic diseases extending to reproductive dysfunction. In terms of a sugar viewpoint, high-fructose intake causes a 
hormonal dysfunction with low intra-testicular testosterone, activation of inflammatory cytokines, downregulation of the blood-testis 
barrier proteins, and upregulation of mitogenic and apoptotic pathways in the rats. In a further study, for the first time, we recently 
showed that excess consumption of fructose downregulates key molecules of the insulin signaling pathway including IR, IRS-1/2, 
PI3K-Akt-mTOR, and eNOS in rat testis, revealing testicular insulin resistance (unpublished yet). Taking all these molecular 

Fig. 3. The impact of high-fructose intake on male reproductive system 
The testes, which primarily contain Leydig, Sertoli, and germ cells, are responsible for male reproductive function and health. Leydig cells produce 
testosterone that plays an essential role in the maturation of spermatids and the maintenance of testicular homeostasis. Sertoli cells have a 
phagocytic function and support the proliferation and development of germ cells. The forming of spermatozoa involves the gradual differentiation of 
germ cells and their eventual transformation into mature sperm. The MAPK/ERK pathway, including p38 MAPK and ERK1/2, has an essential role in 
the regulation of spermatogenesis, progression of germ cells, and apoptosis as well as blood-testis barrier integrity. However, the overstimulation of 
Raf1, MAPK/ERK pathway, as well as caspase-3, negatively affects male reproductive function via disrupting sperm motility and viability as well as 
damaging sperm morphology. High intake of dietary fructose activates mitogenic and apoptotic factors in the testicular tissue thereby impairing 
blood-testis barrier integrity and spermatogenesis. The blood-testis barrier, which mainly consists of claudins, occludins, and junctional adhesion 
molecules, acts as a physical hindrance between the testes and the bloodstream. This obstacle protects the seminiferous tubules against harmful 
products, thereby supporting the maintenance of spermatogenesis. Overconsumption of fructose leads to a downregulation in the expression of tight 
junction-related proteins such as N-cadherin and claudin-11 and thus impairs barrier integrity and sperm production in testes. Additionally, high 
fructose causes testicular inflammation and degeneration through the upregulation of proinflammatory factors such as TNF-α, iNOS, and NF-κB. All 
these changes induced by high fructose could be responsible for the decreases in testicular weight and testosterone levels; the impairment in sperm 
count, motility, and morphology; the degeneration in Sertoli cells and seminiferous tubule, which are known to be closely related to male infertility. 
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findings, in association with morphological changes including testicular degeneration, low sperm count, and sperm anomaly, we 
proposed that excess intake of fructose may generate male reproductive dysfunction. Although the relevance of these results to humans 
remains to be determined, the potential destructive effect of dietary high-fructose on the male system should be taken into consid-
eration for the maintenance of public health. High-fructose-induced abnormalities and related potential mechanisms in the male 
reproductive system are summarized in Fig. 3. 

The influence of dietary high-fructose on female gender function has been relatively less investigated than those of males in both 
animal and human studies. A study demonstrated that high-fructose corn syrup feeding for 28 days has adverse effects in adult female 
rats with changes in the length of the estrous cycle as well as ovarian and uterine histology [241]. Furthermore, high-fructose con-
sumption caused an increase in ovarian weight, testosterone, and luteinising hormone level, and also a decrease in follicle-stimulating 
hormone in rats with the letrozole-induced polycystic ovarian syndrome [242]. Polycystic ovary syndrome is one of the most common 
endocrine disorders observed in premenopausal women leading to ovarian dysfunction. This syndrome was also associated with 
metabolic diseases including obesity and insulin resistance [243]. Currently, there is still little data to outline the adverse effect of a 
fructose-rich diet on the female reproductive system related to fertility and endocrine parameters. Further studies will be required to 
delineate the importance of the nutritional approach in female health. However, regarding offspring health, animal studies disclosed 
that excess maternal consumption of fructose resulted in fetal growth retardation, insulin resistance, hypertension, and sex-specific 
changes in offspring development as well as a reduction in fertility [244–248]. A large prospective cohort study showed that high 
maternal intake of sugar-sweetened beverages was associated with an increased risk of preterm birth [249]. Although the impact of 
perinatal fructose consumption during pregnancy in humans is largely undetermined, the above-mentioned experimental findings urge 
caution for potential adverse effects of high-fructose consumption on maternal and offspring health. 

8. Conclusion 

Although the presented documents are based somewhat on experimental data, the evidence indicates that a high intake of fructose, 
as a dietary sugar component, disturbs the metabolic physiologic balance. We are still unable to precisely define the mechanisms; 
however, dietary high inclusion of fructose causes serious health risks that are obvious, especially at the level of the intestine, 
microbiome, liver, adipose tissue and reproductive organs. Public health policy is necessary to encourage people by delineating a safe 
nutritional lifestyle to cope with the destructive consequences of diet-induced metabolic disorders. Giving up or reducing the con-
sumption of fructose-sweetened beverages and foods, as a powerful lifestyle intervention, would produce a measurable effect in the 
prevention of metabolic diseases that could be a more cost-effective way than the other solutions such as drug therapy. 
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